
PHYSI CA L R EVI E%' A VOLUN E 9, NUMB ER

Power-series analysis of ]J@g siMIis optieni pnmpmg experiments*

%. Happer and S. Svanberg~
Columbia Radiation Laboratory, Department of Physics, Columbia University, ¹w Fork, ¹w York 10M7

(Received 13 August 1973)

By expanding the atomic density matrix in powers of the light intensity, it is possible to derive simple
formulas for the light shifts and optical broadening of magnetic-resonance lines in optical pumping
experiments, Thus, we have obtained for the first time approximate analytic formulas for the light shifts
in Zeeman multiplets with spins greater than 1/2. The predicted light shifts for a high-spin atom are
similar to those for a spin-1/2 atom, and shifts due to real and virtual transitions can be identified.
However, in contrast to the situation with a spin-1/2 atom, the light shifts for a high-spin atom
depend on the magnitude of the rf field, and the shifts for the longitudinal and transverse components
of orientation and alignment are not necessarily the same.

I. INTRODUCTION

A number of optically pumped devices, for in-
stance, magnetometers and gas-cell frequency
standards, have become important practical in-
struments in recent years. The precision of these
devices is limited by several factors, but one of
the most characteristic and unavoidable sources
of instability is the light-induced frequency shift
and broadening of the magnetic resonance lines.
Although these light shifts are understood in prin-
ciple, their control and elimination as a source
of error is difficult. One of the major problems
is that so far it has only been possible to make
detailed theoretical predictions of the light shifts
for nondegenerate magnetic resonance transitions.
For instance, Cohen- Tannoudji' derived simple
formulas for the light shifts in Hg'", which has
only two ground-state sublevels. Similar formulas
have been derived for the light shift of the "0-0
transition'" of an alkali-metal atom, and for the
gm =1, ~E=0 tra.nsitions of an alkali-metal atom'
in magnetic fields large enough to resolve these
transitions from each other. In all of these cases
the agreement between experiment and theory was
very good.

It has not yet been possible to derive simple
formulas for the light shifts when several magnet-
ic resonance transitions occur at the same fre-
quency. In such a case the shifts can be obtained
by the numerical solution of a set of coupled dif-
ferential equations. The results are so cumber-
some and untransparent that it is doubtful that
they have been of much use to experimentalists.
Unfortunately, one of the most important modern
instruments, the optically pumped magnetometer,
is a good example of a system whose light shifts
can only be calculated by numerical methods in
some important practical cases. Although very
precise magnetometers have been constructed"
by empirical control of the light shifts and other

sources of instability, it might be hoped that even
better instruments could be made if one had a
clear theoretical understanding of the light shifts.

In this paper we show that it is possible to ob-
tain simple approximate formulas for the light
shifts of magnetic resonance lines for a Zeeman
multiplet. The predictions of these simple for-
mulas are in very good agreement with the re-
sults of exact numerical calculations when the
pumping rate does not exceed the ground-state
relaxation rate. This is the regime of most prac-
tical interest, since pumping rates in excess of
the ground-state relaxation rate simply broaden
the magnetic resonance lines without increasing
the signal-to-noise ratio. Our formulas are exact
in the limit of vanishing light intensity. These
formulas show immediately how the light shift
depends on the polarization of the pumping light,
the asymmetry of the spectral profile of the ex-
citing light, and the magnitude of the external
field. The formulas can be used for arbitrary
ground-state and excited-state angular momenta.
The analytic formulas also predict other proper-
ties of the light shifts which do not seem to have
been recognized before. For instance, the light
shift may vary with the rf power.

In deriving our results we have made systemat-
ic use of a novel expansion of the atomic density
matrix in powers of the light intensity. This al-
lows us to analyze light shifts and optical broaden-
ing of the magnetic resonance lines in the spirit
of perturbation theory, and it is possible to handle
high-spin systems as easily as low-spin systems.
In contrast, conventional "brute force" methods of
analysis become rapidly more difficult as the
atomic spin increases.

II. THEORY

The basic theory of optical pumping was de-
veloped in 1960 by Barrat and Cohen- Tannoudji. '
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A. Power-series expansion for p

The key to obtaining simple analytic formulas
for light shifts in high-spin atoms is to express
the density matrix as a power series in the inten-
sity of the pumping light. Power-series solutions
have been used by Ensberg, ' but so far as we
know, no one has previously recognized that the
power series can be used to deduce simple formu-
las for the light shifts.

For computational convenience we shall think
of the density matrix p as a "state vector, " which
me shall denote by

Here, 10) represents a completely unpolarized
atomic ensemble and IP) represents the polariza-
tion of the ensemble.

We introduce a linear operator 8, which is de-
fined by

An explicit expression for 8 will be given in Sec.
IIC, Eq. (29).

We shall regard the expression (d~'~/dt)p for
depopulation pumping as the product of a linear
operator, d'"/dt, with the density matrix. Since
depopulation pumping is proportional to the mean
pumping rate g, we set

d(l')
=HZ

dt (4)

They showed that the evolution of the ground-state
density matrix of an optically pumped system is
governed by the equation

d(I. ) d(2) d(3)—p= —p+ —p+ —p+ —. [&,p1,dt dh dt dt ik

where the operator (d"'//dt)p represents the trans-
fer of atoms out of the ground state into the excited
state (depopulation pumping), ( d~'~ /dt)p represents
the replenishment of the ground state by spon-
taneous deca.y of excited atoms (repopulation pump-
ing), and (d"'/dt)p represents the relaxation of
the polarized ground-state atoms. The interac-
tion of the atoms with external magnetic fields
and the hyperfine interactions in the atomic ground
state are represented by the Hamiltonian operator
3C. Detailed expressions for (d"'!dt)p and (d~'~/

dt)p are given by Barrat and Cohen-Tannoudji. '
Although (1) is certainly correct for conventional
optical pumping experiments, it is difficult to
solve in closed form, and computer solutions are
necessary for atoms with high-spin ground states.
Such numerical solutions seldom provide as much
insight into the behavior of the system as an ana-
lytic solution mould.

where 4, is a dimensionless linear operator which
is discussed in Appendix B.

Finally, we note that under many experimental
conditions the relaxation rate (d"'/dt) p may be re-
garded as the product of a linear operator (d""/
dt) with the density matrix p. We introduce a mean
relaxation rate y and set

where U is a linear operator which we shall dis-
cuss in Sec. IID, Eq. (38).

Physically, it is clear that neither the Hamil-
tonian operator 8 nor the relaxation operator U
can generate polarization froxn an unpolarized
ensemble of atoms. This implies that

hIOj=0

UIo&=o.

The basic pumping equation (1) now assumes the
form

mhere the total pumping operator is

Z=Z, +Z, . (10)

In steady state the left-hand side of (9) is zero,
and we obtain the steady-state equation

(fez - yU+ 8/ta} I P& = -ftz
I o) .

Solving (11) for IP), we find

(12)

where we have introduced the dimensionless ratio
of the mean pumping rate g to the mean relaxa-
tion rate y,

The parameter x is less than unity in many ex-
perimental situations.

Equation (12) is exact but not very useful in
practice. This is because the inverse of the com-
plex operator (U+ib/yh-xi', ) can seldom be ob-
tained in a simple analytic form. For instance,

where g, is a dimensionless linear operator which
is discussed in Appendix B.

In like manner we may regard the expression.
(d"'/dt) p as the product of a linear operator (d"'!
dt) with the density matrix p. Since the repopula-
tion pumping is also proportional to the mean
pumping rate g we set

d()
=AS

0t



W. HAPPER AND 8- SVANBERG

consider the I =4 ground-state Zeeman multiplet
of cesium. The density matrix for this multiplet
has 61 components, and the operator (U+th/yh
-xg) is therefore an 82 x 82 matrix. One row and

column can be eliminated if the density matrix
remains normalized, but an 80 ~80 matrix re-
mains, Inversion of an 80 ~80 matrix is awkward
and time consuming, and the inversion must be
carried out for a large number of different ex-
perimental parameters in order to yield useful
information about magnetic resonance line shapes
and light shifts.

To avoid these difficulties we may develop a
power-series expansion of (12). Ca11

l LM) = T,„(E,E,),
(LMl =T,'„(E,E,}.

The scalar product of two basis tensors is

(LM I
L'M'& = Tr[T',„(F,F,)T, „(F,F,) j

=
&L,l. '&ve' ~

(21)

(22)

The effective excited-state Hamiltonian operator
is

(20)

Vfe shall expand p on the irreducible basis ten-
sors

w = (v+ t8/ytf)-'. (14)
The irreducible tensors form a complete set of
basis states for

l p& so
We shall assume that the matrix elements of A.

can be obtained without difficulty. %'e also note
the operator identity

(a -b) ' =-a '+a 'ba '+a 'ba 'ba '+ ~ ~ ~ . (15}

jf we identify a with (U+ih/yh} and b with xg in
(15), then (12) becomes

l
p& = (xW+x'am+x'-~Lcm+ ~ ~ ~ )Z lO&

(16)

LN

2gg

Q ILM&«MIE&+ loo&&oolo). (23)

Since we assume that the trace of p is unity, we
get

1 = Tr[p]= (2E, +1)'t'Tr[TOO(F, F,)'p]

Equation (26} is the desired power series. The
nth-order contribution to the polarization is
simply

= (2E, + I}'t'(00
l 0),

and the normalizing constant is

{oolo& =(2E, +I)-d'.

(24)

(25)

x" lP ') =x"(AZ)" l0&.

8. Opticai pumping of a Zeeman muitiplet

(17)
C. Transformation to a rotating

coordinate system

We shall illustrate the use of the expansion (16)
by deriving formulas for t:he light shifts of the
Larmor frequency of a Zeeman multiplet. Suppose
that the atomic ground state has angular momen-
turn F, and the atomic excited state has angular
momentum I,. The atom is situated in a static
external magnetic field, and the ground-state and
excited-state I armor frequencies in this field
are, respectively, ~, and ~, . %'e further suppose
that the ground-state atoms are undergoing mag-
netic resonance transitions caused by a small
rotating magnetic field, which causes the atoms
to nutate at a frequency w, on resonance. The ro-
tation frequency is ru, and we assume that

The rf field is too weak to significantly affect the
excited-state atoms. Thus, the effective ground-
state Hamiltonian operator is

L'
l LM& = L(L + 1 ) l

L.V), (27)

In view of (26) and (19), the operator b of (2}be-
comes

h = K&u, L, + Cu, (L„coarct + „Lia&ant) . (29)

We now define the polarization
l Q& in the rotating

coordinate system' by

I 0& = e'"*'
I E) (30}

I,et us introduce an angular momentum operator
L which operates on the basis states

l LM). We
define L by

LlIM&=[F, T,„},. (26)

From (26) it follows that L has all of the commu-
tation relations of an angular momentum operator.

The basis states
l LM) are eigenfunctions of L'

and J, l.e.
~

K = co+F +(dz(Fi cos(dt +E sin(dt) . (19) Substituting (30) into (9), we obtain
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~ Q&
= (RZ —yU —

iQL t) ~
@+RZ}0),

where

and

QL& = (&u —u)L, + v, L„.

(31)

(33}

1
U + iQL q/y

For simplicity let us assume that all components
of the polarization relax at the same rate. It is
not difficult to generalize the subsequent arguments
to take multipole relaxation rates'0 into account.
Then

g &t~L~t g&-kcuL~t (34)

with an analogous definition of U.
Since we expect the polarizations to be constant

in the rotating coordinate system, we shall drop
the rapidly oscillating parts of g and U. This is
the secular approximation, ' and it is well justi-
fied as long as the rotation frequency ~ is much
greater than the mean relaxation rate y and the
mean pumping rate R of the ground state. This is
the usual experimental situation in a magnetom-
eter. %e denote the static parts of g and U by
L and U, respectively. Then (31) becomes

—„, ~q) =(RZ-) V fQL, -) ~q&+RZ(0&.
d

(35}

The frequency relationships (32) and (33) are sum-
marized in Fig. i. The transformed operators are
denoted by a tilde, and we have

U~L.M& =(1 —5„5„.} ~
L,M&. (38)

E. Transmission monitoring

That is, we can regard U as the projection opera-
tor for the polarization. Since we shall always
be taking matrix elements of A. between states of
nonzero angular momentum (polarized states),
we may replace U by 1 in (3"I). Then the operator
g is diagonal in I. but not diagonal in &VI. We shall
also show (see Appendix B) that the pumping op-
erator 2 is diagonal in M but not diagonal in L, .
Keeping these properties of A. and 7. in mind, we
can use (N) to show that the first-order polari-
zation is

«(LM I
0"'& = «(LM I & I «&«o

I
~ I o)

We shall return to discuss the physical signifi-
cance of (39) after a brief review of the theory of
transmission monitoring in optical pumping.

D. Steady-state solution

Equation (35) is now in the form of Eq. (9), and
the solution is therefore given by (16). The nth-
order contribution to the polarization in the rota-
ting coordinate system is

with

The most direct way to detect the polarization
of ground-state, optically pumped atoms is to
measure the attenuation of a beam of resonant
light which pa.sses through the pola. rized atoms.
For optically thin atomic vapors, ' the attenuation
of a beam of resonant light is proportional to the
mean rate of absorption per atom, (5I'&, wh. -re

(51&= TrI51 p]=(5r, p&

= +~ (5I'
~
LM)(LM I p&,

and according to Appendix B [see (B7}and (B8 '~

(51'i LM& = 5I'(LF F,)E
Combining (39)-(41), we see that the mean ab-
sorption rate is

(51"&=R+ Q Q 51'(LF F,}E~„(LMJQ)e' '""

FIG. 1. Frequency relations in the rotating coordinate
system.

Tha.t is, the mean absorption rate is equa' t(. tf't. :

mean pumping rate g plus terms proportional
to the orientation (1M

~ Q& and alignment (2M! ~.),'

in the rotating coordinate system. The absorI. -
tion associated with the transverse polarization
(LM

~ Q& is modulated at the frequency &uM.

Consequently, (39) and (42) imply that to first
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0 2

((d~-a) /y

F'6. 2. k"irst-order orientation and alignment res-
~nance hmctions. The solid lines correspond to a low
"f power, ~&/y=0. 1, and the dashed lines correspond to
a higlier rf power, ~&/y=0. e. To the left of each curve
a factor is given by which the curves should be divided
to give the absolute value of the resonances. Unity has
been subtracted from the longitudinal resonance curves
for convenience in plotting.

order in x, the transmission monitoring signal
associated with (LM j Q) has a constant amplitude
proportional to x(LO j 2 j0)51'(L+,&,}El,„and a
resonance line-shape factor (LM jA I LO). The
line-shape factor is independent of the atomic
angular momenta I and E„and it describes how

the signal depends on the rf power and on the de-
tuning of the rf frequency & from the resonance
frequency u, . The line-shape factors are dis-
cussed in more detail in Appendix A. Some typi-
cal line-shape factors are illustrated in Fig. 2.
The orientation line-shapes (1M jA j10) are identi-
cal to the Bloch" resonance functions for longi-
tudinal and transverse magnetization. The longi-
tudinal-alignment line-shape factor (20 j A j 20)
was first derived by Brossel and Bitter, "and the
function 8 of Eq. (5} in their paper" is

8 =gI, (1 —(20 jA j20)).

The transverse-alignment line-shape factors
(2M jA j 20) (M &0}were first derived by Dodd,
Series, and Taylor in their studies of modulated

fluorescent light in optical double-resonance ex-
periments. " For instance, in terms of the series
functions" D and F., we can write

(22jA j20) =v-,.' (D —iE} .

In summary, (42) and (39} imply that to first
order in x the unmodulated transmission moni-
toring signal will be a linear combination of the
line-shape factors (10 jA j10) and (20 jA j20), the
transmission monitoring signal which is modulated
at the rf frequency will be a linear combination of
(11 jA j10) and (21jA j20), and the transmission
monitoring signal which is modulated at twice the
rf frequency will be proportional to (22 jA j 20).

F. Light shifts and line broadening

The first-order polarization of (39) is a, good
approximation to the real experimental situation
only if the pumping rate is very small. The reso-
nance curves (LMjA j LO) exhibit the proper rf
power broadening (see Fig. 2}, and the polari-
zation is predicted to be proportional to the light
intensity. A serious defect of the first-order solu-
tions is that the predicted width and center fre-
quency of the resonance curves is independent of
the light intensity. It is well known that the pump-
ing light broadens and shifts the magnetic reso-
nance lines. Also, although we expect the polar-
ization to be proportional to the light intensity for
sufficiently weak pumping light, the polarization
must eventually saturate and become independent
of the light intensity for sufficiently intense light.
%e can account for the saturation of the polari-
zation and for the optical broadening and the light
shift by including higher-order terms in the series
expansion (16).

Before proceeding to a more analytic treatment
of the light shifts we shall illustrate our basic ap-
proach with a concrete example. In Fig. 3 we have
shown exact and approximate magnetic resonance
curves for the longitudinal orientation of Hg'-". The
exact curve was calculated by numerically invert, -
ing the matrix equation (12} on an electronic com-
puter. Note that the exact curve increases in
amplitude, and broadens and shifts when the light
intensity is increased by a factor of 3. The first-
order contribution 4,39) to the power-series solu-
tion is also shown in Fig. 3. Note that the first-
order solution increases in amplitUde when the
light intensity is increased, but there is no broad-
ening or shift of the first-order curve with in-
creasing light intensity. The second-order contri-
bution to the power-series solution is also shown
in Fig. 3. The second-order contribution increases
as the square of the light intensity and it there-
fore becomes relatively more important as the
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light intensity increases. The sum of the first-
and second-order contributions to the signal ex-
hibits all of the important features of the exact
solution. The amplitude of the sum curve increas-
es by a bit less than a factor of 3, as it should
because of saturation effects, and there is a broad-
ening and shift of the sum signal. The shift comes

about because the first-order signal is symmetric,
while the second-order signal has an antisymme-
tric component. %e now proceed to a more analy-
tic discussion of the light shifts.

According to (16) and (36) the polarization, cor-
rect to second order, is

(I.M j q& = x(LM j g") +x'&LM
j
q"'&

=x&OOjo& &LMjAjLO&&LOj&joo&+~ g &LVjAjLM'&&LM'jLIL'M')(L M'jAjL'0&&LOjLjOO& .
L N

(43)

We see that each component (LM' jZ j
L'M') of the

pumping operator can generate a correcting line-
shape factor (I.M jA j

LM')(L'M' jA j
L'0) to the first-

order line-shape factor (LM jA j LO) of the reso-
nance. Since the second-order contribution to the
polarization is a factor of x smaller than the first-
order contribution, the correction will not cause
a major change in the resonance line shape as
long as x is much less than unity (cf. Fig. 3).

In Appendix A we shalj. show that the real and

imaginary parts of (LM jA j LM') always have a
well-defined parity with respect to reversal of

the sign of (e —u). The parties of the real and

imaginary parts are always opposite each other
and are given by

parity of Re(LM jA j
LM') = (-1)" ",

parity of Im(LMjA jLM") =(-1)" "
(44)

Now, let us examine the parities of the first-order
and second-order contributions to the polariza-
tion of (43). We note that (43) can be separated
into real and imaginary parts as follows:

+~ Q &L'o
j & j oo& Re&LM'

j & j
L'M'& Re(&LM j A j

LM'&(L' &' jA j
L'o& &

L M

+r g &LOjxjoo&Re&LM jZjL M &1m(&LMjAjLM &&L M jAjLO&)
I, k1

+& g &Lolgjoo&lm(LM jgjL M )Re(&LMjAjLM &(L M jAjL0)) .
L )If

(46)

In view of (44) we find that

parity of Re(&LM jA j I M'&(L' g' jA j L 0)) = (-1)",

parity of Im((I.M jA j I.M'&&L'M' jA j
L'0) ) = (-I)"".

Thus, we see from (43) that the first-order reso-
nance function Re(LMjA j LO) of parity (-1)"is
corrected by a function of like parity multiplied
by Re(LM' j2j L'M'), and it is corrected by a func-
tion of opposite parity multiplied by Im(LM' j Z j

L'M'). Similarly, the first-order resonance
function Im(LMjA j LO) of parity {-1)""is cor-

rected by a function of like parity multiplied by
Re(LM'

j 2 j I.'M'), and it is corrected by a func-
tion of opposite parity multiplied by Im&L4f'

j Z j

L'M'). Since a small opposite-parity correction
causes a shift in the magnetic resonance line
(cf. Fig. 3) and a small like-parity correction
causes a broadening, we conclude that

Re(LM jZj L'M) causes a broadening of the line,

Im(LM jZ j
L'M) causes a shift of the line.

Now let us calculate an approximate expression
for the shift in the peak of an even function f(u&
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—~) due to a small odd correction g(ox, —oi}. That

is, we wish to find the peak of the function

E(&u, —(u) =j(s), —(u) +g(ru —(u) . (47)

82f -1
&d=&d +

8&d
'

8&d~
=&a +A~ . (49)

Thus the shift in the peak resonance frequency is

8(d 8&d~
(50)

Consequently, if M is even, the shift of the even-
parity resonance Re(LMI Q"'), is

Making use of the parities f andg, we write

eg (~, —u))' s'f
E(at —(u) =f(0)+(&u -u)} + ', + ~ ~,

8&dg 2
8&dan

(48)

where the derivatives are evaluated at &d, = &d. If
we retain only the first three terms of (48) and

differentiate with respect to &d, we find an ex-
tremum when

to I m&LM I
g'i& when M is odd. The formulas for

&LM I
Q'"') and (LM I

Qi'i) are given by (43}or (45).
One word of caution is necessary concerning

(51). In the derivation of (51) it was assumed that
the second derivative of the even function was
nonzero. However, some even I.=2 resonances
can have vanishing second derivatives at the cen-
ter of the resonance for certain rf power levels
(see Fig. 2}. Equation (51) is certainly not valid
when (8'/ere ') &LMIAI00) is nearly zero. In such
cases it is not difficult to analyze the situation
graphically, as we illustrated in Fig. 3.

Let us now discuss the shift of an odd resonance
function j(~ —&u) due to the admixture of a small
even correction function k(ox, —~). That is, we
seek the zero of the function

C ((u, - ~) =j((u - (u) + k(cu, —(u) .

Making use of the parities of j and k, we write

ej ((u, —(u)' e'k
G((u —(u) =k+(&o —o~} —+ ', +

8&d 2t 8&d
'

&A& PRox~sxT~oN
[

TO FIRST ORDER

X&IO/Q &

T

SECOND-ORDER APPROXIMATION

CONTRIBUTION TO SECOND ORDER

X &IOtQ & X&IOjQ &+X &IO~Q &

EXACT

SOLUTION

&IOIQ&

D&d = sac L,M ~ Re, IM
8&dg 8&dg

(51)

Here, it is understood that both derivatives are
evaluated at &d = &d, . An analogous formula applies

Retaining only the first two terms of (58), we see
that Q is zero when

a2
&d = (d +A'

e&d
=(d +A&d . (54)

Applying (54) to (45}, we conclude that for even

M, the light shift of the odd resonance curve
im&LMI q'~) is

~,=(.*r p~~e'*'&I(r, &zM~q"')) tnsI

X= O. f

3 0 3 -3 O 3 -3 0 3

An analogous formula holds for the light shift of
the odd resonance Re(LMI Qf'i) when M is odd. Of
course, (55) is not valid when the denominator is
nearly zero, and a more careful analysis of the
problem is required in such singular cases.

X-O.3

((i)&I-GJ }/7~
FIG. 3. Approximate and exact solutions for the longi-

tudinal orientation of Hg Oi. In these calculations the
magnetic field was assumed to be 1 0, the asymmetry
parameter K was taken to be zero, the excited-state
Lande factor was g~ =1.4861, the excited-state lifetime
was 114 nsec, the light was assumed to pump from the
ground-state Zeeman multiplet E~ = @~ to the excited-state
multiplet E~ = ~~, and the rf amplitude was &d&/y=0. 5.
The vertical and horizontal scales are the same for all
curves, although the curves have been displaced by an
arbitrary amount vertically in some cases for conve-
nience in plotting. The approximate curve, calculated
from (45), is almost indistinguishable from the exact
curve, calculated from (12).

G. Light shifts of the orientation

For illustrative purposes we present a detailed
discussion of the light shifts of the orientation res-
onances. The formulas (51) and (55} can be eval-
uated for three independent components of orienta-
tion. One finds that the longitudinal orientation
(10 I Q) and the imaginary part of the transverse
orientation Im(11

I Q) have the same light shift,

(56)

Here, g and b are coefficients which can be ex-
pressed in terms of the matrix elements of the

pumping operator (see Appendix 8}:
a = —Im(11

I
Z I 00) = ga„+i.a,
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5 = -elm(11 1&121} 10 & 00
=~5„+nb„. (58}(201&100} 1+y

(62)

The light-shift parameters g„, a„, b„, and b„are
listed in Table I for 0, light and for low values of
the atomic angular momenta I', and I" . The sub-
scripts y and g refer to virtual and real transi-
tions. The asymmetry parameter g is discussed
in Appendix B [Eq. (B4)], and tbe dephasing para-
meter A. is

((u. —(u, )T
1+ (&u, —(u, )'v

where 7 is the excited-state lifetime.
The power-dependence function E(y) is

1 —y'/2
(60)

The light shift of the real part of the transverse
orientation Re(11

~ Q} is

(61)

where a and 5 were already defined in (57) and

(58), and the power-dependence function is

= tea„+ A, a„+(@5„+Xb„)

0.5 0,5
0.5 1.5
1.0 0.0
1.0 1.0
1.0 2.0

1.5 0.5
1.5 1.5
1.5 2.5
2, 0 1.0
2.0 2.0

+1.000 00
+0,500 00
+0.750 00
*0.375 00
+0.375 00

+0.500 00
+0.200 00
+0.300 00
+0.375 00
+0.125 00

0.000 00
0.500 00
0.000 00
0.375 00
0.675 00

0.500 00
0.704 00
0.756 00
0.675 00
0.874 99

0.000 00
0.000 00

*0,750 00
~0.375 00
+0.075 00

~0.450 00
+0.221 54
+0.090 QQ

+0.31500
+0.143 18

0.000 00
0,000 00
0.000 00

-0.375 00
0.225 00

0.750 00
-0,324 92

0.378 00
0.944 99

-0.238 64

2.0
2.5
2,5
2,5
3,0

3.0
1.5
2.5
3.5
2,0

+0.250 00
~0.300 00
+0.085 71
+0.214 29
+0.250 00

0.800 00
0.756 00
0.971 75
0.826 52
0.800 00

w 0.090 00
+0,240 00
+0.099 74
+0,085 72
+0.192 85

0.480 00
1.007 99

-0.176 68
0.551 03
1.028 56

3.0 3.0
3.0 4.0

2.5
3.5

3.5 4.5

+0.062 50
+0.187 50
+0.214 29
+0.047 62
+0.166 67

1.031 24
0.843 74
0.826 52
1.07Q29
0.855 55

+0.073 37
~0,08036
+0.160 71
+0.056 21
+0.075 00

-0.134 51
0.602 68
1.03315

—Q.105 27
0.641 67

4,0 3.0 +0.187 50 0.843 74
4.0 4.0 ~0.037 50 1.097 24
4,0 5.0 +0.150 00 0.864 00

~0.137 50
+0.044 42
+0.070 00

1.031 22
-0.084 40

0.672 00

TABLE I. Coefficients for the orientation (I. =1) light
shifts. For cr pumping use upper signs; for q pumping
use lower signs.

The light shifts predicted by (56) and (61) bear
many similarities to the light shifts of Hg'", which
were studied in detail by Cohen-Tannoudji, and
our theoretical results are identical to his for the
case of Hg' '. Irrespective of the ground-state
angular momentum, we can identify light shifts
due to real transitions (the terms proportional
to A.} and light shifts due to virtual transitions
(the terms proportional to y). We recall that the
shifts due to virtual transitions are mainly due to
the off-resonance components of the pumping light,
and they can be thought of as the Stark shifts
caused by the rapidly oscillating electric field of
the light wave. The shifts due to virtual transi-
tions are positive or negative depending on whether
the atomic resonance frequency is greater than
(z &0} or less than (& &0) the frequency of the light.
Consequently, the shifts due to virtual transitions
are proportional to the parameter g, which mea-
sures the preponderance of low-frequency light
over high-frequency light [see (B4)]. The shifts
due to real transitions are mainly due to the reso-
nant components of the pumping light, and they
arise because the atomic polarization rotates about
the magnetic field at different frequencies in the
ground state and in the excited state. Consequent-
ly, the shifts due to real transitions are propor-
tional to the parameter X [see (59)], which mea-
sures the degree to which the difference (~, —&u, }
of the Larmor frequency in the ground state and
in the excited state speeds up the effective ground-
state precession frequency.

Vfe predict some qualitatively new properties
of the light shift for atoms with ground-state angu-
lar momenta greater than —,'. First, the light
shifts depend on the rf power in a way described
by the functions I' and C. The power dependence is
absent when the ground-state spin is ~. Second,
the light shift of the real part of the transverse
orientation differs from the light shift of the longi-
tudinal orientation. This difference is not present
for a spin--,' atom, and the difference tends to
zero in the limit of low rf power.

Analogous formulas can be derived for the
broadening of the orientation resonances and for
the shifts and broadening of the alignment reso-
nances. %e should point out that because of the
complicat:ed shapes of the alignment resonances
at higher rf powers (see Fig. 2), the definition
of a line center or width is not always unambig-
uous. For this reason we have limited our de-
tailed discussion to the simpler light shifts of
the orientation resonances, although our methods
can be generalized in a straightforward way.
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APPENDIX A:

PROPERTIES OF THE OPERATOR A

s of the operatorThe matrix elements

1
(A

1 +i Af. ~/y

a netic resonancedetermine the shapes of the mag

0.50--
0.40--

0.30—

X =0.9
0.50—
0.4 0 x=0.9

X =0.3

.I 0—

0.05— X =O. I

O.IQ

cD

Q, OJ
X= O. I

ANALYTIC APPRQX.

EXACT SQLUTIQN

AN ALY T [tC APPRQX.

EXACT SOLUTION

I

O. I

lI

0.3 0.5
rf

AMPLER

TILDE (&, /y)

I

Q. ? 0.9 Q. I 0.3 0 5

rf AMPLtTIJDE (~)/f j

I

0.7 0.9
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lines. To evaluate the matrix elements of A we
note that

(A2)

where the rotation operator 6t is (cf. Fig. 1)

parts of (LM ~A
~
LM') have well-defined parities

with respect to (~, —cu) and that

parity of Re(LM }A } LM') = (-1p ",
parity of lm(LM ~A

~

LM') = (-1)" " ". (A15)

Consequently, we can write

8 '1
1+i(Q/y)L,

The matrix elements of A. are therefore

where the %igner D functions" are

D„'„.(0, P, o) = (LM~e.
~

LM").

(A4)

(A5)

The first-order resonances are listed in analytical
form in Table II.

Finally, we prove three useful identities for
the resonance functions. Note that

8 1A= lim
o gl +i&u&L /y +i m&L /y +i Au L /y

1
1+i&u~L, /y +i&a&, L,/y

(A16)

Using the expansion (15) for the first term in
square brackets in (A16) we see that

%e note that the D functions for the Euler angles
(o., P, y) are real and orthogonal as

(AV)

Of course, (AV) is not true for arbitrary Euler
angles, and we stress again that we shall only be
considering the special Euler angles (0, P, O).
From (A5) and (AV) it follows that the matrix
elements of g are symmetric,

AL A BA

8(dg ly 8 R

In like manner one can show that

and also

AI.„A
8(d, lp

(A17)

(A18)

(LM(A ( LM') = &LM' (A ) LM) .

%e also note" that for ~=y=0

gPL —( 1 )N M'DI-
(A8)

(A9}

Equation (17), which can be generalized to give
higher-order derivatives of A with respect to &„
is very helpful in evaluating (51}and (55).

(ur —~) —(&u —&u}

is equivalent to the operation

(All)

(A12)

Both (All) and (A12) are to be performed for a
fixed value of the flipping frequency ~, and the
relaxation rate y. One can also show that

LV„„.(0, v —P, O) = (-1)~ "D~ „(0,j3, 0). (A13)

Using (A13), (A8), and (A5) we deduce that

(LM ~A(sr —ru, &u„y} ~

LM')

=(-1)" '" (LM~A(cu —u, &u„y) ~L3f')*. (A14}

Equation (A14) implies that the real and imaginary

From (A8) and (A5) we deduce that

(LM ( A (
LM') *= (-1)" " (L —M (A ( L —M') .

(A10)
Let us now examine the parity of the matrix

elements (LM~A
~

LM') with respect to reversal of
the sign of (&u —~). From Fig. 1 it is clear that
the operation

APPENDIX 8:
PROPERTIES OF THE PUMPING OPERATOR 2

Barrat and Cohen- Tannoudji' have shown that
the rate of depopulation pumping is given by

ih —
p = QCp —pQC (Bl)

The effective Hamiltonian operator' is composed
of a Hermitian light-shift operator 54, due mainly
to the off-resonance components of the pumping
light, and a Hermitian light-absorption operator
5I', due mainly to the resonant components of the
pumping light. %e have

63C = 5g —iMI"!'2 . (B2)
%'e shall be concerned with an atom with a single

ground-state multiplet of angular momentum F,
which is pumped into a single excited-state multi-
plet E,. We a.ssume that the spectral profile 4 (v)
of the light is narrow enough that no other hfs com-
ponents of the absorption line are excited. Then
one can show' that the light-shift operator and the
light-absorption operator differ only by a constant
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factor I(, ,

5h = -«(Mr/2),

per second, not radians per second) of the pump-
ing light in the neighborhood of the absorption
line. Thus we see that

where

J, 4 (v) ReZ(g} dv

I,"e(v) lmZ(g} dv
' (84)

d(1)
p =HZ, p

=.-'i«[» p]- —.(»p+ p«) (810)
From (84) one can see that « is a measure ofthe
asymmetry of the spectral profile of the pumping
light with respect to the absorption profile lmZ(l')
of the pumping light. The argument of the plasma
dispersion function Z(g} is'"

l/2

((u —(u„+i(,'r +-r,)j,
(deg 2RT

(85}

»= g»(LF,F,)E,T, (F,F,), (87)

»(I.F,F,) = SR(F+,}(2F,+1)W(l I,F,F;, 1F,)

(Sa)

and the mean pumping rate is

R(F, F, ) = (~r,cfu/2)t)(2J, + 1)

x (2F, +1)W'(J,F,J F;I 1),
where f is the absorption oscillator strength of
the eIechanic transition J - J„and u is the mean
energy density per unit frequency interval (cycles

~„=[E(F,) -E(F,)]/a.
For an atom with a ground-state angular momen-
tum I', and an excited-state angular momentum
F„one can show that'

Now we note that the product of two irreducible
basis tensors is

T,„T,,„,= g ( 1)" "'"[(2L+1)(2I.+1)]"'

x W(LL'FF& L"F)C(LL'1.";MM')T~ ~

(811)

Equations (87)-(811) imply that

d
„, =-RZ, =R g Z, (L"L'L)E, .T, ,(I,"I.)

~(e(LL'L") +&«o(LL'L")'&, (812)

where the even and odd functions are

e(LL&iLiti) 1
[1 + ( 1)L+I L

)

o(LLILtr) —1[1 ( 1}1+X +L
]

We see that e(LL'L") is 1 if L+L'+L" is even
and zero if L+L'+L" is odd; o(LL'LL) is 1 if
I.+L,'+I." is odd and zero if I.+L'+L," is even.
The function g, (L"L'L) is

Z, (L"L'L) =3(-1)"'" "(2F,+1)W(lI. F, F;, 1F,)

x [(2I.+1)(2I."+1)]v'W(LL'F F ' L"F ).

TABLE II. First-order resonance functions.

Oo]x] 1o)=1-—'
C(

(11]A]10}= —
& Q (~g —r )+iy]

(ZO]A] 2O) =1— -- -]V ~+j+(4&, -ca)']3 ('tI g

C(C~

(all&12o)=- ' (5)"'~(~ -~)(V'-W'+4((u -( )'1
C,C,

+i v(v'+~(+4'(~, -~)'I j

Qfe note that the imaginary part of d"j~dI, is pro-
portional to the asymmetry parameter K. In Sec.
II E we showed that the light shifts were propor-
tional to the imaginary part of g. Consequently,
there will be a part of the light shUt which is pro-
portional to the asymmetry parameter g„and we
can identify this part of the shift as the "shift due
to virtual transitions. "

The quantities T~ „(I."L) in (812) are irreduci-
ble basis tensors in the space spanned by the
basis vectors ~LM} of (21). The nonzero matrix
eaernents of the ba, sis tensors are

(&&I&]2O) =C ~ (N) ((2(wg -~) -(uj-V2] +Sip(c ~ -~)j

C
g

—'j/ +~ g
+ {~

C2=p +M~+4{v~-w)

(L Ml&ILo&=(-1)"(-LM]x]Lo)~

(L"&&" I T „(L"L) ] I.M)

2LI +y' l/2
C IL'I.";MAI'M") . 816)

In a similar way, one can show that the operator
for repopulation pumping, d~"!dt, is
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=RB(F,F } Q Z, (L"L'L)
IL L

x E~.OT~, ,(L"L) .
)

. (817}1
1 +E 4)~ —(d~ 7'L

amounts to ignoring the effects of the transverse
components of the polarization tensors of the
pumping light. Of course (819}would not be valid
if the Larmor frequency ~, of the ground state
were comparable to or less than the ground-state
relaxation rate y.

From (812) and (817) one can also verify that

Here 7 is the excited-state lifetime, and the co-
efficient Z.,(L"L'L) is

(L"M(Z ~L*=(L" -M(Z)L-M). (820)

(LI}f]Z~L~)=f„„.(Li}f(Z]L'. (819)

That is, g is diagonal in M. This is a conse-
quence of the secular approximation, which

Z, (L"L'L)

= 3(-1)~ (2E, +1)(2E,+1)[(2I," +1)(2L+1)]'~'

1I',I'
xW(1E,E L"', F,F,) 1F,F

I!IPIL

Here B(F,F,) is the branching ratio from the state
I', to the state I'

Now we would like to point out certain symme-
tries of the pumping operator g. By inspection
of (812) and (817) we see that

The condition (820) is necessary if the pumping
process is to maintain the Hermiticity of the
density matrix.

Finally, we note that

(00
~
Z

~
LAPj = 2 (-1}~e ~r'~E, [(2E, +1)]') "

x W(11E,F,; LF, )[B(F.F,) —1] .

(821)

That is, (00 (2 ~
LI}f) would be identically zero if

all excited atoms decayed to the same ground-
state Zeeman multiplet from which they were
pumped [i.e., if B(F,F,) =1]. The condition (821)
is an expression of the conservation of atoms.

In conclusion, we give the explicit form of the
matrix elements of the pumping operator Z:

(I "M
I
L I

LI})I) = g 8 „- C(I I 'L";I}) 2,(L"L' L)[e(LL'L") +i yo(LL'L")]
L,

'

Z)L IL) () ,
(
"'.',~™~)8)F,P )1+ m, —~}M'v (822)
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