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An explicit analogy is developed between the long-range fluctuations near a critical point and the

long-range fluctuations in k space in a turbulent fluid in the limit of large Reynolds number.

Mathematically the analogy is between the probability functional of the spins on a lattice and the

probability functional for the Fourier-transformed velocity fluctuations. The latter is given by the

stationary solution of an exact Fokker-Planck equation originally derived by Edwards. This functional,

which is not explicitly known, plays the role of a Hamiltonian for stationary turbulence. The limit of
zero viscosity is equivalent to the temperature approaching the critical temperature from above. The
order parameter is the vorticity-vorticity-correlation function in 1. space, which in three dimensions is

the same as the energy spectrum E{k).The mechanism of energy dissipation constrains the critical
exponent y to satisfy y = l, The fluid is stirred at an external length scale k O'. If effects due to the
nonzero value of k 0 are ignored, the scaling properties of the full probability functional can be

explicitly calculated, and lead to the original Kolmogorov theory, This can be characterized by the
critical exponents v = 3/4, g = 2/3, indicating that the equivalent Hamiltonian is of long range. For
k p Q 0 the range of fluctuations in k space still diverges for zero viscosity. This hmit no longer leads

to a probability functional with the scale symmetry of a fixed point. We examine the cascade process
under the assumption that r=space correlation functions go as some power of r. The original

Kolmogorov theory is recovered by neglecting fluctuations in the cascade process. When these
fluctuations are included, correlation functions of difFerent order do not scale in the same way. This is

in accord with phenomenological theories of intermittency and with experiment. An efFective critical
exponent q' = 2/3 + f is still de6ned by the energy spectrum E{k).The parameter f is one of a
family of intermittency exponents which are intrinsic properties of the Wavier-Stokes equations. Their
calculation from the dynamical equations remains an objective for future work.

I. INTRODUCTION

The small-scale fluctuations of a strongly turbu-
lent flow are nearly homogeneous and isotropic
and nearly independent of the large-scale motions
whose instability is the source of the turbulent
energy. A quantitative description of these fluc-
tuations is most natural when Fourier transformed
to % space. As the viscosity is decreased the range
of correlations in % space becomes increasingly
long, diverging in the limit of zero viscosity. Fluc-
tuations of divergent range, whose behavior is in-
dependent of the particular anisotropic conditions
on the sca1.e of small wave numbers, are reminis-
cent of I-space fluctuations near a critical point,

We consider fully developed turbulence as a
statistically steady state far from equilibrium.
In order to achieve this description mathematical-
ly we replace the source of turbulent energy in the
large-scale flow by a statistically defined exter-
nal stirring force. This completely begs the ques-
tion of the origin of turbulence. Since the small-
scale fluctuations are expected to be independent
of the details of the large-scale motions, the lat-
ter are treated in the most mathematically con-
venient way without regard to physical realizabil-
ity. As we see in See. II the problem is defined

by three parameters plus the underlying Navier-
Stokes equations. These parameters are the kine-
matic viscosity p, , the total rate of energy input:

per unit mass &, and the characteristic stirring
length 40' at which energy is put into the fluid.

We concentrate our attention on equal-time cor-
relation functions relating the fluctuating velocity
field at varying spatial separation. The simplest
of these is the two-point function (u(x)u(x+r))
whose Fourier transform is the energy spectrum
E(k), the turbulent energy content per unit mass
and per unit wave number. Since the energy is
dissipated via viscosity, the Navier-Stokes equa-
tions imply'

k E(k) dk= zing
0

The energy spectrum E(k) is, in fact, a natural
choice of order parameter in three dimensions.
(For simplicity we stay in three dimensions
throughout this paper. Effects of dimensionality
are discussed in the Appendix. ) If we consider
the viscosity p as analogous to T-T, , and the
parameter e to be fixed, then Eq. (1.1) constrains
the critical exponent' y to satisfy y=1.

Suppose further that for k&+ ko, the spectrum
E(k) is independent of k„. Then on purely dimen-
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sional grounds we must have

E(k) —c' 'k '~'f(kjg)

where

&1, /4& -3/4

(1.2)

(1.3)

This is just the result first given by Kolmogorov
in 1941, and is discussed in many standard refer-
ences. ' Beyond the dimensional arguments the
essential physical idea is that the function f(&)
have a finite limit for small x. Thus the energy
spectrum in the "inertial subrange" k, «k« f,

goes as the -~~ power of the wave number.
Equations (1.2) and (1.3) should be compared

with the corresponding expressions near a critical
point in three dimensions,

(1.4)

&=&,(T-T,} ".
We see that the Kolmogorov theory corresponds to
a critical point with the critical exponents y =1,
v=-"„and q = 3. The scaling relation y=(2-q)v is
satisfied. The finite value of f(0} in Eq. (1.4) in-
dicates that g(r) has a finite limit as T —T, goes
to zero. The corresponding result in Eq. (1.2) is
that E(k} has a finite limit as p goes to zero. In
the case of turbulence this is not proven, but is a
basic assumption of our formulation. Up to this
point we have argued strictly by analogy. We shall
see later that these results arise from an approx-
imate scale symmetry of the dynamical equations.

It was pointed out by Landau (see footnote on
page 126 of Ref. 3) that the stochastic nature of
the energy cascade made the universal validity of
Eq. (1.2) questionable. In 1962 Kolmogorov' and
Obukhov' suggested a modified universal theory
taking Landau's objection into account. Their
statistical models were given a physical interpre-
tation by Yaglom' in 1966, and have since been
considerably refined by Novikov. 7' The essential
feature is that the buildup of fluctuations during
the cascade l.eads to intermittency which increases
with increasing wave number. The most striking
qualitative feature is a spatial inhomogeneity of
the small-scale motions. In more quantitative
form the probability distribution of any scale-de-
pendent random variable changes shape as the
length scale changes. The smaller the length
scale or the larger the value of wave number,
the more the probability distribution develops a
long tail and a large amplitude near zero, and the
less it resembles a Gaussian. The simplest quan-
titative consequence is that the inertial subrange
spectrum takes the revised form

(1.6)

with & a small positive number. In the usual phe-
nomenological theory, Eq. (1.6) is obtained as a
rather indirect and approximate consequence. We
present in Sec. III a modification of Novikov's
argument, which gives Eq. (1.6) directly.

There is considerable experimental evidence for
the intermittency of turbulent flows. e Much of this
evidence comes from atmospheric measurements
at very large Reynolds number, ' ' " and tends to
support the model of Novikov. The measurements
are not accurate enough to test Eq. (1.6) directly,
but the idealized conditions of isotropic homoge-
neous turbulence and a well-defined inertial sub-
range are reasonably well established. The infer-
ence of a nonzero value for the parameter & thus
comes from more complicated statistical proper-
ties of the flow than E(k) We t.ake the point of
view that the combination of phenomenological
theory and experiment gives strong support to
Eq. (1.6) with & e0, but a more conservative point
of view" leaves the question completely open.

The key theoretical problem is to understand
why the externa1 length scale k, ' is important:.
Several authors have shown" "that if the exter-
nal length scale is taken to infinity from the be-
ginning, then the original Kolrnogorov theory fol-
lows from the Navier-Stokes equations. In three
dimensions the convergence of all needed k-space
integrals has been demonstrated. (Novikov" noted
that this limiting procedure is inappropriate if in-
termittency is present. ) In the phenomenological
theories of Yaglom and others all that matters is
that 0, be different from zero. Its actual numeri-
cal value is irrelevant. One might think of & in
Eq. (1.6) as a modified critical exponent. The pa-
rameter 4, is the small "length" in our problem,
and might be considered analogous to a lattice
constant in critical phenomena. %'e will see, how-
ever, that intermittency implies that & is not a
critical exponent in the usual sense.

A theoretical formulation which is useful for the
problems described above must have a delicate
balance between generality and tractability. It
should allow the problem to be formulated in a
steady-state form without the need to consider
the additional complications of time evolution.
Furthermore, we are not interested in details of
the mechanism of energy input at small wave num-
bers. This problem has been nicely solved by
Edwards, ""who derived an exact Fokker-
Planck equation for the probability functional of
the Pourier transform of the velocity field. The
external stirring force is taken as a Gaussian
white-noise process characterized by a single
function k(k} with the property
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The fluid is contained in a cube of side L. This
choice of stirring force makes & an independent
parameter of the proble, unaffected by the re-
sponse of the fluid to the external force. This
arises from the assumed white-noise spectrum of
the external force, and is convenient for our study
of very large Reynolds-number turbulence. We
will further assume that the only important param-
eters of the function h(k) are e and k, .

To formalize the analogy with equilibrium crit-
ical phenomena we need a "Hamiltonian" for the
turbulence problem. This is obtained almost triv-
ially when we recognize that the Hamiltonian in
equilibrium statistical mechanics is by definition
what appears in the expression

The Hamiltonian is just a convenient way to ex-
press the probability functional for the full set of
spins on a lattice, and need not have any dynami-
cal meaning. In particular, we are interested,
not in the Hamiltonian itself, but in its scaling
properties under a renormalization-group trans-
formation' near the critical point. The Hamil-
tonian for our turbulence problem is just the loga-
rithm of the probability functional given by the
solution of the Edwards exact Fokker-Planck
equation. We do not know this Hamiltonian ex-
plicitly, but can examine its scaling properties.

In Sec. II we write down the Fokker-Planck
equation, and examine its behavior under a trans-
formation which scales wave numbers and veloc-
ities. In order to constrain the solution to de-
scribe a steady state fa,r from equilibrium, this
transformation must be carried out at fixed &.

The scale symmetry of the equation is broken by
the viscosity and by the nonzero value of @,. If
the latter is neglected, the dependence on viscos-
ity is easily calculated. When p, =0, the proba-
bility functional is invariant under the transforma-
tion

thus describing a fixed point of the renormaliza-
tion-group transformation. The energy spectrum
at the fixed point goes as 4' ' 3 so that the critical
exponent g takes the value g =-', . Examining the
behavior of the probability funct;onal in the neigh-
borhood of the fixed point yields &= 4. Thus the
original Kolmogorov theory of Eqs. (1.2) and (1.3)
is recovered with the constraint of Eq. (1.1) satis-
fied. The large value of g indicates that the ef-
fective Hamiltonian is of long range" in k space.
This is consistent with the slow convergence of

the k-space integrals which appear in the Kolmo-
gorov theory. '4

If k, is not zero, we can measure 4 in units of
k„and the appropriate dimensionless viscosity is
the reciprocal of the Reynolds number

4/3&x I3

As the viscosity goes to zero the range of correla-
tions in k space diverges, independent of the value
of 0,. The analogy with critical phenomena sug-
gests that the correlation "length" should be of the
form ( ko P with the exponent v not restricted
to have the value 4.

In Sec. III we argue that the probability functional
P( u„' ') does not have the scaling symmetry
appropriate to a fixed point in the limit of infinite
Reynolds number. We do this by examining the
probability distribution P(y(r)), where y(r) is the
difference in velocity between spatial points sep-
arated by a distance r. %'e study the moments
(y"(r)), and assume that they go as some power
of &. Following Novikov' these moments can be
related to properties of the probability distribu-
tion p, (q), where q =y(r) jy(c 'r). The third mo-
ment of P, (q) is restricted by the energy-conserv-
ing property of the inertial terms in the Navier-
Stokes equation. The original Kolmogorov theory
is obtained if P, (q) is replaced by a 5 function.
For any nonsingular P,(q), the behavior of P( y(r))
is not consistent with the scale symmetry of a
fixed point.

We are not able to relate the statistical argu-
ments of Sec. IQ to the dynamical arguments of
Sec. 11. We cannot therefore be sure that p, (q)
is nonsingular. The essential physical feature of
strong turbulence is, however, the tendency of
the nonlinear terms to amplify fluctuations. Thus
the cascade process driven by these nonlinearities
appears as a random process even though the un-
derlying Navier-Stokes equations are determinis-
tic. It is thus extremely plausible that P, (q) is a
nonsingular probability distribution. To derive
this from the dynamical equations involves a
fundamentally deeper understanding of the theory
than has yet been achieved.

The fluctuations in the cascade process from
small to large wave number have no obvious ana-
log in critical phenomena. These fluctuations are
manifest through a set of intermittency parameters
&„ which describe the difference between the
Kolmogorov values of (y"(r)) and the actual ones.
In some sense these can be thought of as fluctua-
tion corrections to a "Kolmogorov mean-field
theory, " and they do appear as changes in certain
exponents in power-law expressions for correla-
tion functions. " On the other hand, they represent
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a breakdown of scale symmetry in a regime of
infinite-range correlations. The parameters g„
can, in principle, be calculated from the formal-
ism of Sec. II. Until such a connection has been
established the relation of these parameters to
parameters of other physical problems remains
conjectural. In particular, we have relied heavily
on our intuitive understanding of turbulence in
three dimensions. Whether these fluctuation cor-
rections vanish in some higher dimensionality is
not known.

II. KOLMOGOROV CRITKAL POINT

Consider an incompressible fluid which satisfies
the Navier-Stokes equations

—= jJ V U —(U' V)U —VP+P, (2.1}

where p is the kinematic viscosity, P the pressure,
and f(r, t) an externally applied body force. With
the aid of the incompressibility condition

for the probability P( ..u». &) of finding the U,
to have the values of uk at time t:

»

k, a j,l,s,y

Q2+

k, a
(2.8)

Equation (2.8) has a strong formal similarity to
the Fokker-Planck equation used in the mode-
rnode coupling theory of dynamical critical phe-
nornena, "or in the theory of the long-time tails
of equilibrium time-correlation functions. " This
similarity is, however, only formal because in
the present case we are far from thermal equilib-
rium. At thermal equilibrium the fluctuation-dis-
sipation theorem kk = p,k'x(k~T) applies. This
leads to a stationary solution of Eq. (2.8} which is
of the equipartition form

—~a~ ~k "-k
k, a

V ~ U=Q (2.2)

the pressure can be eliminated in favor of the ve-
locity field U(r, t). It is more convenient to work
with the Fourier components in a box of side L,
and apply periodic boundary conditions

U(r, f)=I 3+e " 'U (f),
k

where k = (2m/I, )(n„n„n,}. Following Ref. 15 we
transform Eq. (2.1) to the form

(2.3)

gUa» ~k2Ua Q kfn8yUJU8 Q fBDas

j»&P»g 8

(2.4)

where the condition 4'"Uk =0 has been used to
eliminate the pressure. The kinematic factor
D, restricts the coupling to transverse velocity
fluctuations and is given by

D"~ —5 8 k k8(k) 2 (2.5}

hf ~P = —i I (k D»~+ k"D» )5~, , (2.6)

where 5»s —- 1 if k+] +T =0, and zero otherwise.
Equation (2.4) is too general to be useful for our
problem. We specialize to the case where the
random force f» (t) is a Gaussian white-noise
process with correlation function

The mode-coupling term M in Eq. (2.4) is given by

Dk ~k +k +-k+~a8 a 8 (2.9}

even in the presence of the mode-coupling terms.
At thermal equilibrium the physical interest is in
the time dependence of P(. .u» ~ ~ t}. In the tur-
bulence problem, on the other hand, we consider
a steady state far from equilibrium. The forcing
term Ak differs from zero only in a small region
of k space, k& k,. The viscous term is by con-
trast important only for large values of k. Thus
the energy enters the system at small 4', cascades
to large 0 through the mode-coupling terms, and
is dissipated at large k. Our entire problem re-
duces to studying the time-independent solution of
Eq. (2.8) under these conditions. More accurately,
it is not the stationary probability functional
P(. ~ ~ u» ~ ~ ) which is of physical interest, but the
reduced probability functions and correlation
functions obtained from it by functional integra-
tion. It should be noted that turbulence measure-
ments' '" record realizations of the random pro-
cess U(r, t), and are thus capable of yielding much
more detailed statistical information than is nor-
mally obtained for equilibrium fluctuations. This
leads eventually to important differences in the
kind of theoretical questions that one asks.

Of particular importance is the condition of over-
all energy balance obtained by introducing

(f » (t}f'» (t')) = 2k» ~(~ - f')~"'. (2.7}
The energy-balance expression is

With this specialization the nonlinear Langevin
equation, Eq. (2.4), can be transformed by stan-
dard methods to a linear Fokker-Planck equation The energy spectrum Z(k) is given by

(2.10)
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E(k)=2wk q~L ~. (2.11)

(V+f+D)P =0, (2.12)

where the viscous, inertial, and driving terms
are given by

VP=p, d3kk I u~I', (2.13)

IP= dsk'dj d3$m ~& k, 3, ~& I u&~u~&P,

With this identification, Eq. (2.10) will be recog-
nized as Eq. (1.1}.

To study the scaling properties of Eq. (2.8) we
replace the sums over wave numbers by integrals.
The stationary solution satisfies

group transformation when k0=0. The scaling
property

k'= ck, u = c' g,
' (2.20)

defines the statistically self-similar probability
functional" as it appears in generalizations of the
original Kolmogorov theory to include more re-
fined statistical properties. In particular, it
leads to @k) proportional to k ' ' in the inertial
subrange and corresponds to the critical exponent

2
0 3~

The departure from the fixed point due to vis-
cosity is easily included. Consider the correla-
tion length g(p, ka). When k0=0 we have from the
scaling properties discussed above that

and

0

(2.14)

(2.15)

$(c ' 'g, 0) =c)(V, O)., (2.21)

(2.22}

(2.16)

A summation convention for Cartesian components
has been introduced.

Consider now the renormalization-group trans-
formation"

and the critical exponent ~= ~. Since we are work-
ing in the neighborhood of a fixed point, Eq. (1.2)
is applicable.

Consider now the effects of a finite external
length scale. When k0c0, the only conclusion
that we can reach from the scaling properties of
P is that

k'=ck, u~ =c'u,'~ . (2.17)
$(c 3~4g, cko)=cf(g, ko).

When expressed in terms of the primed variables
the viscous term VP retains the same form but is
multiplied by c '. The inertial term also retains
the same form but is multiplied by c~ "~. The
driving term is not form invariant since the inte-
gral now extends to ck0. To deal with a steady-
state turbulent problem far from equilibrium we
must scale k(k) so that the energy input e per unit
volume is constant. Thus

k(k}= c'k'(k')

40 ck0
k(k) cPk = c' h'(k') d'k'= aL' =c'aL".

0 0

This has the solution

t = kg(B),
where 8 is the Reynolds number and E(R) is an
arbitrary function. We would normally assume
E(B)=f1" so that

1 lSk( j.-41/3)
0 0

Note that only in the case ~=& is $ independent of
There is no a Prio~ reason to assume ~= ~.

It is physically clear that the range of correla-
tions diverges as 8 goes to infinity whatever the
value of k,. It is thus tempting to assume that the
limit 8 - ~ defines a fixed point. Using Eq. (1.1)
we would then have

With this scaling of k(k), the driving term in the
scaled variables becomes

E(k) = e'i'k 'i'(k /k) ~f (k/kP"),

with the exponents f and & related through

(2.23)

821'
c't3 2*' k'(k') d'k'

0 8g~c 8g
(2.19)

If we neglect the violation of scale symmetry due
to the upper limit of the integral in Eq. (2.19) then
the inertial terms and driving terms scale together
as c " ' when x=~. The limit of zero viscosity
thus defines a fixed point of the renormalization-

( —t}v=1

Equation (2.23) is attractively simple, and seems
to extend the analogy with critical phenomena be-
yond the original Kolmogorov theory. We shall
see, however, that Eq. (2.23) with g xO is unlikely
to be correct though Eq. (1.6) with g eO is probably
true. This leads us to the question of intermittency.
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III. INTERMITTENCY

It is convenient to discuss intermittency in terms
of a directly measurable probability distribution.
Our discussion will be in r space, but can betrans-
lated to k space where necessary. Introduce the
random variable

q&=y(c'~)/y(c' '&), i =I,
In particular,

q =y(r)/y(c 'r).
The structure function B„(r) is given by

B„(r)=(y"(I )q", qm q~ ~ ~ ~
q()(& .

(3.5)

(3 6)
y(r) =u(x+ r) —u(x), (3.1)

where I is the component of the velocity along r.
The moments of y(r),

&(~) =()"(~))= j)"(~)P()(~)) d) (~), (3.2)

are known as the nth-order longitudinal-structure
functions, and have been studied experimentally"
under conditions closely approximating the iner-
tial subrange of isotropic homogeneous turbulence.

In the original Kolmogorov theory the probabil-
ity distribution p(y(r)) has the same form at all
values of r if the random variable y(r) is scaled
as &' ~. This leads to the result

(q") = J q")',(q)dq=c" (3.7)

Using Eq. (3.7) in an appropriately factored Eq.
(3.6) and recalling that c"= (r/I ) we obtain

B.(r) =(y"(I )& (r«)"" .
If we define

(3.8)

In order for B„(r) to have a power-law form for
all r«, and arbitrary c, the q& must be indepen-
dently and identically distributed with probability
distribution p, (q) depending only on c. We further
require the dependence on t.- to be constrained so
that

B„(r)=C„(er)"~' (k, =0, i(. =0), (3.3) (3.9)

which follows from simple dimensional arguments
if & is the only relevant parameter.

We consider now the effects of finite 4'0 in the
inertial subrange

~&&ye )«Q ~

and recall that the final result cannot depend on
the arbitrarily chosen length l, we obtain Eq.
(3.4). Spatial homogeneity requires B,(r) =0,
which follows from (y(I )) =0, and does not con-
strain p,

The contraint that &, =0 corresponds to
The length l is not a parameter of the problem,
but just a reminder that the expected power-law
behavior

q'p, (q)(fq=c. (3.10)

B„(r)= C„(er)" '(k,r)~~ (3.4)
To get the original Kolmogorov theory we require
that

does not extend to distances of the order of the ex-
ternal length scale. In Eq. (3.4), C„ is a dimen-
sionless constant, and the dependence on e and k,
is required by dimensional arguments. The en-
ergy spectrum E(k) is the Fourier transform' of
of B,(r) so g, is the same as the parameter g in-
troduced in Eq. (1.6). The parameter f, must be
identically zero. This is shown in Sec. 33 of Ref.
3. The equivalent statement in k space is that the
third-order cumulant

T'"(p, q) =(u.u.u-. -, &

must have the scaling property

(cp cq)=c T (p, q) ~

This is required" in order that the total energy
cascading past wave number K be independent of
K.

To show that &„&„f„.. . are not zero, consider
the following argument, adapted from Novikov. '
Introduce a parameter e& 1, and an integer N such
that (r/I) =c". Introduce the random variables

q" p, (q) &q = c""

for all n. This would only occur if

p, (q) = 6(q c'~')—
Thus the Kolmogorov theory corresponds to ne-
glecting fluctuations during the cascade process.
Including such fluctuations leads to nonzero values
for the exponents f„ for n 13.

Our argument has certain differences from that
of Novikov. ' Instead of the variable y(r) he con-
siders an intrinsically positive random variable
such as e(r), the viscous dissipation averaged
over a region of length r. For a variable of this
type he obtains upper bounds on the exponents cor-
responding to p, „. He can also construct the char-
acteristic function for the logarithm of the corre-
sponding "breakdown coefficient" e(cr)/e(r). This
allows him to explicitly construct p, (q) for any
value of c if it is known for one value of 4. In our
case the random variables y(r) and q can take on
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negative values. We can prove less about the
probability distributions of interest. On the other
hand, we study the structure function B„(r)directly
where Novikov assumes4' that it is proportional
to ([e(r)]" '). This latter assumption is probably
wrong. There is no physical reason why the statis-
tical behavior of the inertial subrange should de-
pend on the mechanism of energy dissipation at
smaller scales. A random variable which relates
simply to the structure function J3„(&) should refer
to energy transfer by the nonlinear inertial terms,
not to viscous dissipation.

Earlier log-normal models of intermittency' 6

give g„=bn(s —3), with k an arbitrary constant.
From Novikov's work we now know that this depen-
dence on & is too simple. There is no reason to
expect any simple a Priori relation among the var-
ious parameters g„. To get a very rough numeri-
cal estimate we guess that P, g, (q) is a constant for
o,( q& 1 and zero elsewhere. Using Egs. (3.7),
(3.9), and (3.10) we find a =0.544, g, =+0.038, and

f, = -0.073. These are qualitatively reasonable
when compared to experiment, "but such simple
numerical games tell us only that the elementary
physical ideas involved are not obviously wrong.

Our principal result is a departure from the
statistical self-similarity" of P(y(r}} in the iner-
tial subrange. As r is decreased the probability
distribution P(y) does not maintain the same shape
after a scaling of y. When translated back into k
space this means that the probability functional
studied in Sec. II does not satisfy scale symmetry
in the limit of infinite Reynolds number even though
the range of correlations in k space becomes infi-
nite. Correlation functions retain their power law
form, and an exponent

I
q =g+f2

can be defined. An earlier speculation' that f, is
related to a fluctuation correction to a "Kolmogorov
mean-field theory" has thus been put in more pre-
cise form. This correction seems to differ, how-
ever, in important ways from corrections to mean-
field theory in critical phenomena. The random
cascade of energy from small to large wave num-
ber in a fluid far from equilibrium has no direct
analog in the behavior of equilibrium correlation
functions.

Since we no longer have a fixed point at infinite
ReynoMs number, the usual analytieity assump-
tion of the renormalization-group approach is not
applicable. Equation (2.23), which follows naturally '
from an expansion about a fixed point, has no
theoretical support in the turbulence problem.
lt cannot, however, be categorieaBy excluded.
The degree of analogy between tuxbulence and
eritieal fluctuations remains unclear. We do not

know whether the scaling of Eg. (2.23) is valid,
whether the fluctuation corrections due to inter-
mittency vanish in high enough dimensionality, or
whether the renormalization-group approach can
be modified to apply to the turbulence problem.

Finally there remains the problem of calculating
the intermittency parameters p„ from the Navier-
Stokes equations. There now seems little doubt
that these parameters are intrinsic features of the
dynamics, and not artifacts of the boundary condi-
tions. The formulation given in Sec. II seems suf-
ficiently general to allow such a calculation in
principle. The logical structure of the problem
seems clear. We know at what formal level to
pose the problem. We know the parameters which
characterize the solution. It remains to devise
techniques which allow these parameters to be
calculated from the dynamical equations.
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Extending the discussion of the text to dimen-
sionality 4& 3 does not lead to any immediately
interesting results. We take as the order param-
eter the vorticity correlation function

(QQ) = k (u u) = k "E(k) .

The dimensional arguments of the original Kolmo-
gorov theory give an inertial subrange spectrum
&(k} going as k 'is in d dimensions. The order
parameter in the inertial subrange thus goes as

(QQ) =00k ~" 2+"i,

with q = 3. In critical phenomena with a long-range
potential

it is known" that q =2 —o. The Kolmogorov theory
corresponds to &~3. The physical significance of
this observation is obscure.

The condition of energy balance between driving
term and viscous dissipation in d dimensions be-
comes
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so that the Kolmogorov theory continues to give
@=1,&= ~. Nothing is known about intermittency
corrections for d& 3.

The inertial subrange in two dimensions has
special properties because the inviscid Navier-
Stokes equations conserve both energy and vortic-
ity. An energy cascade to large wave numbers is
not possible, but it is possible to have an enstro-
phy (mean-square vorticity) cascade. " If the in-
ertial subrange spectrum were to be independent
of the stirring length and depend only on the rate
at which enstrophy cascades, then the usual di-

mensional arguments give E(k) proportional to
The problem has been clearly outlined by

Kraichnan, "and is the subject of considerable
current interest. In two dimensions there are
known to be divergence difficulties"" at small

Thus it is not possible to take kp 0 from the
beginning and get a self-consistent result. Ne ex-
pect that intermittency corrections will modify
the 4' ' energy spectrum in two dimensions more
strongly than they modify the A' ' ' spectrum in
three dimensions. The problem is clearly deserv-
ing of further study.
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