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Coherent~tical-pulse propagation as an inverse problem*
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Various coherent-optical-pulse profiles are known to exhibit lossless propagation during transmission

through a resonant atomic medium. It is shown that the requirement of lossless propagation provides

asymptotic information that is su%cient to determine these profiles by the inverse method. Pulse
profiles are obtained as solutions to the Marchenko equation. The analysis is applied explicitly to the

propagation of 2m, 4m', and (hr pulses in an inhomogeneously broadened medium.

I. INTRODUCTION

Analytical expressions for the various pulse pro-
files that exhibit lossless propagation in an attenu-
ating medium consisting of inhomogeneously broad-
ened, nondegenerate, two-level atoms (i.e., 2nx

pulses, n =0, 1, 2, . . . ) have been found' to be close-
ly related to Bargmann potentials. ' Since the Barg-
mann potentials provide a class of particularly
simple solutions to the integral equations of in-
verse-scattering theory, ' ' one expects that the
pulse profiles of coherent-optical-pulse propaga-
tion are obtainable by the inverse method.

This leads to yet another parallel between the
analysis of coherent-optical-pulse propagation and
that of the Korteweg-deVries and related equa-
tions. ' " Previous research~ has shown that
propagation of the isolated hyperbolic secant pulse
of self-induced transparency" is quite similar to
the soliton solution of the Korteweg-deVries equa-
tion. ' Sequences of such isolated coherent-optical
pulses have been found to evolve from a single
larger initial pulse, ""and the equations that
govern coherent pulse propagation have been found

to possess higher conservation laws. " As in the
case of the Korteweg deVries equation, i these
higher conservation laws have been used to deter-
mine the amplitude of each of the isolated pulses
that ultimately emerge from an initial pulse of
arbitrary size."~' ~

The equations governing the temporal response
of an atomic medium to a coherent-optical pulse
(i,e., the Bloch equations) have been shown" to be
equivalent to a Sturm-Liouville or SchrMinger
equation in which the potential function is related
to the pulse profile. The equation governing the
spatial evolution of the pulse profile follows from
the Maxwell equations. The situation is thus simi-
lar to that in which the potential of a SchrMinger
equation is governed by the Korteweg-deVries
equation. " In this latter case, the relationship
between the equation of evolution and the Sturm-
Liouville equation has been used to obtain the po-
tential and thus the solution of the Korteweg-

II. BASIC EQUATIONS FOR COHERENT-
OPTICAL-PULSE PROPAGATION

Propagation of a plane electromagnetic wave in
a medium consisting of nondegenerate two-level
atoms may be described by a simultaneous solu-
tion of the Maxwell equations and the Schrodinger-
Bloch equations. When the usual slowly varying
envelope approximation is made, the electric field
may be written

g(x, t) = $(x, t) cos(tt„x —&u„t), (2.1)

where 0, and cu, are the wave number and angular
frequency, respectively, of the optical wave.
Propagation is assumed to take place in a posi-
tive x direction. The envelope function h(x, t) is
assumed to vary slowly on the length and time
scales of the carrier wave, i.e. , sg a/ x«k, b,
s8/et«&u, S. For a medium consisting ot an as-
semblage of two-level systems distributed with a
uniform density n„ the macroscopic polarization
is n, fdic, ~g(6&v)p(n, u, x, t) where p(n, w, x, t) is the
polarization due to an individual atom that is de-

deVries equation from information concerning the
asymptotic form of the solution of the Sturm-Liou-
ville equation. The analytical techniques available
for carrying out this procedure are known as the
inverse method and have been developed primarily
for application to quantum scattering theory.

In the present application of the inverse method,
the function playing the role of a potential is found
to be complex. The non-Hermitian nature of the
associated Hamiltonian leads to new types of solu-
tions that are not obtained for the Korteweg-
deVries equation. One of these solutions is the
Ox pulse.

The equations governing coherent-optical-pulse
propagation are reviewed in Sec. II. A summary
of the inverse method in terms of the Marchenko
equation is then given in Sec. III. Section IV con-
tains examples of the use of the inverse method
to obtain some of the simpler analytical solutions
of the equations of coherent-pulse propagation.
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tuned from line center by an amount hen = au, —~
and g(n&u) is the normalized spectrum of the de-
tuning. (The present definition of h&u, which dif-
fers by a minus sign from that used previously '8

has been chosen so that the inverse problem to be
developed in Sec. III will be in a standard form. )

Since depletion of the group of atoms detuned by
some particular hu would only affect the magni-
tude of the spectrum at 4~, this type of broaden-
ing is referred to as inhomogeneous. It is assumed
that the broadening is symmetric about m, . The
limiting case in which all atoms are on resonance
(i.e., all nu& =0) will be referred to as the unbroad-
ened or sharp-line ease. The polarization may be
written

p(n, ~, x, t}= s I 6'(n, ~, x, t) sin(k, x- w, t)

+ g(h~, x, t) cos(tt, x —&u, t)] . (2.2)

For pulses much shorter than both the population
relaxation time T, and the atomic dephasing time

T, these relaxation times may be taken to be in-
finite. The in-phase and in-quadrature envelope
functions g(nru, x, t) and 6'(n~, x, t), respectively,
then obey the undamped Bloch equations"'"'"

a6'—= K$% —Geogat=

cati equation. " This is seen by first observing
that an integral of Eqs. (2.3) is

g'+6" + 0'= 1. (2.6)

%+i 6' 1+g
1 —g Z-~6

X —zt 1+ 1
1-g g+i6'

Equations (2.7) may be inverted to yield

(2.7a)

(2.7b)

(2.8a)

.1+kg 2lmy
I v I'+' '

I c I'+I '

(2.8b)

(2.8c)

Equations describing the time dependence of y
and g are readily deduced by inserting Eqs. (2.8)
into Eqs. (2.3). It is found that the equations for
y and g are uncoupled; y satisfies the Riccati
equation

(2.9)

Two new functions are then introduced by writing

(2.3b)

(2.3c)

aS a8—+ c—= n'c(6'),
at Bx (2 4)

where a' -=2vn, ru, p'/tfc and c is the light velocity
in the host medium. The angular brackets signify
an average over the inhomogeneously broadened
atomic spectrum g(d, &u) as given by

(2.5)

As mentioned above, this broadening will be as-
sumed to be symmetric about fd, .

Equations (2.3) have exactly the same structure
as the Frenet-Serret equations of differential geo-
metry. " It is known that the solution to such a set
of equations is equivalent to the solution of a Rie-

where K=S/tf and 3I(n, u&, x, t) is the population in-
version for a single atom. The initial condition
3I(b, &u, x, -~) = -1 corresponds to the case of an at-
tenuator in which all atoms are initially in the
lower level. This is the situation that will be con-
sidered here.

The wave equation for the electric field in slowly
varying envelope approximation reduces to""'"

and g satisfies the same equation. One may now

employ the usual transformation to convert this
Riceati equation to a second-order linear equa-
tion. One obtains

a w 1 2
—

2 . ag
at2 4 8t

+- ( me)' (+Ex)'+ i 2x w=0—. (2.10)

The new dependent variable se is related to cp

through the transformations

su(t) = u(t) exp —— dt' g(t')
2

-2i d(lnu)
dt

(2.11)

(2.12)

etc. , would ultimately lead to a SchrMinger equa-
tion with a much more complicated potential than
that obtained here in Eq. (2.10). However, this
more complicated second-order differential equa-
tion is equivalent to the pair of first-order equa-
tions to which the inverse method has been applied
by Zakharov and Shabat. "' The two-component

A parametric dependence upon the spatial location
x has been suppressed.

The alternate factorization of Eq. (2.6) and re-
definition of y according to

6' —ig 1+%
1 -% 6'+ ig
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formulation has been found to be particularly con-
venient for the coherent-optical-pulse problem
when phase variation is included" since the ap-
proach used in the present paper becomes rather
unwieldy in that case.

In terms of the dimensionless variables

and

r = 0(& —x/c), t' = Qx/c,

(2.13)

(2.14)

where

02= e'c,
Eqs. (2.4) and (2.10}become

gg—=((P) )
eg

(2.15)

(2.16a}

8 f4

Bf, + (v' -u)w = 0 . (2.16b)

(2.18)

From Eqs. (2.3c) and (2.16a) it follows that u sat-
isfies

(2.19)

One can readily verify that Eq. (2.16b) is equiva-
lent to the pair of linear equations

Btv(v, T)
+ —Ssu(v, r) = vugg(v, 7),

87
(2.20a)

+ —hw(v, 7) = vs(v, v),
Bur(v, ~) i

(2.20b)

where su(v, 7) is the function introduced above and

ur(v, r) =u ~(-v, ~). Also, y may be expressed in
the form

. ur(v, 7)
(p(v, 7'} = t( )- (2.21)

For future reference, we now digress to consid-
er a simple model of coherent-optical-pulse propa-
gation. It arises in the limit in which all atoms
are exactly on resonance so that Lcm =0. The solu-
tion of Eq. (2.9) that corresponds to all atoms also
being initially in the ground state is then

Here, v is the dimensionless detuning variable

(2.17)

while '0 is the dimensionless potential function

(2.23)

From Eqs. (2.8b) and (2.16a), one immediately ob-
tains

o&, = —sino. (2.24)

u(v, $) =0. (2.26)

Application of the inverse method is particularly
simple when Eq. (2.26) is imposed. lt should be
emphasized that the only pulse profiles being con-
sidered here are the special solutions that result
from imposition of Eq, . (2.26).

Equation (2.26) is the same requirement as that
imposed to obtain ref lectionless potentials in a
one-dimensional scattering problem~' ~ (with 7

replaced by the space variable x, and v by the
propagation constant k) when the particle flux is
incident from +~. In the present problem there
is the additional considerabon that the arbitrary
constants arising in the integration of the Sturm-
Liouville equation (2.16b), contain parametric
dependence upon $, the space variable. The prop-
er spatial dependence is obtained by requiring that
the solution also satisfy the equation governing the
spatial propagation, i.e., Eq. (2.16a).

III. SUMMARY OF THE INVERSE METHOD

As described elsewhere, ~ ~'' a Baecklund trans-
formation may be exployed to obtain analytical so-
lutions of Eq. (2.24). Electric field profiles that
exhibit the pulse decomposition process are ob-
tained from e by using the differential form of Eq.
(2.23). The main advantage of the inverse method
is that it yields the corresponding solution in the
presence of inhomogeneous broadening as well.

Returning to the more general situation in which
nonresonant atoms are includ&, one sees from
Eqs. (2.8a), (2.11) and (2.12) that w(v, $, -~) -e '"'.
ln this ca,se cp(v, (, -~)- -1 and 31(v, $, -~) = -1
as is required for an attenuator. After passage
of an arbitrary pulse the solution for se mill, in

general, be a linear combination of the form

tu(v, t', +~)- a(v, $)e'" + b(v, $)e '"'. (2.25)

The atomic-polarization amplitudes 4' and g for an
individual tmo-level system detuned from the car-
rier frequency of the pulse by an amount A~ are
then left ringing at the dimensionless frequency v

and the population is not returned completely to
the ground state. To have all two-level atoms re-
turned exactly to the ground state, one must re-
quire that cu(v, $, +~) again be of the form e '"',
1.e.,

where

(2.22)
As shown in the previous section, the determina-

tion of coherent-optical-pulse profiles is equiva-
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lent to finding potentials for the SchrMinger equa-
tion when certain information concerning the as-
ymptotic form of the solution is specified. Except
for the additional requirement that the arbitrary
constants arising in the integration process con-
tain a spatial dependence that must also be deter-
mined, one is confronted with a typical example
of an inverse problem (at fixed angular momentum}.
Of the various formulations of the inverse problem
that are available, ' the one that has been found to
be particularly suitable for the present problem is
that employing the Marchenk'o equation on the in-
finite interval as given by Faddeev. ' This approach
is now summarized and applied to the pulse-propa-
gation problem.

The two fundamental solutions of the Sturm-Liou-
ville equation, Eq. (2.16b}, that approach e""' as
v-+~, respectively, may be written'~'

t(v)f2(v, T) =r,(v)f, (v, 7') +f,(-v, v'),

t(v)f, (v, r) =r,(v)f,(v, r}+f,(-v, T),

where

(3.7a)

(3.7b)

c»(v} which are located at points v = v„ in the upper
half of the complex v plane. At these points

(3 6)

i.e., the two solutions are linearly dependent.
Since the potential is complex, these zeroes need
no longer be confined to the imaginary axis. It
will be shown that pairs of zeroes that are sym-
metrically pl.aced with respect to the imaginary
axis lead to the Ow pulse.

Equations (3.4) may be put in conformity with
standard notation of one-dimensional scattering
theory by dividing them by c»(v). One then obtains

f(, )=8'"'+) did, tt)e'"', (3.1a)
t(v)=, r, (v)= ', i=1, 2.1 c;&(v)

C12 V C12 V
(3.8)

T

f,(v, 7) = e "'+ dt A, (T, t)e (3.1b)

The residue at a pole of the transmission coeffi-
cient t(v) is given by'

The functions A, and A2 are related to the poten-
tial function of Eq. (2.16b) according to"

Rest(v) ~„„=i dr' f,(v„, T')f,(v„, r') —= i y„.

(3.9)
aA, (7, r) aA, (T, 7)

87 87

From the definition of g in Eq. (2.18},

aReA,
87

ImA2= --,'S.

(3.2)

(3.3a)

(3.3b)

Introducing the Fourier transforms

R, (t) = —r, (v)e'"',
1 2~ 1

It,(t) = —r,(v)e '"',
2Ã '

and

(3.10}

The general solution of the Sturm-I iouville equa-
tion may be expressed in terms of 'any two inde-
pendent solutions such as f,(v, 7} and f,(-v, 7'), or
f,(v, 7) and f,(-v, r). However, since the potential
in Eq. (2.16b) is complex, f,(v, T) and f~(v, T) are
no longer equal to f,*(-v, 7), and f,*( v, 7), respec--
tively. Since any third solution may be expressed
in terms of a pair of independent solutions, one
may write

f,(v, r) = c»(v)f,(v, T) + c„(v)f,(- v, T), (3.4a)

f,(v, ~) = c„(v)f,(-v, 7)+ c„(v)f,(v, T) . (3.4b)

The solution f,(v, ~) is seen to be more directly re-
lated to the present problem as discussed above
Eq. (2.25); i.e. , it approaches e '"' as 7- —~ and

approaches a linear combination of e'"' as 7.-+~.
Vfronskians, among the various solutions, lead

to relations between the c„(v). In particular,

= —Py„e '""' t&0 (3.11}

(3.13)

N is the number of poles of t(v) in the upper half of
the v plane and

one finds that with the help of Eqs. (3.1) and (3.6)
the Fourier transform of Eq. (3.7b) may be re-
duced to'

1

A, (T, t}+ Q, (T+t}+ dy A, (~, y)Q, (y+ t) = 0, r & t
(3.12)

where

c„(v}= c„(v), c„(v)= -c„(-v}. (3.5)
-1

m„= d7 [f,(v„, 7)i ' =y„c„(v„}. (3.14}
Exponentially decaying or "bound-state" solutions
of Eq. (2.16b) are again related to the zeroes of The integral equation obtained here is known in the
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literature of inverse-scattering theory as the Mar-
chenko equation. Similar results, with an integral
extending from 7 to ~, may be obtained for Eq.
(3.7a).

As discussed in Sec. II, the pulse profiles asso-
ciated with lossless propagation follow from the
requirement that the solution of the Sturm-Liou-
ville equation approach e '"~ as v-+~, i.e.,
r, (v) =0. According to Eqs. (3.5) and (3.8), this
also implies

(3.22)

The imaginary part yields the propagation equa-
tion (2.16a) in the form

—=Im(f, (v, r)f,(-v, r)). (3.23)

The spatial dependence is readily inferred by con-
sidering Eq. (3.22} in the limit v- —~. From the
Marchenko equation one may mrite

r,(v) =0. (3.15)

The Marchenko equation is readily solved in this
case. For a, given number of poles N, one may in-
troduce the vectors

e(t) =(m, e "~' m e '"",m„e '"&') The definition of f,(v, r) then yields

(3.24}

A, (~, t} = n, (-~+ t) = g-m„e

and

@(f) (e -Ivy' e-I vms e-fl/gt
)

(3.16a)

(3.16b)

f2(v, T )f2(- v, v)

)V

n fI 24Itn"~v„- v
tl =g

(3.25)

A, (~, r)=- —, In~V~, (3.17}

The solution of Eq. (3.12) for t = a may then be
written'

Using the corresponding limiting form of Eq. (3.22)
and equating terms of the same time dependence,
as they are linearly independent, one finds that the
spatial dependence of the m„($) are

where
~ V~ is the NxN determinant of the dyadic

m„($) = m„(0) exp —v„t'
1

(3.26)
T

V = I+ dt 4' t (3.18)

in which I represents the unit dyadic.
From Eqs. (2.18), (3.2), and (3.17), one finally

obtains the electric field profile in the form

(3.19)

To make contact mith previous results'~' a func-
tion o($, t) analogous to that introduced in Eq.
(2.23) will be employed. Comparison of the dif-
ferential form of Eq. (2.23) with Eq. (3.19}shows
that

From the form of 'U as given in Eqs. (2.18) and

(3.2}, one notes that ReA, «ImA, as r- -~ for
fixed $. Hence A, becomes purely imaginary in
this limit. Equation (3.24) then shows that m„
must be purely imaginary if v„ is purely imagi-
nary. Also, for pairs of v„of the form v„,=-v„*„
one finds that m„2= -m„*x.

One is nom in a position to determine the pulse
profile associated with a given set of v„. Some of
the simpler cases have been observed experimen-
tally. They mill be considered in the next section.

IV. SPECIFIC PULSE PROFILES

, 1m[V[
Re[ 0/

(3.20) In Secs. II and III it mas shown that the profile of
a coherent-optical pulse 8($, 7} satisfies

Electric field envelopes then follow from the dif-
ferential form of Eq. (2.23). In the present case
the function o($, 7) will contain appropriate aver-
ages over the inhomogeneously broadened spec-
trum.

The response of the medium follows from Eqs.
(2.8) and (2.21). One finds

gg—= -Im(f, (v, r)f,(-v, ~))

where f,(v, 7) is the solution of

8 ,'+ (v' —u}f,=0

(4.1)

5f —id'= -f,(v, ~)fa(-v, 7), (3.21)
that approaches e '"' as r -~ and where V(g, r)
is related to h($, 7) by

where

f,(v, 7) =-u (v, 7)/w(v, -~) .
1 2 .ag5'+ 2i—
4 7 (4.3)

Then, from Eqs. (2.19), (3.2}, and (3.21) From the general theory of the inverse method,
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it is known that both f,(v, v) and the function Q($, r)
may be expressed in terms of a function A,(v, t) as

c 1—=1+
V &2+ 4v'

T

f,(v, 7.)=e '"'+ dtA, (T, t}e ' (4.4}
1—1+ (Q7~)

( ), (4.12)

and

(4.5)

respectively. ln addition, the function A, (7, t) sat-
isfies the Marchenko equation

The pulse velocity may be two or three orders
of magnitude lower than the phase velocity of
the light wave. Numerical values indicative of
recent experimental results" are co, - 10"sec ',
s, -10"cm ', p-6x10 " (cgs}, T~-7x10 ' sec.
Then, e'c-2&10~ sec ' and from the definition
of 0 given in Eq. (2.15)

(Ov~)'- 3000 . (4.13}

(4.6)

in which, for the case of lossless propagation, the
function Q2 is of the form

(4.7)

The function to be averaged over the frequency dis-
tribution leads to a factor of order unity. Hence
the pulse velocity is reduced by three orders of
magnitude in this instance. Lossless propagation
and pulse breakup were observed for pulse areas
up to 6m in these experiments.

A. One pole on positive imaginary axis —self-
induced transparency

This first example is the steady-state solution
mentioned in the introduction. It is analogous to
the single-soliton solution of the Korteweg-deVries
equation.

Setting v =ia/2, a &0 and m =ic($) where c(t) is
real, one finds from Eq. (3.18) that

V= 1+i [c(g)/a]e" .

According to Eq. (3.26)

(4.8)

The m„contain parametric dependence upon the
space variable $ as given by Eq. (3.26}. The vari-
ous pulse profiles depend upon the number of con-
stants v„and the values assigned to them. Three
of the simplest cases, all of which are of interest
experimentally, will now be considered.

8. Two poles on imaginary axis —breakup

of 4m pulse

As noted previously, pulses with area much larg-
er than 2m havebeen found to decompose into a num-
ber of isolated 2m pulses. The simplest example is
the 4mpulse which decomposesinto apair of 2mpuls-
es. A pulse with any initial area between Sn and 5w

will also evolve into a pair of 2m pulses" and the
final amplitude of each pulse m3y be determined
by using higher conservation laws. "~' ~ %'ithout
resorting to numerical integration the detailed
evolution of the pulse breakup can only be followed
if the initial area is also 4~. The analytical form
of this 4m pulse is that to be obtained presently.

Setting v, = ia, /2, v, =ia,/2 with a„a,&0 and also
setting m, =ic,($), m, =ic,($) where c,($) and c,($)
are real, the determinant of the dyadic V defined
in Eq. (3.18) is of the form

(4.9) zy„1+ted, (4.14)

Then, from Eq. (3.20), The functions that appear in the elements of this
determinant are

o =4tan ' exp' 7—c(0} 1

a 0 +4v
(4.10)

The term c(0)/a, which may be written as the
phase term ln[ c(0)/a], can be ignored since it is
equivalent to a translation of axes.

The associated electric field profile is then

C

1

(a1+O2)T/22c
21 a +a1 2

From Eq. (3.26)

1 +(a1 +a2)T/22C
12=a +a1 2

(4.15)
C

22 Q

2 1 x
&8 =Q —= —sech — F ——

7' ~p
(4.11}

where a = (07~) ' and the pulse velocity V is given
by Defining

(4.16)
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and noting that

Q~Q2
1 10 21

( )2 ylly 2a~+ Q2)

one finds that

(4.IV)

(4.18)

lution by $(1/(a', +4m')). The close correspondence
between broadened and sharp-line cases is not un-
expected since it has been observed in numerical
solutions xa .30 More reeentiysz the Baecklund
transformation method has been thoroughly sys-
tematized and an example of a 12m pulse presented.

C. Two poles symmetric about imaginary

axis —Om pulse

(4.19}

If one now sets g» = tan(c, /4) and g» = -tan(o, /4),
then

o =4tan ' ' ' tan
"a +a 0 —(F

Q~ -Q2

Again ignoring phase terms by setting

(4.20)

—1 i=12
a~+ a2 Q)

(4.21)

one finds that the cr, in Eq. (4.20) are of the form

1
v) ——4tan ' expQ) 7 —

2 2 $, i =1 2.
Q]+4v

(4.22)

The function o given in Eq. (4.20) has the same
form as that obtained previously" for the 4m pulse
in the sharp-line limit (ail 6&v =0). The result giv-
en here, however, applies to the inhomogeneously
broadened situation as well.

The electric field profile follows from the dif-
ferential form of Eq. (2.23). The result can be put
in the form"

(2/r, ) sechX+ (2/r, ) sech Y
1 —B(tanhX tanh I' - sechX sech I'}

As has been noted previously, " there are two
distinct types of Ow pulses. One is obtained from
the solution for the 4m pulse by merely changing
the sign of c,(0) in Eq. (4.21). The pulse profile
then contains regions of negative area. After com-
plete separation, each pulse is in the form of a
hyperbolic secant, one with area +2m, the other
with area -2m. The difference in sign merely in-
dicates a shift in phase of 180 of one entire pulse
with respect to the other. Such pulses would be
attenuated by level degeneracy in the same manner
as a single 2m pulse, of course, and hence this
type of Om pulse is not of any great experimental
interest.

The second type of Om pulse remains intact as a
single undulating profile as shown in Fig. 1. It
provides an alternate and somewhat more compli-
cated version of self-induced transparency. From
numerical solutions of the equations of coherent-
pulse propagation, it has been found that this solu-
tion, which has been calculated for a nondegenerate
two-level system, also retains its form and propa-
gates with little loss in level-degenerate systems
as well.

2 Tg 27 QT2
2 2

7', +T', 72+ T

(4.24)
0

The velocities are

(4.25) 0-

By using the Baecklund transformation, the ana-
lytical form that describes the decomposition of a
6m pulse in the sharp-line limit has also been ob-
tained. " Presumably, the corresponding solution
in the presence of a symmetrically broadened line,
i.e. , the solution to the inverse problem when

three poles are located on the positive imaginary
axis, could be written down immediately by mere-
ly replacing the terms g/a11 in the unbroadened so-

-2
-5

J

lO

FIG. 1. Envelope of Oar pulse {t,=t, = 0 ).
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Experimental confirmation of Om pulse propaga-
tion has thus far been confined to small-amplitude
pulses where linear analysis is applicable. Even
here the results have been quite remarkable. It
has been reported" that 65% of the initial pulse en-
ergy can be transmitted through 25 e-folding
lengths of a level-degenerate absorption cell by
using a Ow pulse.

The Om pulse to be considered here is shown in
Fig. 1. It is obtained when the two poles located
in the upper half plane are symmetrically located
in the first and second quadrants, i.e., v, =-v,*.

Setting v, = —,"(-p+ia), v, =-,'(p+ia} with a&0, and
also requiring m, = -m~, the real and imaginary
parts of

~ V( are found to be

Im) V
~

=, ~ 2)
(sa~+v~e ~ + C.C.),2(~2 + p2

(4.26a)

(4.Mb}

(4.28a)

(4.28b)

D =- [4v' - (a'+ P2}]'+ 16a2v'. (4.29)

Introduction of these results into Eq. (3.20) leads
to

t, sin[(t —x/V, )/t, ]
t, cosh[(t —x/V, )/t, ]

(4.30)

where t, =(uQ) ', t, =(PQ) '. The velocities are

c/V, = I+A+ (0 tr)~B,

c/V, = 1 +2 —(0 tr)'B,

where

(4.31a)

(4.31b)

In addition, the spatial dependence of m, takes the
form

(4.2'I)

where

t-x V,
t, (4.35a)

(4.35b)

The function h($, 7) is shown in Fig. 1. From Eq.
(4.34) it is seen that the pulse has a half-width t,
determined by the term sechP. The remaining
terms contribute the undulating structure shown
in the figure. Oscillatory solutions similar to the
Om pulse have also been obtained for the modified
Korteweg-deVries equation" and the nonlinear
SchrMinger equation. "

V. SUMMARY

The inverse method, which has been developed
primarily in quantum theory to determine the scat-
tering potential when asymptotic information on
the scattering (phase shifts} is specified, has been
employed here to determine the coherent-optical-
pulse profiles that pass without attenuation through
a resonant absorber. The use of the inverse meth-
od for this purpose parallels certain recent work
on the Korteweg-deVries equation. The method
provides a concise cataloging of the possible solu-
tions in terms of singularities in a complex plane.
In the present problem the function that plays the
role of the potential in a SchrMinger equation is
complex. This leads to new types of solutions that
do not occur for the Korteweg-deVries equation.
The method is applied to pulse shapes that are of
recent experimental interest, i.e., 2m, 4m, and Om

pulses. As improvements in experimental tech-
niques are forthcoming, an interest in the more
complicated solutions may be expected.

A phase term has again been neglected.
The electric field profile follows from the time

derivative of 0. The result is'" x

cosq —(t,/t, ) sinq tanhP
1+ (t,/t, )' sin'q sech'P

(4.34}

where

A =- (4v'/D),

B= &(o'+ P')'/D), -
1 1 1

+
t t~

(4.32a)

(4.32b)

(4.33)
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