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Variational solution of Schrodinger's equation for the static screened Coulomb potentials
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A variational method is used to obtain solutions to Schrodinger's equation for a particle in a static
screened Coulomb potential. Energy eigenvalues are obtained for the lowest 45 states. The analytic wave

functions generated by this method are used to obtain the probabilities for spontaneous emission in the
dipole approximation as a function of screening length, for transitions between the six lowest states.

I. INTRODUCTION

Numerous authors' ' in the past have attempted
to find solutions of Schrodinger's equation for a
particle in a screened Coulomb potential. Proba-
bly the most extensive investigation on the subject
is that by Rogers et a/. ' The wide interest in the
problem stems from its application to problems in
atomic, solid-state, and astrophysics. In partic-
ular, the well-known stellar-opacity code of Cox'
makes use of the solution to first order in the
screening length (the so-called "depression of the
continuum"). %e were primarily motivated by a
desire to provide improved energy levels for
opacity calculations but more important still to
point out an omission in all such calculations, viz. ,
the fact that transition probabilities may be signif-
icantly changed by screening effects due to free
charged particles. This stimulated us to seek a
method of solution which would (i) provide better
energy levels than all other existing methods, (ii)

enable transition probabilities to be readily cal-
culated, and (iii) be easily reproducible by other
workers in this general area. In Sec. II, we pre-
sent a variational calculation of the energy eigen-
values as a function of screening length. Next,
we discuss several reasons why we consider the
variational method to be more advantageous than
the numerical-integration technique used by
Rogers et ~/. ' In Sec. III we calculate spontaneous-
emission probabilities in the dipole approximation
for transitions between the lowest six states as a
function of the Debye-Huckel screening length. To
our knowledge this is the first calculation of such
transition probabilities for a particle in a Debye-
Huckel potential.

II. ENERGY LEVELS

The general form of our variational solution of
Schr5dinger's radial equation for a particle in a
screened Coulomb potential is

TABLE I. Binding energies of states ls-3d for static screened potential with Z =1 (in units
of rydbergs}.

1500
1000

700
500
200
100

70
40
30
20
15

9
8

0.9987
0.9980
0 ~ 9971
0.9960
0.9900
0.9801
0.9717
0.9509
0.9350
0.9036
0.8731
0.7951
0.7718
0.7424
0.6536

0.2487
0.2480
0.2472
0.2460
0.2401
0.2306
0.2226
0.2036
0.1895
0.1635
0.1400
0.088 31
0.075 08
0.059 94
0.024 22

0.2487
0.2480
0.2472
0.2460
0.2401
0.2305
0.2224
0.2030
0.1886
0.1615
0.1366
0.080 31
0.065 54
0.048 45
0.008 20

0.1098
0.1091
0.1083
0.1072
0.1014
D.092 40
0.085 12
D.068 66
0.057 44
0.038 71
0.024 32
0.003 19
0.000 79

0.1098
0.1091
D. 1083
0.1072
0.1014
0.092 31
0.084 94
0.068 16
0.056 62
0.037 12
0, 021 95
0.000 25

0.1098
0.1091
0.1083
0.1072
0.1014
0.092 12
0.084 58
0.067 15
0.054 94
0.033 83
0.016 95
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R„,(r) = g g a„r'e "i',

where a~, and a~ are parameters. The termination
value of n —1 in the summation was chosen initial-
ly because it was observed that it corresponded to
the termination value for the Coulomb potential.
The justification for this termination value of 0
depended on whether or not the desired stability in
the eigenenergies was achieved with the use of
only those terms. As it turned out in the calcula-
tions, it was not even necesSary to use all the
terms in the k summation below this prechosen
termination value of m —1. Use of the first several

terms proved sufficient for our desired stability.
The various nonlinear parameters a& are chosen

input data, whereas the linear parameters a&, are
evaluated numerically in the course of diagonali-
zation of the Hamiltonian. With regard to the
choice of n& values, we were guided by the fact
that, for the hydrogen Coulomb wave functions,
o'=(21&I) =& '. Note that we conform to the
eigenfunction and eigenenergy labeling of the Cou-
lomb potential, that is, the lowest s state is de-
noted by 1s, the second-lowest s state by 2s, etc. ,
although the numerical value is no longer asso-
ciated with a "principal quantum number. " This
particular choice of the trial solution satisfies the

TABLE lI. Binding energies of states 4s-9/ for the static screened potential with S=1 (in units of rydbergs x 10).

1500 1000 700 500 200 100 40 30 20

4s
4p
4d
4f
58
5P
5d
5f
5g

68
6p
6d
6f
6g
6h

7s
7P
Vd

7f
7g
7k
7f

Ss
SP
8d
Sf
Sg
Sh
Si
Sk

9s
9P
9d
9f
9g
9h
9i
90
Bl

0.6118
0.6118
0.6118
0.6117

0.3868
0.3868
0.3868
0.3868
0.3868

0.2647
0.2647
0.2647
0.2647
0.2646
0.2646

0.1911
0.1911
0.1911
0,1910
0.1910
0,1910
0.1910

0.1433
0.1433
Q.1433
0,1433
0.1433
0.1433
0.1432
0.1432

0.1107
0.1107
0,1106
0,1106
0.1106
0.1106
0.1106
0.1105
0,11Q5

0.6052
0.6052
0.6052
0.6052

0.3804
0.3804
0.3803
0.3803
0.3803

0.2583
0.2583
0.2583
0.25S2
0.2582
0.2582

0.1848
0.1S48
0.1848
0.1847
0.1847
0.1847
0.1846

0.1372
0.1372
0.1371
0.1371
0.1371
0.1370
0.1370
0.1369

0.1047
0.1046
0.1046
0.1046
0.1045
0.1045
0.1044
0.1044
0.1043

0.5969
0.5969
0.5969
0.5968

0.3722
0.3722
0.3721
0,3721
0.3720

0.2503
0.2503
0.2502
0.2502
0.25Q1
0,2500

0,1770
0.1769
0.1769
0.1768
0.1768
0.1767
0.1766

Q. 1295
0.1295
0.1295
0.1294
0.1294
0.1293
0.1292
0.1290

0.0973
0.0972
0.0972
0,0971
0.0970
0.0969
0.0968
0.0967
0.0966

0.5859
Q. 5859
0.5858
0.5857

0.3615
0.3614
0.3613
0.3612
0.3611

0.2399
0.2398
0.2397
0.2396
0.2395
0.2393

0.1669
0,1668
0.1668
0.1667
Q. 1665
0.1663
0.1661

0.1198
0.1198
0.1197
0.1196
0.1195
0,1193
0.1191
0.1189

0.0880
0.0879
0.0878
0.0877
0.0876
0.0874
0.0872
0.0870
0.0867

0.5307
0.5305
0.5301
0.5294

0.3088
0.3086
0.3081
0.3075
0.3066

0.1901
0.1899
0.1895
0.1889
0.1880
Q.1870

0.1204
0.1202
0.1198
0.1192
0.1184
0.1174
0.1162

0.0769
0.0767
0.0764
0.0758
0.0751
O.0742
0.0730
0.0717

0.0488
0.0486
0.0483
0.0478
0.0471
0.0462
0.0452
0.0440
0.0426

0.4471
0.4463
0.4446
0.4420

0.2332
0.2324
0.2309
0.2285
0.2253

0.1235
0.1228
0.1214
0.1193
0.1165
0.1128

0.0634
0.062 8
Q.0616
0.0598
0.0573
0.0541
0.0502

0.0299
0.0294
0.0283
0.0268
0.0248
0.0221
0.0188
0.0148

0.0117
O.Q113
0.0106
0.0094
0.0078
0.0058
0.0033
0.0002

0.3831
0.3814
0.3782
Q.3732

0.1792
0,1778
0.1749
0,1705
0.1646

0.0802
0.0790
0.0766
0.0730
0.0679
0.0614

0.0311
0.0302
0.0283
Q. 0254
0,0215
0,0163
0.0097

0.0084
0.0078
0.0065
0.0046
0.0019

0.0006

0.2501
0.2459
0.2374
0.2244

0.0805
0.0773
0.0708
0.0607
0.0465

0.0163
0.0143
0.0102
0.0040

0.0002

0.1701
0.1638
0.1507
0.1302

0.0337
0.0296
0.0212
0.0082

0.0005

0.0618 0.0099
0.0520 0.0013
0.0316
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condition that the radial function associated with
a particular Ãr must have the asymptotic be-
havior r' as r-0.

In general, 14 of the Slater-type orbitals were
used to obtain at least seven-figure stability, al-
though only two were needed for the ground state
to obtain stability to the quoted figures. Good
agreement is obtained between our variational re-
sults and the results obtained by Rogers et al. ,

'
except for some particular cases noted below. We
a1.so find that, as expected, the binding energies
of the states decrease with decreasing screening
length. In addition, we agree with the conclusion
of Rogers eI; al. ' that, contrary to the remark of
Bouse, ' the number of bound energy states for a

particle moving in a screened Coulomb potential
is finite. In fact, this has been proved analytical-
ly by several authors. ' Tables I and II give the
binding energies with Z= 1 for the values of the
screening length D for which some differences
between our method and that of Rogers et al. ' have
been found. The crossing of the energy eigen-
values for different levels in the case of strong
screening as described by Rogers et al. ' is con-
firmed by us. Some slight differences are noted
in the energies of some of the higher 1evels but
these are usually only discrepancies in the last
figure. The only major differences are as follows.
Bound states not reported in Rogers et al. ' but
found in our calculations are: for D =100, the 9i

TABLE III. Transition probabilities A». for static screened potential.

2P ~ ls 2p~2s 3s ~2P 3P ~2s 3P 3s 3d 2P 3d 3P

1000 %'avelength

A))i
700 Wavelength

A)) I

500 %'avelength

A)) ~

300 %'avelength

Ar)
200 %'avelength

Agg I

100 %'avelength

A)) r

80 %'avelength

Agg~
60 %'avelength

A)) r

40 %avelength

Ar) r

30 Wavelength

A))'
20 Wavelength

Arr'
15 Wavelength

Arrr
12 Wavelength

Arr
10 Wavelength

Ag).
9 Wavelength

Arr
8 Wavelength
A
7 Wavelength

A)) ~

6 %'avelength

A)) I

5 %'avelength

Arr'

1215.0 A

6.27(0) b

1215.O A
6.27(0)
1215.O A

6.27(0}
1215.1 A

6.27 (0)
1215.2 A

e.27(o)
1215.6 A
6.26(0)
1215.9 A
6.25(0)
1216.5 A

6.23 (0)
1218.4 L
6.18(0)
122O.9 A.

6.12 (0)
1227.9 A

5.93 (0)
1237,4 A,

5,69(0)
1249,3 A

5.40(0)
1263.8 A

5.06(0)
1274.9 A

4.81{0}
1290.3 A

4.47 (0)
1313.1 A.

4,00{0)
1348.9 A.

3.30 (0)
1411.9 A

2.16(0)

948.03 p
2 „14(-10)
612.69 p
7.97(-10)
350.26 p,

4,2S(-9)
160.75 p,

4.47(-8)
93.348 p,

2.30(-7)
44.206 p
2.24(-6)
26.496 p
1.08(-5)
18,089 p,

3.57{-5)
13.425 p
9.30(-5)
11.3S4 p,

1.60(-4)
9.5472 p,

2.91(-4)
7.9314 p
5.62 (-4)
6.5883 p.

1.17(-3)
5.6910 p
2.61(-3)

6561.5 A

6.33(-2)
6561.7 A.

6.33{-2)
ese2. 7 A
6.33(-2)
e5e5.5 A

6.32(-2)
6570.8 A.

6.30(-2)
6599.0 A

6.23(-2)
6619.5 A
6.19(-2)
6663.1 A

6.09(-2)
6784.0 A
5.83(-2)
e949.8 A.

5.50(-2)
7422.2 A

4.71(-2)
8115.1 A

3,78(-2)
9101.3 A
2„80(-2)
1.0516 p
1,84(-2)
1.1S17p
1.24{-2)
1.4074 p,

5.74(-3)

1O25.2 A

1.6S (0)
1O25.2 A

1.68 (0)
1025.2 A.

l.68 (0)
1025.3 A,

1.68{o)
1025.5 A.

1.67(0)
1026.4 A.

l.66 (0)
1027.O A
1,65(0)
1028.4 A.

l.63(0)
lO32.3 A.

1.57(0)
1037.5 A

1.51{0)
lo51.e A.

l.32 (0)
1070.7 A.

1.10(0)
1094.6 A.

8.34(-1)
1123.7 A

5.26(-1)
114e.5 A
2.70(-1)

6561.4 A

2.25(-1)
6561.9 A

2.25(-1)
6562.3 A.

2.25{-1)
6564.5 A.

2.25(-l)
6568.6 A

2.24(-l)
6590.0 A.

2.21{-1)
6605.7 A

2.19(-l)
ee38.8 A.

2.15(-1)
6730.5 A.

2.04(-l)
e855.4 A

1.91{-1)
7207.9 A

l.57(-1)
7716,0 A

1,19(-1)
8425.4 A.

7.97{-2)
9425.7 A

4.2 9(-2)
1.0347 p
1.92 (-2)

995.86 p,

1.12(-9)
651.50 p
4.02{-9)
380.12 p
2.05(-8)
181.82 p,

1 ~ 94(-7)
110.21 p,

9.05(-7)
57.327 p,

7.21(-6}
38.464 p,

2.82(-5)
30.424 p
7.22 (-4)
28.142 p
1.32(-4)
30.942 p,

1.47(-4)

6561.4 A

6,48 (-1)
6561.6 A

6.48 (-1)
6562.2 A

6.48{-1)
6564.o A

6.47{-1)
8587.4 r
6.46(-l)
6585.8 A.

6.39(-1)
e599.4 A

6.35(-1)
6628.1 A

6.26{-1)
6708.5 A
6.01(-1)
6819.3 A

5.67(-1}
7138.8 A

4.82 (-1)
7615.8 A

3.73(-1)
8321.9 A.

2.41{-1)

497.14 p
6.77 (-9)
324.96 p
2.45(-8}
189.26 p
1.26(—7}
90,084 p
1.21(-6)
54.125 p
5.85 (-6)
27.746 p,

5.11(-5}
18.250 p
2.27(-4)
14.279 p
6.96(-4)

~A)g is given in units of ].08 sec
b 1.0(-1)=1.0x10 i.
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In addition, the screening parameter d used by
Rogers et al. ' is related to the Debye-Huckel
screening length D by

d = (2Z/a, ) D/X„, . (4)

Since the relation between D and d is proportional
to the unknown eigenvalue &„, , an initial guess
must be made for d and then using the calculated
value of the eigenvalue for that choice of d, the
Debye-Huckel screening length D may then be
determined. An iterative procedure then must be
followed until the choice of d with the calculated
value of &„, yields the desired value of D. This
procedure must then be repeated for every eigen-
energy. Since calculations using the above-de-
scribed variational method are done in r space,
the desired Debye-Huckel screening length is
immediately used and a single calculation yields
the number of eigenenergies determined by the
number of Slater orbitals used.

(ii) Since our method is based on the variational
principle it has the advantage that the exact state
energy exists as a lower bound to our eigenener-
gies. This is not true for numerical-integration
techniques.

(iii) Our calculations were performed on an
IBM 360-65 computer at a rate of 150 eigenener-
gies per minute, whereas Rogers et al.' used a
CDC 6600 computer. Owing to the difference in
machines, an exact comparison between the two
methods of the computational time involved is not
straightforward. However, a crude estimate can
be obtained by comparing our calculation rate of
150 energies per minute on the IBM 360-65 with
the calculation rate of Rogers et al. ' which they

and gk states; for D = 70, the 8g state; and for
D = 15, the 4s and 4P states. The apparent dis-
crepancy in the results for the 3s state for D= 7
which Rogers eI, aL.' quote in their Table I and
which we fail to find is obviously a cataloging
error made by them since they also quote the
critical screening length for the 3s state as being
7.171 in their Table III.

We consider that the variational method de-
scribed above is more advantageous than the
numerical-integration method used by Rogers et
a/. ' in the following respects.

(i) Rogers et al. ' numerically solve the radial
differential equation in a transformed space (p
space) and not in the radial coordinate space (r
space). The relation between p and r is given by

p = (2Z/a, )r/X„, ,

where ~„, is related to the eigenenergies &„, by

III. SPONTANEOUS-EMISSION TRANSITION
PROBABILITIES IN THE DIPOLE

APPROXIMATION

In the electric dipole approximation, the proba-
bility that an atom will undergo a transition from
a state l to a state I' and emit a photon of angular
frequency ~» = (E, —E, )/5 is given in the dipole-
length representation by"

For the screened Coulomb potential, the normal
selection rules for spontaneous emission in the
electric dipole approximation for a general spher-
ically symmetric potential are valid. To our
knowledge, no calculation of transition probabil-
ities has been performed for the case of a particle
in a Debye-Huckel potential. Thus, we have cal-
culated transition probabilities for the six lowest-
lying states, as a function of screening length.
The results for A, , are presented in Table III.
Note that transitions within the same level are
now possible for some values of the screening

1.0—

2p- fs —+(

/ 3p-ls.

E-g 06—
O g

0.5—
0

0.4—
l

l
+-3d -2p

0.2—

O. l

& rm. 3p-2s
,
', r

/:/

IO

D/oo

I

IOO IOOO

FIG. 1. Spontaneous-emission transition probabilities
in the dipole approximation for the static screened Cou-
lomb potential is shown as a function of the Debye-
Huckei screening length.

obtained on a CDC 3600, namely, 14 eigenenergies
per minute, since these two machines are roughly
of comparable speed.

(iv) Our method is capable of providing analytic
wave functions, and hence transition probabilities
may be readily calculated.
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length since the levels are no longer / degenerate.
However, the probabilities for such transitions
are very small for the large screening lengths
owing to the small energy difference between the
states. These transitions may be of importance
for the case of very strong screening. In Fig. 1
we have plotted the transition probabilities as a
function of screening length for all allowed transi-
tions between levels for the three lowest levels.

We have also calculated the electric dipole
transition probabilities in the dipole-momentum
representation, ' that is,

These results are in agreement with those obtained

above in the dipole-length representation for all
values of the screening length.
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