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Free-path model for the resonances in the Scott effect
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A free-path model is set forth for the phenomenon discovered by Scott whereby a gas exerts a torque on a
heated cylinder when the gas is subjected to a magnetic field parallel to the cylinder axis. The model is

particularly applicable to the phenomenon of torque resonance found by Smith and Scott when they
modulated the magnetic field. The free-path model is not intended to compete with Chapman-Enskog-type
theory in providing a precise description of the Scott effect, but is intended rather as an aid to physical
intuition. Within the limits of its purpose, the model appears to be quite successful. Namely, it provides an

intuitive picture of why there is a torque and it enables one to understand how the resonances come about.
Moreover, it gives the same formula for torque resonance as do the systematic treatments. The model has

an interesting sidelight: In its simple form the model yields Lorentzian-type resonances with molecular speed
as a parameter. When the speed is averaged over a typical distribution, the Lorentzian resonances are
converted into functions of similar shape involving the incomplete I function. These latter functions seem to
be natural generahzations of the Lorentzian.

I. INTRODUCTION

The Scott effect (also referred to as the thermo-
magnetic gas torque effect) was originally ob-
served' as a torque exerted by a dilute gas on a
heated torsion pendulum when the gas was sub-
jected to a static magnetic field directed along
the axis of the pendulum. The arrangement of the
apparatus is illustrated in Fig. 1. For the majority
of the gases studied" it has been found that when
the mean free path in the gas is much less than
the distance between the heated cylinder and the
vacuum chamber, the magnitude of the static
torque is proportional to a function of the gas
pressure p, and the magnetic fieM strength H
similar to the function

1 HP
P C+H /P

where C is constant for any given gas. A typical
example of this behavior is illustrated in Fig. 2.

Further interesting experimental results were
obtained by Smith and Scott' as a result of Smith's
suggestion that it would be worthwhile to look for
resonances in the Scott effect. The experimental
arrangement was changed by the addition of an
alternating magnetic field (referred to as the
modulating field) also directed along the axis of
the pendulum. The results of these "dynamic"
experiments are conveniently expressed by plots
of b,N/N vs |,where 4N denotes the change in
torque caused by turning on the modulating field,
N denotes the static torque (i.e., the value of the
torque with the modulation turned off), and v is
the frequency of modulation. Resonances were
indeed found, as illustrated by the experimental
results shown in Fig. 3. There 0. is the ratio of

the static field strength to the field strength which
would give maximum static torque at the given
pressure, and M (denoted by Smith and Scott as
p} is the ratio of the amplitude of the modulating
field to the static field strength.

The Scott effect is a recently discovered example
of the fact that a magnetic field can affect the
transport behavior of a gas of electrically neutral
molecules. This fact itself was discovered forty
years ago by Senftleben' in experiments on the
influence of a magnetic field on heat conduction
in paramagnetic gases (such as oxygen and nitric
oxide}. As a result of Senftleben's discoveries
there has been some effort over a number of years
at developing a theory for describing this sort of
phenomenon. The theory has come in two principal
stages, the first having been based on a free-path-
type model' and the second having been based on
use of the systematic method of Chapman and
Enskog to solve (a generalized form of) the Boltz-
mann equation for the situation at hand. ' The
application of the systematic method to the Senftle-
ben effect was approaching maturity when the
Scott effect was discovered, and this method be-
gan to be applied to the Scott effect shortly there-
after. '

While the Chapman-Enskog-type approach is
the proper one for obtaining a quantitative de-
scription of the Scott effect, it has the disadvan-
tages of being quite complicated and of offering
little help toward intuitive understanding of why
the Scott effect occurs. The present paper uses
a free-path approach to develop a physical picture
of one kind of molecular motion contributing to
the Scott effect.

The physical picture has two aspects. The first
aspect is that molecules traveling in any particular
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FIG. 1. Schematic drawing of apparatus used to mea-
sure the thermomagnetic gas torque. C: glass chamber,
inside diam. =7.6 cm, length=61 cm M mirror L:
lens; H: Helmholtz coil used for fields up to 120 Oe,
diam. 30 cm; S: solenoid used for fields above 120 Oe,
inside diam. =9.5 cm, outside diam. =19 cm, length
=30 cm; R: heated cylindrical torque detector, diam.
=1.9 cm, length =20 cm. (Figure and caption are from
Ref. 2.)

direction and having their rotation axes polarized
in a suitable manner will be deflected systemati-
cally to one side when they undergo collision. The
second aspect is that molecules which are de-
flected laterally will contribute to the shear stress
in the gas (we will be interested specifically in
the r, P component of the stress tensor) and that
if the lateral deflection depends in a suitable way
on direction of molecular travel, the sum of the
various contributions will be nonzero.

The first aspect of the picture is developed via
a model for the deflection of a molecule at the
end of a representative free flight. The model
does not lend itself to a determination of the nu-
merical magnitude of the deflection, but it does
provide an expression giving the dependence of
the deflection on the magnetic field. Thus, the
expression to be obtained for the torque itself
will give only the form of its dependence on the
magnetic field and not its magnitude.

The second aspect of the picture is developed
just sufficiently to indicate the spatial symmetries
which are required in order for the net shear
stress not to vanish.

Two principal results are obtained from the
model. One is the form of the static torque as
a function of If/P This fo.rm is fairly close to the
one which is obtained experimentally. The other
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result is a formula for r N/N due to modulation.
This formula has the virtue that it specifies the
magnitude of hN/N as well as the functional form.
The results are the same as those obtained through
systematic treatments and agree with experiment
as to the presence and location of resonances in
nN/N (as a function of v) but differ somewhat as
to the specific magnitude of aN/¹

One interesting conclusion which can be drawn
from this work is that it is easier to understand
the occurrences of resonances in the Scott effect
than it is to understand the details of the under-
lying Scott effect itself. More generally, one may
expect to find a sequence of resonances of this
sort in any @ffect which depends on a circular
motion, assuming that the circular frequency can
be modulated and that the relative change in the
effect can be observed as a function of the fre-
quency of modulation. The model presented here
offers a simplified way of seeing how these reso-
nances arise in the case of the Scott effect. If
the form of such a resonance is accurately under-
stood, then it will afford a means for precise
measurement of the underlying circular frequency.

II. MODEL FOR DEFLECTION AT END

OF FREE FLIGHT

We consider a gas of diatomic molecules. (See
Ref. 9.) One representative molecule is con-
sidered to rotate as a classical dumbbell and atten-
tion is paid to the orientation of its rotation axis.

When the representative molecule eollides with
one of the other molecules, the latter is regarded
as being spherical. When the representative mole-
cule is traveling through the gas, the rate at which
it undergoes collisions may be expressed as

u (A +8 cos2$)

where v is the speed of the molecule, g is the
angle between its rotation axis and its velocity
vector, and A and B are functions of molecular
speed which satisfy the relation

(A is roughly the reciprocal of the mean free
path. ) Attention will be limited to representative
molecules whose velocity vectors and rotation
axes lie in the r, P plane, as shown in Fig. 4(a).
This limitation is introduced for the sake of sim-
plicity. It is appropriate for the model to be pre-
sented here but would not be appropriate for study
of one mechanism proposed by %'aldmann. "

The magnetic field is given as a function of time
by

EI(t) =H„, (l +M cos&u I),

where & =2mv. Thus, as the molecule precesses,
the azimuthal coordinate of its rotation axis will
vary as

((t)=&u~t+(~, M/~ )sin(~ t)+y,

where ~» is the rate of precession due to Hd,.
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alone and y is an arbitrary constant.
The basic idea of the model will be stated in

relation to Fig. 4 as follows. The representative
molecule (1) emerges from a collision at r" such
that its velocity is in some specific direction in
the r, y plane and such that its rotation axis lies
in the same plane and makes an angle g" with its
velocity; (2) precesses in the magnetic field H(t)
while it travels with speed U toward r'; (8) has its
rotation axis oriented in a definite manner when
it undergoes a second collision at r', and tends
to be deflected to one side in a manner which
depends systematically on this orientation.

To translate this model into a formula for the
deflection, we need to include factors proportional
to the probabilities of the following: (1) that the
molecule will have an initial orientation of g";
(2) that it will go from r" to r' without suffering a
collision; and (3) that it will undergo a collision
at i". In addition, we need to (4) include a factor
proportional to the average value of the lateral
deflection of the molecule when it undergoes the
collision at r'; (5) average over initial orienta-
tions &"; (6) integrate from zero to infinity with
respect to the separation of the points r" and x';
and (I) average over one period of modulation of
the magnetic field (because the period of modula-
tion is always much shorter than the period of the
torsion pendulum). We will attend to these seven
ingredients in sequence.

(1) We need the distribution for the probability
that a molecule emerges from the collision at r"

having the angle between its rotation axis and its
velocity equal to g". %hat comes out of the model
will depend on what is put in at this point. Ne will
show that the deflection predicted by the model is
zero if it is assumed that the molecules at which
we are looking have their rotation axes oriented
randomly in the r, y plane. Subsequent to that
we will indicate what sort of rotation axis polariza-
tion needs to be assumed in order for the mean
deflection given by the model to be nonzero.

Proceeding on the assumption that the rotation
axes are uniformly distributed, we note that the
rate at which collisions cause fresh molecules to
acquire the parti. cular velocity v and rotation axis
orientation f" is nearly equal to the rate at which
collisions cause molecules which have had those
parameters to acquire different ones. Thus, we
take the probability distribution for &" to be pro-
portional to

A. +8 cos2&".

It will be convenient to use the expression obtained
above for & as a function of time. The symbol t
will denote the time at which the molecule reaches
the point r'. The distance from r" to x' will be
denoted, by x. Thus

g" =&a,(t-x/v) (~+, M/~ )

x sinf &d~( t —x/U )] + (p

and the factor representing the distribution of
probability for the initial orientation becomes
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FIG. 4. (a) Molecular velocity and rotation axis vectors in r, y plane. r" and r' represent the end points of a single
free flight. (b) Illustration of why the form sin&' cos&' is used to represent the dependence of the lateral deflection of
the dumbbell molecule on its orientation.



LOUIS T. KLAUDE R, J R.

A +8 cos (2(dp( t —x/U) + (2(d~ M/~~)

x sin[(U (t —x/v)] +2'
(2) The probability q(x) that a molecule will

travel a distance x without collision satisfies

dq = -[A +8 cos2g(x)] q dx,

where g(x) is the angle between the rotation axis
and velocity at x. Thus

q(x) =e ""exp 8 -dycos2&(y)
0

To obtain a useful expression for q me need to
replace the second exponential by the first tmo

terms of its power series. To see that this is
legitimate, me recall that B«A and note ac-
cordingly that the exponent of the second exponen-
tial mill be «1 as long as x is small enough for
q as a mhole to be significantly greater than zero.
Thus we have

q(x) =e "" 1 -8 dy cos24(y)
0

An explicit expression for &(y) is obtained as
follows. The point r" at which the molecule starts
is a distance x away from r', and when the mole-
cule has gotten to the point y in the above integral
it is a distance x -y from ~'. Thus

required by this picture, namely,

2 sing' cos(' = sin2&'.

The foregoing is one of the main parts of the
model.

As this factor mill also depend on the nonspheric-
ity of the molecular cross section, we multiply
the preceding expression by 8/A and use

(8/A) sin[2~~t+(2&v~M/~ ) sin(&u t)+2q "].
(5) The integration from 0 to 2w with respect to

the additive constant y" can be carried out in a
straightforward manner. The integrand consists
of the eight terms which are obtained when the
four basic factors just enumerated are multiplied
together. These terms can be grouped according
to the number of factors of 8 which they contain.
The first group consists of a single term mith only
one factor of B. This term vanishes when inte-
grated with respect to y". Of the three terms
which contain tmo factors of 8, one vanishes on
integration mith respect to y". The integrals of
the other two are

x 2~MwB'e ""sin 2~, —+ ' [sin((u t)

—sin(u (t-x/U)]

~M . x-y
+ ' sin ~ t- +y",

~m

and the probability that the representative mole-
cule travels the distance x from r" to r' without
collision is

q(x)=e " 1-8 dycos 2a& t--Ax x x -y
0 U

2&M . x -y'
} ,2, ) .

~m U

(3) The probability that the representative mole-
cule will undergo collision at r' is proportional to
the collision rate, and thus to

A +Bcos2$'

and, inserting the expression for the rotation axis
coordinate at r', this is

A +8 cos[2w~ t+ (2(o~M/~ ) sin(w t)+2y" ] .

(4) We picture the rotating dumbbell as a round
pill mith flattened sides orthogonal to the rotation
axis. See Fig. 4(b). For the average lateral de-
flection (due to collision with a spherical object)
we use the simplest expression which behaves as

a -~x-xB'e "'A dy sin ) ' (x -y)
0 U

2&v, M . . x -y
+ sin(&d~ t) —sinU)~

(dp

The three terms proportional to 8' all vanish when
integrated with respect to q". The term propor-
tional to B' is ignored because it is smaller by a
factor of (8/A)2 than either of the two terms just
written out.

A physical interpretation can be given to the tmo

terms which are being carried forward at this
point. Each term deals with a component of the
group of molecules scattered into the "stream"
at r", keeps track of that component as it propa-
gates to r', and sums up the contribution which
that component makes to the mean transverse
deflection at r'. Each term takes account of the
effect of molecular asymmetry in two correlated
collisions, and in each term the second of these
two collisions is the collision at r'. The two terms
differ as to mhere the first collision of the pair
occurs. The component dealt with in the first
term is the component representing the (quadru-
pole type) polarization of rotation axis directions
in the in-scattered group. For this term it is the
in-scattering at r" mhich is the other collision
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in which molecular asymmetry is taken into ac-
count. The attenuation of this component by col-
lisions between r' and r' is evaluated without
regard to molecular asymmetry. The second
term deals with the unpolarized component of the
in-scattered group. Account is taken of the aver-
age polarization which this component acquires
by virtue of the effect of molecular asymmetry in
one collision tending to attenuate this component
between r" and r'.

(6) Coming to the integration with respect to x,
one finds, using integration by parts, that the
integral of the second of the preceding two terms
is equal and opposite to the integral of the first
term.

This completes the demonstration that the model
gives zero net deflection if the molecules being
considered are unpolarized prior to effect of the
magnetic field.

When me consider the more general form

1+a, sin&+b, cosg+a, sin2$+b, cos2&

for the zero-field probability distribution of the
coordinate g, the corresponding distribution for
&" just after the collision at r" is

(1+a, sin&" +b, cosi" +a, sin2i" +b, cos2&")

x (A +8 cos2f ").

One can repeat the preceding development and can
again do the integration over y" in a straightfor-
ward manner. One finds that the terms a, sin(
and b, cosf do not make any contribution to the
mean deflection. Bearing in mind that a, and b,
will both be of order 8/A, one finds that among
the various terms which a, sin2& and b2cos2(
contribute to the mean deflection at r', the only
ones which are of order B' are

OO 2~x 2~M((a ue *',cos ' + ' [s(n(u„t( —s' „(t-~A)])
"0

2~ x 2f„M
xBA dx e ""b,sin ' + ' [sin(~„t) —sin(d (t-x/U)]

~o

Each of these two terms takes account of molec-
ular asymmetry in the collision at r' but ignores
molecular asymmetry in the collision at r" and in
the attenuation of the stream of molecules between
r" and r'.

Thus, the model yields nonzero mean deflections
for molecules corresponding to distribution func-
tion terms containing cos2& or sin2&. These
polarizations are a part of the response of the gas
to the nonuniform temperature distribution and
to the combination of the temperature distribu-
tion and the magnetic field.

(7) Finally, the time averages of the preceding
two terms over one period of oscillation of the
modulatiag field may be written in terms of the
Bessel function J, as

00 240~ g
mBA dxe ""a,cos

0
'U

"4~M . ~~ x
& rJO sin

~m 2'0

2~x
pBA. Ch e "b2 sin

&0 e

4~M . ~ xx eJO sin
2U

III. RELATiONSHIP BET%(KEN DEFLECTION
AND SHEAR STRESS

So far we have been considering molecules
traveling in some particular direction in the r, y
plane, a.nd me have found that the rotation axes
must exhibit quadrupole polarization relative to
the direction of travel in order for the mean de-
flection at the end of a free flight to be nonzero.
We want to select from the distribution function
for the gas the leading terms which have this
polarization and to determine how each one will
contribute to the r, (p element Z„~ of the stress
tensor. Each term of the distribution function mill
exhibit the symmetry of the apparatus. This
symmetry can be expressed in terms of the angle
& between the molecular rotation axis and velocity
(both still in the r, rp plane) and the angle 8 be-
tween velocity and the radial direction.

We mill look first at the terms which can be
present in the distribution function when it has
not as yet been affected by the magnetic field. In
this case symmetry requires that each term re-
main unchanged when both g and 8 change sign.
The permissible terms are therefore

sin(2&) [s, sin8+ s, sin28+. ],
cos(2&) [1+c, cos8+ c, cos28+ ~ ~ ] .

Let us first consider the term cos2) cos28. Let
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the mean deflection of molecules with axis polar-
ization cos2$ be denoted by 6, . Then molecules
traveling in directions such that cos28& 0 will
have mean deflection &, and molecules traveling
in the remaining directions will have mean de-
flection -6, . Thus, following the collision at r',
the distribution of the velocity directions of these
molecules may be represented by

&f =cos[2(8 —&,)]«[cos2(8- 5,)]
—cos[2(8+ 5,)]«[-cos2(8+ 5,)],

where

1 if x&0
«(x) =

The contribution of &f to I:„~is proportional to

d 8 sin8 cos 8 &f (8)
0

which upon substitution is found to be

g sin26, .

Since 6, will be small, this contribution to Z„~
will be proportional to the mean deflection 6, .
Applying an analogous treatment to the other terms
which are not forbidden by symmetry, one finds
that their contributions to Z„~ all vanish. Having
found that the surviving contribution is due to the
term cos2& cos28 in the distribution function, we

may note that terms of this form arise from terms
such as $$: VVT and v. fvS: VVT in the conven-
tional expansions of the distribution function. (J
denotes the molecular angular momentum, and T
represents temperature. )

Ne next consider the additional terms which can
arise as the distribution function responds to the
presence of the magnetic field. The term sin2(
xcos26), which is ruled out by symmetry when there
is no magnetic field, becomes legitimate if it is
multiplied by a factor which is an odd function of
the magnetic field. Just what this odd function
should be cannot be determined from a free-path
approach such as that being given here. Homever,
since this odd function is a response of the molec-
ular distribution function to the presence of the
temperature distribution and the magnetic field, it

I

seems reasonable to assume that it will be some-
thing like 6~ by which we mean the value which

&, would have if the magnetic field mere unmodu-
lated. Denoting the mean deflection due to the axis
pola. rization sin2$ by 6, , a distribution function
term ~„sin2& cos28 makes a contribution 6,pF
& sin26, to the r, y element of the stress tensor.
As in the earlier case, this is the only term which
contributes.

Thus we mill try to include free-path contribu-
tions to Z, ~ owing to prior effects of the magnetic
field on the distribution function by adding to Z„~
a term P6„~, mhere P is a disposable parameter.
Ne mill then expect Z„„to be proportional to

5, +PC 5, .

IV. MANIFESTATION OF RESONANCES

Recalling the results obtained at the end of Sec.
II, introducing the parameters a =—AU/2~~ and
R —= ~ /~~, altering the variable of integration,
and dropping various constants, the basic mean
deflections may be expressed as

4m . Ry
o, ~a dye "sin(y) 4, sin

p

&, ~a dy e "cos(y) &, sin
4M . Ry

p I

Since these expressions mill be developed in
parallel, it will be convenient to write them in a
parallel notation, namely,

The integral for &, is found upon evaluation to
exhibit resonances as a function of R. The reso-
nances which are implicit in the integral may be
made explicit with the help of the following trans-
formation. "

Using the formula'2

&,(z sinn) = P cos(2ln) 4', (-,'s),

one finds

veiny( 4M Ry ~ g ]sin[ [, ], 2M

so that

0-a g dye '" [(I+,' R)I]4y2-I5[ ",Isin, , 2M

Carrying out the integral over y, this becomes

(I +-,' I R)
a

a' P -', &@Pl z;(
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V. INITIAL INTERPRETATION

In order to see the physical meaning of these
results, let us assume in this section that the
shear stress Z„~ is proportional to &, alone.
Then, when there is no modulation, M =0, and the
unperturbed torque is proportional to

Lkl

o 0

w

p

p=2

Since Av/2up~p/If, this expression for the static
torque depends on p/H in the appropriate manner.

The expression for the relative change in torque
due to modulation becomes (with f changed to -l)

-2 I

10

p=0

1

R (MODULATING FREQUENCY OVER AVERAGE PRECESSION FREQUENCY)

10

Considering the lth term of this sum (with l & 0),
one notes that the factor

(1 —2/R)/(a +(1 —z/R) }
is the common Lorentzian form of resonance with
the midpoint of the resonance occurring at R = 2/l
and that b,N/N will therefore contain a sequence
of resonances at

2 2 2= (d C0m~ P

Thus, the above expression also reproduces the
resonances which are the most conspicuous fea-
ture of the experimental results obtained by modu-
lation.

The above expression for b.N/N is identical to
that obtained by Hess and Waldman. ' Fleming
and Martin' obtain an identical result for each
basic contribution which they consider, but ob-
tain a final result which is somewhat more com-
plicated because of superposition of several con-
tributions. The results obtained by McCourt and
co-workers' are equivalent to those of Fleming
and Martin.

1

cK
C)

10

p
= 3

p =2

p
.- 1

1

R (MODULATING FREQUENCY OVER AVERAGE PRECESSION FREQUENCY)

VI. AVERAGE OVER MOLECULAR SPEEDS

The expressions developed so far assume a
single value of a = AU/2to~ for all the molecules
which contribute to the shear stress. Since the
speed U wil1. follow some distribution such as a
Maxwellian, it is of interest to determine how
the foregoing results are affected when they are
averaged mith respect to U. The specific form of
the integrand in such an average depends on the
expression used for A. as a function of U. In order
for the results to be expressible in closed form,
we have had to approximate A as a constant.
Fortunately this approximation is not an unrea-
sonable one for the averages in question.

The molecular speed distributions corresponding
to the simplest distribution function terms will be

C3

$ 0

CL

z

p=3

p =2

p =1

p
a 0

1

R(MODULATING FREQUENCY OVER AVERAGE PRECESSION FREQUENCY&
10

FIG. 5. Asterisks represent data of Smith and Scott
for NO with n= 7.89 and M =1.42. The curves are from
the model and are all for those same values of o. and
M. The curves in (a) assume that all molecules travel
at a single speed. The curves in {b) and (c) assume
molecular speed distributions corresponding to n =5 and
7, respectively. Each curve is for a particular value of
the disposable parameter P as labeled.

10
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as follows:

There mill be an additional factor of v' because
the average represents transport of momentum.

Applying the average over v to the next to last
equation of Sec. IV, me need to evaluate

r eo
yf -mo /»g -Ay@ j2GP

J p

where n mill be 5 or V. By Ref. 13, Sec. 19.5.3,
this is

(
aT ("'I» 1 IT Zy ' kr "' Wy—

m
n! exp 4 m 2~~ '""' m 2~,D

D being a Vfhittaker function.
Proceeding nom to the integral over y, me need

(sin (J dy & [(1+-,'!R)y] exp — D &„,»cos 4 tg 2 (jL}p
( pR 2p

which is given in Ref. 14. Introducing

b —= (1+-,'lR)(„)
then for b &0 the expression becomes

0,
y/2 2 2(n-2 j /2 yQ

Q28
kT A, I n+1 ~~ 2 n ~ 0

'jo ' lj
In light of the definition of the 6 function in Ref. 15, p. 207, this reduces to

m "2 2& 2(~ 2jl' 6' 0Il
kT 4 I'(n I) "

I2
j-', j

2 'IO(

With the help of Ref. 15, p. 216, Ejl. (8) and Ref. 13, Sec. 13.1.33, it may next be written as

(
m "2 jd b" I'(-'(0+1})U(—'( s+1), '(n+1),-'b~)—
kz W i~! 1'(-,'(n+2)) U(-,'(n+2), —,'(n+2), —,'b')

U being a confluent hypergeometric function. Using Ref. 13, Sec. 13.6.28, this becomes

Finally, recalling that n is an odd integer and using Ref. 13, Sec. 6.5.9, this becomes

(
m "' ~, 2"~' I'(-,'(n+1)) (b/&2) e' ~'E(„„jg,(-,'b')
kT A „1( (s+2))( b ) ized' I21'( 2n bs)

where E„(x) is one of the exponential integrals (cf. Ref. 13, Chap. 5). Referring back to the integral which
leads to the G functions, one sees that these last expressions hold for b&0 as well as for b&0 (i.e., the
upper and lower expressions are respectively odd and even in b). Reintroducing various factors which
were temporarily omitted (but dropping common factors not depending on H or p}, we find

1'(-,'(m+1))(b/v2 ) e"' E,„„„,(b /2), 2ljf
1'(-,'(n+2}}(~b')" ' e' ~* (=f,' 'bn'}

The above functions involving b are similar to (and generalizations of) the Lorentzian "resonance" ex-
pressions to which the average over molecular speed mas applied.
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VII. RESULTS

Using the foregoing expressions in the relation

N(torque) o- &, +P&„5,

and using a computer to evaluate and plot b, N/X,
one obtains curves such as those shown in Fig. 5.
The superposed asterisks represent experimental
measurements of Smith and Scott. ' (The asterisk
abscissa values have all been multiplied by a
single disposable factor to permit their alignment
with the curves. ) Each of these figures shows
curves for I' =0, 1, 2, and 3 as labeled. Figure
5(a) shows the results obtained when all mole-
cules are assumed to travel at a single speed.
Figures 5(b) and 5(c) show the speed averaged
results assuming the speed distributions rep-
resented by n =5 and 7, respectively.

Examining the curves, one may observe that
inclusion of the term I'4, 0&, appears to permit
improved fit to the experimental data. However,
none of the fits are particularly good, and there

is no apparent basis for preferring one molecular
speed distribution over another.

Several factors are presumed to contribute to
the observable discrepancies between the model
and experiment. First, the basic free-path ap-
proach is quite crude compared to any systematic
approximate solution of the Boltzmann equation.
Second, while inclusion of a function such as 6„
seems reasonable, the specific form &„is only
a guess. Third, the curves of Fig. 5 assume that
all molecules have a single g value (i.e. , gyro-
magnetic ratio) but are compared there to experi-
mental points for the gas NO which exhibits various
g values distributed over a fairly wide range. (For
this reason it would be interesting to see experi-
mental results for a gas such as N, in which all
molecules do have the same g value. ) Another
feature of the model which may be mentioned is
that several vectors which are physically free to
point in any direction were constrained to lie in
the r, y plane. However, we do not expect that
inclusion of other directions would alter the
results.
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