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%'e have studied the simple shear flow, in the laminar regime, of a nematic (uniaxial) liquid
film between two glass plates with carefully imposed boundary conditions. In the case con-
sidered here, the optical axis at rest is normal both to the flow velocity and to the velocity
gradient. Using various methods of optical observation, we find the following facts: (a) VVhen

the shear rate s is below a certain threshold s, , the optical axis is unperturbed everywhere.
When 8& s, , it becomes distorted. sc is inversely proportional to the sample thickness.
(b) When a stabilizing field H is applied, s~ increases. Furthermore, above a certain limiting
field HI, the nature of the instability changes: a pattern of rolls appears, the rolls being
parallel to the (average} Qow lines, These effects are then explained in terms of the Ericksen-
Leslie-Parodi equations describing the couplings between orientation and flow in a nematic
Quid. This analysis has led in turn to the prediction and observation of other remarkable ef-
fects occurring when the shear rate is modulated (at low frequencies) and when taboo fields JI
(magnetic) and E (electric) are applied at right angles.

I. INTRODUCTION

A nematic liquid crystal is an anisotropic liquid
made of long rodlike molecules which are aligned
along one direction, without ordering of their
centers of gravity. This alignment is associated
with a strong birefringence: the local direction
of alignment (usually labeled by a unit vector n,
called the director) is easily observable optically

Being a liquid, a nematic can flow (the viscos-
ities being typically in the range of 0.1 P). There
are iwo complications for these flows: (a} the
friction coefficients are anisotropic; (b) there is
a coupling between the orientation [described by
the director n(r)] and the flow [described by the
velocity field v(r}). This coupling is described
qualitatively for three typical situations, to be
discussed in detail further in Fig. 1.

From a more formal point of view, the hydro-
dynamics of the coupled fields v(r) and n(r) have
been written in detail by Ericksen, ' Leslie, ' and
simplified by Parodi" (ELP). The constitutive
equations involve five friction coefficients and are
summarized in Appendix A.

These coefficients can be measured, in principle,
from the study of various laminar flows. However,
it is very important to work with channels where (i)
the alignment of the director n is well defined —this
can be done either through the influence of strong
external fields or from the definition of boundary
conditions (by suitable surface treatments}; (ii)
the geometry is simple enough (for instance chan-
nels of circular cross section lead to complicated
director fieldse and are not convenient); (iii) the
channel thickness is small (typically 500 p)—the
sample is then quite transparent and the alignment

can be monitored by various optical techniques.
Most of the early experiments on flow in nematics
did not satisfy these requirements; in general,
the flow takes place in the presence of a large
number of defects.

The first important progress was achieved by
Miesowicz' in 1946 who used a strong field H to
impose the molecular alignment in shear-flow
experiments in nematic para asoxy anisole (pAA).
For the three geometries of Fig. 1 he obtained
values for the viscosities g&, g~, g~. Recently,
65hwiller' has extended these measurements to
methoxy P nbenzil-idene butyl anilin (MBBA),
which has a nematic phase around room tempera-
ture and which will be referred to in the rest of
this paper. He found

q, =41.6x].0 ' P,
qt, =23.8x 10 ' P,
q, =103.5x 10 P.

Shear-flow studies in the absence of any aligning
field II are more difficult since they require ex-
cellent surface conditions. These studies have
been initiated by a theoretical calculation of Leslie. '
The case of Fig. 1(c) has been studied optically
by%'5hl and Fischer. " In this case, as soon as
a shear (the shear rate is s = dv/dz) is applied, the
director field is distorted progressively. For
low shears, the torque is given by u, s. A similar
result applies in the case of Fig. 1(b} but the
corresponding torque -n, s is usually much smaller.
'n very large shear, the molecules tend to align
at a small angle with the horizontal axis. This
angle is given by tan'8, = a, /u, . For MBBA, Wghl
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FIG. 1. Three shear-
flovr geometries. In case
5 and c, a torque is ex-
erted on the director due
to the shear. In the case
a studied here, no torque
exists below a critical
threshold.

and Fischer find 80 & 2'. Another determination
by Meiboom and Hewitt" gives 8, =15'. (From the
results of Ggbwiller, one gets 8, -V'.)

The case of Fig. 1(a} is discussed in the present
paper. The detailed experimental methods adequate
to this geometry are presented in Sec. II. One
finds that at low shear rates the director field is
not altered; in this regime, there is no difference
in hydrodynamic behavior between the nematic
and an isotropic fluid of viscosity q„. At higher
shear rates, however, we have found that an
instability takes place progressively above a
threshold s„ the director field becomes distorted. "

It may be helpful, at this stage, to present a
relatively simple picture of the instability based
on the hydrodynamic torques on Figs. 1(b) and 1(c).
We start with the unperturbed director n normal

FIG. P.. Mechanism for the development of an insta-
bility in the case of Fig. 1{a). An initial fluctuation n,
is further amplified to n +n ' via an n„distortion.

to the flow lines and to the velocity gradient (Fig.
2). Let us then assume that a small fluctuation
has rotated n from n to n, =n +n, ((n, )«(n„() in
a, plane normal to the flow line (xz); the flow will
create a torque 1",which tends to displace the
extremity of n, along the flow lines and will thus
bring n, to n, =n, +n„([n„(«[n,]}.At this stage
let us look at the projection of n on the ys plane:
clearly we are in the situation described by Fig.
1(b) and according to the sign of the torque I'„
shown on it, n, moves towards n =n, + n,', thus
increasing n, . So if we started with a small devia-
tion n, —n, = n, parallel to s we obtain at the end
an increase of this deviation measured by n, —n„
this shall lead to an instability.

The argument above holds for an infinite sample.
For a film of finite thickness with n anchored at
both limiting plates, the distortion is not uniform
along z and requires some Frank elastic energy. "
The instability will occur only when the destabi-
lizing hydrodynamic torques exceed the restoring
elastic ones. There will be a threshold rate s,
below which the system stays unperturbed. The
problem is analogous to the distortion transition of
an aligned nematic under the influence of a per-
pendicular magnetic field (Fredericks transition'~).

The instability we have just described leads to
a director field n(s) (invariant under translations
in the xy plane of the slab). We shall call this an
"homogeneous distortion. " The associated flow
lines remain parallel to the unperturbed flow direc-
tion y. This homogenous distortion effect has
been reported briefly in a preceding paper" and
will be described in more detail in Sec. III. We
have also investigated the instabilities occurring
under applied external fields and with shear rates
s which are modulated in time; we have found that
a second type of instability can occur. It involves
rolls of circulation having their axis para1lel to
the flow. This roll instability is presented in
Sec. IV. A simplified theoretical interpretation
is proposed in Sec. V. In the conclusion, we
present a comparative discussion with the case
of electrohydrodynamic convection in nematics.
In the appendixes we summarize the continuum
viscoelastic theory used and we apply it to our
shear-flow problem.
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FIG. 3. Schematic of the
shear-flow experimental
setup,

LC

II. EXPERIMENTAL

A representation of the flow cell is given in

Fig. 3. The two horizontal transparent cells
(5x 2 x l cm) can slide relative to each other.
The maximum available displacement is of the
order of 2 cm. In the ac experiments, one plate
moves with respect to the other with a sinewave
motion; velocity v= ,'(D/T)-cos(2vt/T) The v.ariable
rate is obtained by supplying a variable frequency
voltage to a synchronous motor. A solid bar con-
nects the moving plate to the motor where it is
attached eccentrically to a pin at a distance from
the axis of the motor (as in a steam engine). The
variable amplitude of displacement is obtained
by changing this distance. In the dc experiments,
an unstretching string attached at one end to the
movable plate is wound on a pulley connected
to the motor. By using an inversion relay, it is
also possible to use this system to get a square-
wave motion.

The distance between the two plates is kept con-
stant by using calibrated ball bearings as spacers.
In order to get rid of back-flow effects in the
active part of the cell, the liquid crystal (LC) com-
pletely fills the cell and also a thicker rim which
exists all around it. The distortions which we wQ

describe occur very uniformly over the cell, in-
dicating that no appreciable edge effects take place.

The cell is placed between the polar plates of

a magnet which provides a field up to 6 kG in the
X direction.

The inner sides of the plates are precoated with
thin transparent conducting Au films which can
be connected to a voltage supply through thin con-
ducting wires soldered to the Au, thus providing
a vertical electric field across the cell. The
vacuum evaporation of Au is carried under a, 60'
oblique incidence. This technique gives rise to
a surface hlignment of the mo1ecules in the plane
of the film ("planar" ) in a direction (X) perpen-
dicular to the plane of incidence of the Au beam. ""

The structure can be observed optically in the
0z direction with a microscope or by studying the
diffraction on pattern Of a laser beam. Conoscopic
technxlues" also provide an accurate description
of the structures in uniformly aligned samples.
Good samples, that had been submitted to shear
flows for 100 h, would still give a perfect uniform
alignment (no disinclinations) of uniaxial planar
samples when the shear flow was stopped. This
technical point is essential for the quality of the
experiments described here.

III. HOMOGENEOUS INSTABILITY

A. Experiments

We consider the effect of a constant shear rate
s =du/ds long after the shear has been applied.
For s &a„ the conoscopic image formed of two
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FIG. 4. Rotation of the
planar conoscopic image,
measured by g (propor-
tional to n ) as a function
of a constant shear veloc-
ity v for a 200-p-thick
layer. The curve H=0
corresponds to that given
in Ref. 12. When the
(stabilizing) field H in-
creases, the threshold in-
creases. Also the range of
existence of the homo-
geneous instability (H.I.)
decreases. The right-
hand part of the diagram
corresponds to the do-
main of existence of a
roll instability Q, .I.).
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sets of hyperbolas characteristic of a uniaxial
planar sample is unchanged by the flow (this
implies in particular that no defects are introduced

by the flow). When s & s„ the conoscopic image
rotates by an angle g. This rotation can be as-
sociated to a twist of the average director in the

xy plane, characterized by a polar azimuthal

angle 4. Together with the rotation, the center
of the hyperbolas is displaced along y. This is
associated to a vertical component of n (polar
angle 8).

Figure 4 gives the variation of P vs s for different
values of the field H applied along Ox. We con-
sider first the curve H=O which is similar to that

given, with a larger scale, in Ref. 12. Below a
critical value s, , g (and 4) remains zero. Ne-

glecting the tail at low g due to small misalign-
ments, the linear variation above s, is characteristic
of a second-order phase transition. For large s,
the limiting value of Q corresponds to an angle 4
= &m; except for two boundary layers where the
orientation twists back to the value 4= 0 imposed
by the walls, the molecules are in the vertical
plane of the velocities. In this plane, the molecules
are at an angle -6Ip with y, and we indeed recover
the Leslie conditions (except for the two thin
boundary layers). A measurement of the lateral
motion gives a rather inaccurate picture of the
transition because the angle 6)p is small. However,
for large shear rate, our 8p estimates agree with
the data already reported.

The other curves are given for increasing mag-
netic fields. The increase of threshold is con-
sistent with the fact that the field is stabilizing
(it tries to keep the molecules along x). High
enough above the threshold, the homogeneous
mode is replaced by a periodic roll structure.
If the field is large enough, the homogeneous
distortion never takes place and the rol, l structure
occurs just above the threshold. The roll in-
stability will be discussed in Sec. IV.

gemgyL In order to build up a homogeneous
state, we let a small angle between the unper-
turbed n, and the normal to the flow. U n is
exactly perpendicular to the flow, two equivalent
distortions symmetric with respect to the yz plane
can take place involving the formation of walls
along y. However, these domains are not dis-
tributed uniformly in space and cannot be mis-
taken with the regular roll structures.

B. Interpretation

The instability threshold is obtained by balancing
the hydrodynamic torques against the elastic and
magnetic torques. If we assume a permanent
regime, a homogeneous sample, and no velocity

components along x and z, the hydrodynamic torque
expressed in Eq. (A15) reduces to I"„„,= (0, —a,ss„
n, sn,). The two components of the torque express
quantitatively the effect of the two acting com-
ponents n„and n, along y and z described in Sec. I.
Effects such as the variation of the shear rate with
z would give higher-order contributions, Bal-
ancing this torque against the elastic and magnetic
ones, gives the coupled equations

ng
Sg+K~ 2

= ~ Sn31 ydz
(3.1)

ny+K2 ~
—= Q Sf4g,z' (3.2)

s, d= v,d' = v'(K, K, /n, a,)'i' . (3-4)

In high fields, where the elastic torques are small
compared to the magnetic ones, expression (3.3)
simplifies to

e,/H ' = X /a n, . (3.5)

The experimental results have already been de-
scribed in Ref. 12. For a d = 200- p.-thick film,
we obtain, in zero field, a critical velocity U, =11.5
pm/sec. Using values of K, =6.1x10 ' cgs, K,
=2.9x10 ' cgs, we obtain (a, n, )' '=0.18 cgs at
23'C. [Values of elastic constants of MBBA are
given in table form in the book by de Gennes
(Ref. 1).] The high field results are-well de-
scribed by law (3.5) with s,/H'=6. 6x10 7 cgs.
Using g, =1.12 x 10 ' at 23 'C, we find a second
determination (a, a,)' ' =0.17cga, which agrees
reasonably well with our first value and with other
published results 8, 'o,

IV. ROLL INSTABILITIES

A Modes of production

If a large eno»gh stabilizing magnetic field is
applied on a dc shear flow, the homogeneous distor-
tion is never obtained. Above a certain threshold,
the instability appears as a very regular series

where K, and K, are the Frank constants for the
splay distortion due to the variation of n, and for
the twist due to that of n„.

We look for solutions that satisfy the boundary
conditions n, = n, = 0 for z =+ ~ d. The lowest thresh-
old is obtained for the most slowly varying solution

n, /n, = n„/n„= cos wz/d .gi &p 9 9p

Using these forms of n, and n» we obtain the
threshold from the compatibility condition of
Eqs. (3.1) and (3.2),

a, n, e!= (&,v'/d'+ X~')(Z.v'/d'+ X,H'), (3.3)

which reduces in zero field to
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of lines Parellel to the velocity and strongly rem-
iniscent of the Williams convection rolls observed
in an electric field, "'"or of the thermal con-
vective instability, observed in planar samples. "
The spacing of the lines is of the order of mag-
nitude of the thickness of the cell and does not
vary much when external conditions are changed.
The lines are alternatively bright and dark due
to the difference in the diffracted light by the lenses
formed by the up and down parts of the structure
distorted along x.

Another may of obtaining this structure is to
apply an ac shear. In this case, the instability
is obtained even in zero magnetic field. (Obviously,
the homogeneous mode must be found again if the
shear rate is lorn enough so that it comes close to
a dc experiment. )

For the sake of completeness, we should also
mention the formation of rolls when a dc shear
much larger than the threshold is applied. How-
ever, in the present paper, we mant to restrict
our description to threshold problems and we will
analyze in detail only the two first regimes.

8. Properties

Like the other convective instabilities on planar
LC samples, the rolls cannot be observed in
light polarized perpendicular to the molecules.
The regular structure can be followed from the
diffraction pattern of a parallel laser beam sent
peryendicular to the film. A set of diffraction
points regularly spaced and aligned perpendicular
to the rolls axis can be seen on a screen. %'e

have observed diffraction spots up to the 30th or-
der. (A similar diffraction pattern can be ob-
tained by applying on the same sample an electric
field of suitable frequency and amplitude in the
Williams regime but me have not found as ex-
tended diffraction patterns in the latter case.) It
is possible that the mechanical displacement of
the plate favors the organization of the domain.
The existence of diffraction spots of high order
means that the distortion in nonsinusoidal. 2' In-
deed, mhen me are close from the threshold only
a, small number of diffraction orders is obtained.
The appearance of this diffraction pattern gives
the most sensitive test of appearance of convection
especially if a photocell is used to measure the
scattered intensity.

A careful observation of the rolls obtained in
ac flow shows that two types of roll instabilities
can be found.

(i) In the first regime, the bright and dark lines
do not alternate from one haU-period to the next.
This proves that the quantity e„which character-
izes the vertical distortion, does not change sign.

/V
F~ ~f

&v'

FIG. 5. F regime in. an ac shear flow.

The formation of double images of dust yoints
localized below the lower face of the LC can also
be used to study the distortion of the director.
In this regime, the direction of the alternate
displacement of the extraordinary image can be
used to show that the horizontal component n„
changes sign at each period. We will call this
regime Y.

(ii) In a second regime, we see an alternation
of bright and dark lines at each half period. In
this regime, n changes sign but not n„. We call
it the regime Z.

It is also possible to characterize the two re-
gimes from a study of the time dependence of the
intensity of one diffraction spot.

The Figures 5 and 6 give a schematic representa-
tion of the two regimes. The conditions selecting
one regime against the other will be analyzed
after the theoretical discussion in Sec. V.

V. INTERPRETATION AND SYSTEMATIC
EXPERIMENTS

A. Existence of a roll instability

Compared to the homogeneous distortion, the
roll instability involves an increase of the elastic
energy due to the bend of the molecules along Ox.
Homever, me know that, in large enough fields,
the elasticity plays a minor role. Rolls should
form more easily in this case if me are able to
find new destabilizing mechanisms associated
with the distortion along Ox. Several such terms
can be found in the force equations obtained in the
Appendix B. We will restrict here our discussion
to the case of the roll instabilities obtained in
dc experiments in high magnetic field (is„=A, =0)
and we consider only the new terms involved in
evaluating the distortion along x. We find the
following forms:
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a, a,(1+g)

[1+Kk,'/(~'+Kk, ') j
horn 1+g (5.5)

g-3 to 3.5.

2 istic

FIG. 6. Z regime in an ac shear flow.

V3f Qg + ~ Plg

y Oc gg 2 g t (5.1)

This should be compared to the threshold s'h,

=(X H' +Kk, ')/a, o., for the homogeneous insta-
bility. In large fields, the rol/ distortion &vill

always be more favorable because of the reduction
by the factor (1+g) &1 in s'. In zero field, the
solution will depend on the ratio

x = (k.' +k, ')/k, '(1 +g}

~ V~ Q~+ N ~e„
2 x (5 2)

k,(k,} is the magnitude of the wave vector of the
distortion along x(s). The velocity u, (x) will create
a, new destabilizing hydrodynamic torque acting on
the component n, :

so,(x) o (a, + o.„)1"„=-n =
2

' sn„.
RC

%e can write finally the torque equations along
pandz as

-(~'+ K,k, '+K,k, ')n, = ot,sn,

(Qzlt)e) g(ca + Q5) sny ~

(5.3)

—()I,H'+K, k, '+K,k, ')n„= a, sn,

—(a, /q, )-,'(a, —a,)sn, .
(5.4}

This differs from the homogneous case [forms
(3.1) and (3.2)] by the addition of the elastic terms
on the left-hand side and of hydrodynamic terms
specific of the roll structure. %'e will have a
homogeneous, or a roD instability, depending on
what contribution is largest. If we assume a one-
constant approximation (K, =K, =K,), the threshold
condition for rolls reduces to

The first terms are classical frictions giving the
effect of the velocity perpendicular to the mole-
cules. The second terms describe a new coupling
mechanism. Due to the distortion of n„along Ox,
the shear will induce a velocity field v, (a certain
kind of hydrodynamic focusing effect) given by

g jj'g„+ ' s ik'„n„= 0 .~'Ug Q~+ ~
C X

as compared to unity. The experiments indicate
that x&1 so that the homogeneous solution is
preferred for H =0. Let us assume k, =k, . This
implies that g should be smaller than one. In
fact, if we use an estimate of the field HI. -3 kG
for the sample of Fig. 4, the formula (5.5) would

imply a value g of the order of 0.1. It is not pos-
sible at the present stage to resolve the discrep-
ancy as the result depends critically on the ratio
k, /k, as well as of the back flow which should
limit the destabilizing effect of v, . These two
contributions have not been considered in the
qualitative analysis of this paper.

B. Phenomenololical equation for n~ and n,

An analysis of the hydrodynamic equations for
the shear-flow problem based on the Ericksen-
Leslie-Parodi (ELP) equations (introduced in

Appendix A} is given in Appendix B. We can in-
clude the effect of the velocity field —the back flow
effects" —by renormalizing the viscosity. A

quantitative theoretical approach could be carried
along lines parallel to the problem of electrohydro-
dynamic instabilities where both one-dimensional
(only variations along x are considered)" "and
two-dimensional (along x and s)" numerical solu-
tions have been obtained. An exact solution in-
volves a proper self-consistent consideration on
the boundary conditions for n and v at the limiting
plates and leads in particular to the determination
of the wave numbers of the distortion along x and
z at the threshold. The quantitative fit of a calcu-
lation with experimental thresholds gives access
to estimates of various combinations of viscosity
coefficients. %e are concerned here with the
description of the physical mechanism of the
distortion and will use a phenomenological treat-
ment which will give us access to the electric and
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magnetic field dependence of the threshold as well
as to the amplitude and frequency dependence in
the ac regime. However, we will not try to get
any determination of viscosities (except for order-
of-magnitude checks).

Equations (86) and (87) can be written in the
following concise form:

v =+ v for 0& t& —'T,
v=- v, for —,'T&t& T.

Two types of solutions can be obtained. (a) In the
regime F, only the component e„changes sign
through a period. At the end of half a period we
write the conditions

n„+n, /T„+A sn, =0, (6 5)

(5.7)

n, (-,'T) =-s„(0), n, (kT) =n, (0),
which leads to

xA.'
310

Tg Xg
(5.9)

(5.14)

(b) The other regime Z is such that n„(-,
' T) = n (0)

1
2 y

and ng-. T) =-n. (0). Then

T„and T, take into account only the effect of the
~0 0

elastic contribution T, -y/ICk', whereas the fol-
lowing terms express the reduction of the time
constant when the stabilizing fields H, and E, are
applied. The effect of the elastic time constant is
of the order of magnitude of the magnetic (or
electric) one for fields values corresponding to
the Fredericks threshold ff, =(w/d)(&/)1, )'~'."
This corresponds to values V, ~S V, H, =400 6
for a 300-p.-thick film. For H»H, or V» V,
the elastic contribution can be neglected.

Under this form, our ac shear flow instability
problem is formally similar to that of the electric
instability in an ac electric field. In the latter
case, we also have two coupled variables; the
density of charges q and the local curvature g
of the director field. The equations for q and g
are equivalent in form to Eqs. (6.5) and (6.7),
the meaning of the relaxation times being of
course different. Vfe have used an analysis
developed for the (q, g) system by Galerne" for
the simple square-wave-case excitation. Vfe con-
sider the set of equations equivalent to Eqs. (5.6)
and (5.'I),

n„+e„/T~+A sn, = 0, (5.10)

Galerne looks for solutions of n„of the form

n =re-«'~+We«" (5.12)

Asn, =N, ———e '-N —+ — e- ~/~
' l ~ ~/~

T3
2

(5.13)

%e assume a square wave variation of v with a
period T»

—+—tanh = ———tanh

(5.15)

lt is easily shown and understood that if the relaxa-
tion-time constant T„ is smaller than T„we can
find solutions of (5.10) and (5.11) satisfying (5.14)
but not (5.15). That is to say, n„wi11 oscillate
around zero and not n, . This is our regime l'.
If T,)T„ the solutions satisfythe other periodicity
condition (5.15). Only s, oscillates ar hand zero
(corresponds to regime 2). The intermediate
regime where both n„and n, oscillate around zero
can only be found when T„/T, = 1. We will postpone
the discussion of the results of these equations
after the presentation of the experiments.

C. Alternating case: experiments

In our experiments, the displacement of the
upper plate is sinusoidal and may be written 2D
x c 2ost/ vwThere D is the total displacement. In
order to make an approximate comparison between
our results and the simplified square wave model
discussed in t'.e previous paragraph, we chose
to put the shear velocity v =sd in the square wave
model equal to 2D/T. For a fixed D/T, the thresh-
old is studied as a function of the frequency T '.

The effect of a magnetic field along the x axis
and of an electric field along (os) has been studied
systematically. Ne have produced E, using a
10-KHz ac voltage supply up to TOO V'. At this
high frequency and low voltage, the electric field
by itself does not give rise to instabilities but
only tends to align the molecules perpendicular
to it (as e, =a~~ —e~(0). Figure 7 gives a series
of experimental threshold curves for different
values of D/T as a function of E and T '. The
magnetic field was kept constant (H = 3200 G).
This figure constitutes the central result of this
paper.
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FIG. 7. Experimental roll instability threshold curves
for different values of the effective velocity D/T as a
function of the frequency T ' of the sine wave shear and
of the transverse applied voltage.

%e restrict our attention to a curve for a given
value of D/T =0.148 cm/sec, which is reproduced
in Fig. 8. For a given electric field, the insta-
bility is present only if the frequency is lower than
a certain value (to the left of the curve). For
large frequencies, there are no instabilities (the
instabilities have not time to develop in half a
period). The most spectacular feature of the
curve is the existence of two branches. %e keep
the frequency constant, 1/T =0.8, and increase
~. In the absence of electric field, the instability
is present. It is of the F type. At a certain value
of field E, the instabQity disappears. For an even
larger value E„ the instability reappears but it
is now of the Z type. Finally, for the value E3,
the Z instability disappears. The spatial period
of the rolls remains always of the order of the
film thickness in the three branches but it is
usually larger (by 20%) in the branch 2. We have
not done any systematic study of this effect, in
the absence of a specific model.

At a frequency slightly smaller than that of the
cusp (1/T =0.6), the instability is still of the Y
type for E =0. In larger fields, it is Z type. It
disappears at a critical field E3. This branch is
the continuation of the 8, branch. The switching
between F and Z regime takes place in a domain
which is defined from the extrayolation of the
thresholds branches 1 and 2 to the left. This
intermediate domain (T-R is Fig. 8) is character-
ized by some "exotic'* structures; the rolls do
not extend over long distances but cross in a
rather regular way. This corresponds to the inter-
change between the Y and Z type instability along
a given roll. The diffraction pattern instead of
showing a single set of points along the axis ox,
now contains ~atellite spots in the direction oy.
In addition, the di5raction pattern shows peaks

I
E3
E3

R -Z

STABIL I TY

E2
T.R. ~+ Ei

~a-v
FREQUEN|.V LW3

0.6 0.8

FIG. 8. Curve D/T =0.148 of Fig. 7 has been repro-
duced in order to show the different instability regimes
(R-Y= Y regime; R-Z = Z regime),

twice as closely spaced as in the regular case
indicating the existence of a doubled spatial period
along ox which we intend to described more in-
tensively later.

The threshold curve can be qualitatively easily
understood in terms of a comparison of T„and
T, . For E=0, we have the Y instability and T„/T,
&1. As E increases, T„/T, also increases.

The cusp, where the instability does not develop
easily, "is observed when the two times T„and
T, become equal. In larger fields such that T„/T,
&1, the Z instability develops. However, if the
electric field becomes large, T, is quite small
and the Z instability relaxes rapidly to zero. We
can see that by considering the zero-frequency
extrapolation of branch 3. In this dc regime, the
result ($.8) should apply indicating that the thresh-
old varies as (T„T,)» '. Increasing the electric
field increases this threshold and unfavors the
instability.

If we come back to the set of curves of Fig. 7,
we see that large effective velocities D/T imply
indeed that the instabilities are obtained up to
larger frequencies.

The value of the electric field at the cusp E~
is the same for different D/T. This is an impor-
tant test of the validity of our description; the
condition T„/T, = 1 leads to a well-defined value
of Ee, independent of the velocity D/T, once H
ls specified.

D. Comparison with square wave model

In order to compare the experiments with the
model, we have to define the values of the following
parameters:
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FIG. 9. Experimental results of Fig. 7 plotted in re-
duced units.

ABs'T„' ={".

The first parameter defines the type of regime
obtained. The second expresses the frequency
of the ac shear in reduced units. The last one
gives the critical shear rate s in units comparable
to those used in the discussion of the homogeneous
threshold s„, = (AB/T„T,)' ' [Eq. (5.16)I. We
neglect the changes of T„due to the variation of
the wave vector of the distortion along x. The
sets of curves of Fig. 7 have to be expressed in
units T„/T, vs T,/T and compared with acalculated
curve with the appropriate value of C. This
can be done by fitting two points. We take one
curve.

At the cusp point, we have

~,/X &' ~r XA'-e. &s'
r,/(~'+ e.&s') ~. X

&'

And at the point of intercept with T ' =0 (obtained
by extrapolation of branch 3)

FIG. 10. Results of the calculation of the square wave
model with parameters fitted to the results of Fig. 8
by adjusting the zero frequency value, the cusp one, and
one point P to define the frequency scale.

a general qualitative agreement between the two
sets of curves. However, the calculated curve for
the square model displays a more pronounced
cusp structure than the experimental ones for a
sine wave excitation. A similar difference had been
found in the case of electrical instabilities, to be
reviewed later (see Fig. 15), where the experi-
mental and calculated threshold curves indicate
more pronounced structures for a square wave
excitation. However, we have also done some
preliminary experiments using square wave shear.
The results are close to the corresponding sine
wave experiments. It is not possible to conclude,
at the present time, on the nature of the quan-
titative discrepancies with the simplified model.

The existence of the cusp appears clearly in
the model. In Fig. 11, we have used an enlarged
vertical scale to display the result of the calcula-
tion. We see that no instability can develop when
T„/T, =1. This cusp, going to zero frequency,
is very sharp and would be probably very hard to
detect due to the heterogeneities of the fields.

~ =ABs 7 =C.
T, XH -&E' (5.16)

E. Further. results
(We have neglected the elastic contribution which
is negligible for the data of Fig. 7.)

Finally, we normalize the axis of frequencies
using a particular point (P) of Fig. 9 to the cal-
culated curve. (The same normalization is then
used for all curves. )

Figures 9 and 10 give the experimental and
calculated curves in these reduced units. %Ye see

We have complemented this discussion of the
ac effects by a further analysis of some of the
parameters of the problems.

1, Magnetic field

Figure 12 presents a series of threshold curves
obtained for different values of the magnetic field
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FIG. 11. Detailed representation of the calculated
curve. The cusp going to zero frequency (no instability
when T /Tg =1) is particularly sharp.

while keeping the amplitude D/T fixed. For a
given electric field, the threshold frequency de-
creases for larger values of stabilizing magnetic
field. %e also see that the electric field at the
cusp Ee increases with H (whereas Es remains
constant when D/T varies for a constant H).

The condition T„/T, =1 at Ee is written

1 1 I 1 gg+?t,H' ——— = — ' '
~ (5.1?)

Ty Tg yy yg yg0 0

Figure 13 shows the results obtained from Fig. 12
in units Vs'(H'). They are consistent with the
linear variation of Eq. (5.1'?) and show the two
following features: the slope is positive and y„ is
smaller than y„ the elastic time constant T~ is
shorter than T, .

In the Leslie analysis developed in the appendixes,
we obtain y„-y, . This was a reasonable result
since the displacements along y and z give similar
back-flow effects if we do not consider the bound-
ary effects for the velocity along oz. In fact, in
the relaxation of n„, the full "back-Qcmr" effects,
which tend to reduce the viscosity, take place
whereas the presence of solid boundary along oz
limit the contribution of the horizontal back-flow
currents, and y, &y„(for a complete calculation
of this effect, see Ref 28). This lower value of
y„also probably explains why the F mode is found
in the absence of field; the elastic torques for the
relaxation of n„are smaller than those for n„
as n, involves in particular a 'twist" relaxation
(the twist elastic constant K, is typically three
times smaller than the two other constants K,
and K,). In order to overcome this effect, the

2. Zero-frequency limit

This limit can be obtained by extrapolating finite
frequency data taken from curves such as that of
Fig. ?. (When T ' goes to zero, we must have large
displacements D if we wish to keep D/T constant.
This is our limitation in obtaining data at low
frequency). We expect that the extrapolated values
for T ' =0 should not depend on the type of ex-
citation and should also agree with the static re-

400

Q2{Q 2)
B

%0

200

100

I

10

H(10 G )
I

20

FIG. 13. Square of the cusp voltage V~ varies linearly
with H as expected theoretically.

1 2

FIG. 12. Effective velocity has been kept constant
(2D/T =0.4 em/sec). When H increases, the domain
of stability increases. Also the voltage at the cusp in-
creases.

visocosity y„has to be sufficiently smaller than
y, so that the time constant T„=y„/(K,?t, '+K, tt, ')

0
be smaller than T, .



P. PIERANSKI AND E. QUYON

{T)/T~)T-)

DIELECTRIC REGIME

40

20
LITY

I

0.10

{2D/I} {ca ccc}
i I

0.20

FIG. 14. In zero frequency the square of the effective
velocity varies proportionally to TgT, {deduced from the

extrapolation of the experimental data of Fig. 9).

I I i i

0 100 200

FIG. 15. Threshold voltage for the development of the
electrodynamic instabilities as a function of frequency
for both sine-wave and square-wave cases. The exis-
tence of a cusp separating the conduction and dielectric
regimes is to be compared with the existence of the Y
and Z regimes in our problem. The experimental data
are from Galerne {Ref.26) and the calculated curves
from Dubois-Violette (Ref. 24).

suit s =(AB/T, T, )'I', where T, and T, are func-
tions of the fields.

Equation (5.16) can be written

ABs2T„2= T„/T, ~

In Fig. 14, the experimental values of T„/T, taken
from Fig. S in the limit 7 ' =0 are found to vary
linearly with the square of the effective velocity
(D/T)'. This result is consistent with the formula,
written above as T„' is approximately constant for
a given film thickness and magnetic field.

3. Thi ckeess dependence

The results we have just discussed have been
obtained with different samples having approxi-
mately the same thickness d-200 p.. If we con-
sider the model of Sec. ID me see that the thickness
comes indirectly into the model to define the values
of the wave vectors }t, and h, (-1/d) which play
a role essentially in the elastic terms. In large
electric and magnetic field, the elastic contribu-
tion becomes negligible. We then expect the re-
sults for different thicknesses to reproduce for
the same value of the shear rate s =c /d. The
experimental results agree qualitatively with this
prediction and the critical velocity characterized
by D/T varies as d.

4. Temjerature

Experiments were given for a temperature T
= (23 +1)'C. The threshold curves vary quite rapidly

with T due to the rapid variation of the viscosity
coefficients with T.

VI. CONCLUSION

The experiments reported here exhibit a new

class of hydrodynamic instabilities of liquid crys-
tals. We have limited our study to the problem
of the development of linear instabilities controlled
by external fields. Our experiments are quali-
tatively mell described by the current hydrodynam-
ic model of nematics. A quantitative analysis is
clearly of interest and mill give access to viscous
constants but me feel that most of the essential
features of the phenomenon described are ob-
tained in this qualitative model. A study of the
effect above threshold including in particular the
problem of changes of regime 7- Z should also
be developed. We should also mention the inter-
esting aspect of the motion of disinclination lines
in the structure. Some formal analogies can be
drawn between these hydrodynamic instabilities and
other convective effects under the influence of a
thermal gradient s~o or of an electric fjeld xs,x9, 23~s

Such a discussion mill be developed in a separate
paper. ' Let us just mention schematically the
essential results obtained in the latter ease. Here
the convection is induced by the action of the
electric field on charges q either injected via the
electrodes or present in the liquid crystal.

A vertical curvature of the director, given by
{{c= {}ct,/Ss, can be induced under the effect of the
shear due to the convective flow and the local
electrostatic field on the dielectrically anisotropic
molecules. This curvature induces a local accu-
mulation of charges because of the electrical con-
ductivity anisotropy. In materials like MBBA
this causes an increase of the local charge fluctua-
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tion q. The coupled variables (1) and q correspond
to e„and n, in our problem. Two regimes are
also met: in a first regime —conducting —the
characteristic time for the relaxation of the direc-
tor T, is larger than T„, the dielectric relaxation
time. In an ac electric field, the charge oscillates
around zero but the distortion remains constant.
In a second one —«electri —obtained in larger
electric fields, T, had decreased enough so that
T, & T„. The charges are static and the vertical
distortion oscillates around zero (like in our Z
model). Figure 15 gives the electrohydrodynamic
threshold as a function of the amplitude and fre-
quency of an applied electric field. The experi-
mental data for both square and sine wave excita-
tions are from Galerne" and the corresponding
theoretical curves from Dubois-Violette. ' (In
practice, the theoretical curve for the square
wave agrees with the calculation of Galerne used
here. ) We see strong resemblances between
these curves and our ac results. Their low-fre-
quency results are in the conducting regime. Here
the application of a voltage plays two roles. It
couples q and n, (just like the shear s in our prob-
lem). It also reduces the relaxation time T, . For
high enough voltage where T, is small enough,
the dielectric regime, which involves oscillations
of n„ is obtained.

An extension of our work including an exact cal-
culation of the instabilty threshold as well as more
systematic experiments in particular in the square
wave regime is under way. This should give us
a better quantitative grasp of the hydrodynamics
of nematics.
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(A1)

where the stress tensor (describing pressure
effects and viscous dissipation} is

a= —pI + a, A + a, (n A n)un+ anN

+ a,Nn+an(n A)+ a,(n A)n, (A2)

'9e = aO'-g y

n~ = k(++ ~, + W),
I

gc = a(~g+&5 &2) ~

Torque equation

QQI ~t- = I'.j..f+ I'.~+ ~~.+ I.j..f,
dnQ=nx
dt

(A4)

(A5)

(A6)

For all practical frequencies, the inertial term
to the left can be taken to be zero.

Elastic torque

I;„„=nxK,

where the molecular field h

K=h~~„+K,„,.„+K„
has to be evaluated in term of the Frank elastic
constants K„K„E,."

Viscous torque

2~8 —2(8 v8+sgv~)

Applying this equation to the Miesowicz experi-
ment' (dn/dt= 0) leads to
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on the subject with E. Dubois-Violette, O. Parodi,
and G. Durand. One of us (E.G.) thanks Dr. M.
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mechanisms involved.

I'„,„=—nx [y,N+y, A. K]

with

(A8)

+2=+ ++ ~

(A9)

The expression of I"„;~ can be used directly to
evaluate the torques on the molecules in the geom-
etry of Figs. 1(b) and 1(c) given by —n, &v!ez and
a,&v/Sz and to calculate the equilbrium angle
e, such that tg'e, = a,/~.

Magnetic torque

I' = ~(n x H)(n H);

For an incompressible nematic, the ELP hydro-
dynamic equations (for the director n and the
velocity v) can be written in a linearized form
as follows:

Force equation

this expresses that the magnetic energy will be
lowest when n is along the direction of H.

Electric torque

I;„,= e,(nx E)(n ~ E) . (A10)

In MBBA, e, &0 the molecules tend to align per-
pendicular to E.
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We have five variables (n and v) and only five
equations. (K is defined within a constant K-K
+AH. This can be expressed by looking for the bvo
components obtained by multiplying Eq. (AV) by
Xn.)

APPENDIX 8: LESLIE EQUATION FOR THE

SHEAR-FLOW PROBLEM OF FIG. 1(a)

We look for the most general form of the coupled
equations (A1) and (A6) retaining only first-order
terms in the instability variables (we consider
only a linear instability). We also assume that,
as observed experimentally, all derivatives along
oy are null:

n = (1, n„, w,,)

2v,. v„, (v...+ v~.)
2A=

"x~+ &~,x

0
y,n, v, ,—n, (sn, + v, ,) —o, ,v, , y, s .(a5)

—y,s„v~, + a (sn, + v ) + y, is„

The values of the first derivatives of the velocity
in (85) can be incorporated in the director term.
We express the x and z dependence of the velocity
components as e"+e' " in the force equation F = 0.
For example,

or

v, ,g = P,qg + psst
with

a,kg2

q,u, '+q, u, 2 '

(o +a)4'
2(q, k, ' +

@san,

')

2' = ~~g vga and similarly

vga = QT/ ~ + Pysny ~

v~g —Psgy+ Pesng y

After calculation, we obtain the components of
the force E&=e &~,

2t
Q+(+ + Q~ + as+ Be Tjs) &x

n» 8 v»E„=a, '+g, »
tarsi+ ' (sn} +q,

8 Q~+(n, -qu) sp

with

6v = a( om + &4 + +5) ~

The effect of a magnetic field is given by

n&X,H(n ~ K)=(0 ~'n -~'s„j.

(S2}

(a, —a, )k„'
2(q, k, '+q, k, ') '

Finally, the balance bebveen torques is written

y,h, +(Kk'+~')n,
+(a, + a,P~+ a,P,)ss„=0,

y„s, +(Kk'+y H')n„

+(a, +a,P,)sn, =0,

with

k2 =A '+k 2
X 4

r.=ra+ W&3+ o' Px 0.»i
x, =rg+ ~PS-0 5'

The effect of the viscous torque can be calculated
xpresslng

nx (y„N+y, A ~ n) .
One finds

for MBBA '
We have assumed a one constant elastic model

with K, =E, =E, =E. A complete form is quite
complex and involves derivatives of n along x and
rf e
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