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The fully renormalized kinetic theory (FRKT) previously discussed by the author in the
case of self-diffusion is extended to the case of density fluctuations. In the theory techniques
are developed for calculating classical phase-space time-dependent correlation functions.
The method centers around the development of an exact expression for the memory function
associated with the phase-space-correlation function. This exact expression is written in a
compact and symmetric form that is convenient for making approximations. It is shown ex-
plicitly how one ean make contact with the Boltzmann-Enskog approximation for the memory
function which is valid for moderate densities, as well as the ring terms which lead to the
much-discussed t +3 long-time behavior. The most striking difference between self-diffusion
and the case of density fluctuation arises in the region of the critical point. It is shown in the
theory how to make contact with the mode-mode coupling results of Kawasaki. From a for-
mal point of view the development of the FRKT is carried forward three important steps in
this paper. It is shown how to relate the memory function to the two-particle source func-
tion in a more powerful and direct method than the projection-operator approach developed
in FRKT I. After a simple rearrangement, the memory function is written in a far more
symmetric form than in FRKT I, and finally it is shown how the ideas of connectedness and
cumulants can be successfully introduced into the theory.

I. INTRODUCTION

In a previous set of papers" a new theory was
developed for treating dynamical processes in-
volving a tagged particle in a classical monatomic
fluid. In this paper this theory will be applied to
the case of density fluctuations in a monatomic
classical fluid. It will be shown that the basic
ideas developed in FHKT I can be extended and
more fully developed. Before discussing any ex-
tensions and improvements on FBKT I it is worth-
while summarizing the basic ideas developed
there.

It is assumed from the beginning that most of
the interesting dynamical properties of a fluid
can be expressed in terms of time-dependent
equilibrium averaged correlation functions. ' %hile
this assumption may restrict the analysis to physi-
cal systems where linear-response theory4 is
valid or scattering experiments where Born, ap-
proximation is valid, ' this restrictiveness is
balanced by the definiteness of the problem posed.
There is also the incentive that these correlation
functions are calculated in computer molecular
dynamic s.

The main ideas in the FRET are renormaliza-
tion of collisional effects through the use of mem-
ory functions and the expression of the memory
function associated with the phase-space density
correlation function in terms of an effective two-
body problem. One builds in from the very be-
ginning the ideas from renormalization theory

that one should consistently try to replace bare
interactions with effective interactions. The ad-
vantage of introducing an effective two-body prob-
lem is that approximations ca,n be made from a
physical point of view.

One of the main requirements for the theory
is that it make contact with a good zeroth-order
approximation. This requires reduction of the
X-body problem to an effective few-body problem
and it is well known that the Boltzmann-Enskog
theory' provides such a zeroth-order approxima-
tion for classical short-ranged fluids. It was
shown in I how one can make contact with the
Boltzmann-Enskog theory in a straightforward
and natural way. This is discussed further in
this paper. The main purpose of the present theo-
ry is to develop convenient and physical methods
for finding corrections to the zeroth-order theory.

The basic formalism for expressing these ideas
mathematically were developed in FHKT I. First
one must settle on the basic correlation function
to be calculated. It is convenient for physical
and mathematical reasons to work with the phase-
space correlation function. Realizing that this
correlation function possesses a resonant structure
in the hydrodynamical regime, one switches one' s
attention from the correlation function itself to the
associated memory function which is defined to be
that function which gives the effect of the other
N - j. particles on a free streaming particle. One
then uses the basic equations of motion satisfied
by the phase-space density correlation function
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to obtain an exact equation for the memory func-
tion. These expressions for the memory function
are in terms of higher-order correlation functions
which enter because of the hierarchic nature of the
equations of motion. One then runs into a rather
tricky technical point at this stage in the develop-
ment. This was treated under the heading "pla-
teau-value" problem in FRET I. This problem,
stated simply, is that the memory function is
given as the difference between two functions each
of which is "more complicated" than their dif-
ference. In more mathemati:cal language the mem-
ory function is given in terms of a doubly connected
correlation function. The difficulty is in com-
bining two correlation functions that are not doubly
connected to obtain a compact expression for this
doubly connected function. A large number of
authors' have dealt with this problem in treating
the theory of transport coefficients which requires
knowledge of the memory function only for small
wave numbers. Only fairly recently, with the
development of projection-operator techniques, '
has there been progress in understanding the be-
havior of memory functions for all wave numbers.

In FRET I an alternate approach to the plateau-
value problem was presented. The idea was to
express the two contributing pieces to the memory
function in terms of an effective two-body problem
and then use projection operators that act in this
two-body space to combine these two pieces. In I
this combination was carried out with the resulting
compact expression (I.4.28). The analysis in this
paper will be carried several important steps
further than the development in I.

The major difference between the analysis in
FBKT I and the analysis here relates to the method
used to obtain expressions for the doubly connected
quantity G in terms of the two-particle source M.
In FRET I projection operators were used to relate
G and M. The theory of density fluctuations was
initially developed' using essentially the same
projection-operators techniques developed in I.
It was found that the resulting projection-operator
expression for the memory function could be con-
siderably simplified compared to the expression
(I.4.28). It was found that the effects of the pro-
jection operators, as they appear in (I.4.28), could
be evaluated explicitly such that the final expres-
sion for the memory function contains no further
reference to the projection operator. Therefore,
the resulting equations for the memory function
turn out to be ensemble independent in the thermo-
dynamical limit and independent of the choice of
the projection operator. Since the memory func-
tion can eventually be written in a compact form
that is independent of the initial choice of the pro-
jection operator, one suspects that the same re-

suit can be derived without introducing projec-
tion operators, In Sec. IV of this paper a more
direct method is presented for relating the mem-
ory function to the two-particle source M.

A second important new step taken in this paper
will be to show how the memory function can be
written in a far more symmetric form than in I.
This eliminates the formal aw'kwardness in going
from Eqs. (I.4.28) to (I.4.38) and all of the re-
sulting equations become much more symmetric.

The third main new ingredient is the introduction
and the use of cumulants' and the separation of
correlation functions into their connected and dis-
connected parts. Such a separation is very im-
portant in those cases where the fields in an aver-
age can become statistically independent. In such
cases the disconnected part of the correlation
function dominates the connected contribution.
Such effects have been observed in recent light-
scattering experiments. " Using these ideas of
connectedness and the fact that effective inter-
actions may be very long-ranged near the critical
point it is very easy to make contact, using the
FRKT, with the mode-mode coupling theories"
that have been successful near the critical point.
Of course the FRET also tells one how the trans-
port coefficients behave as one approaches the
critical point. This is because the theory includes
the microscopic as well as the hydrodynamical or
collective couplings in the system.

These new ideas should also be introduced back
into the theory of self-diffusion. It should be
pointed out that these more powerful techniques
are more necessary in the case of density fluctua-
tions which is more complicated than the case of
self-diffusion. This complexity arises in the case
of density fluctuations because of the more in-
volved static contributions. This is manifested
in the critical behavior that shows up in the dynam-
ics structure factor S„„(k,~) but which is absent
in an analysis of S,(k, (u)." A further complexity
in the analysis of S„„comes from the coupled
modes that appear in the hydrodynamical regime.

One of the major results of the present theory is
an understanding of the competition between the
microscopic or localized events and collective
effects in determining the memory function. The
microscopic effects or interactions between bare
particles serves as a local or zeroth-order ap-
proximation. These events are characterized
by two-particle collisions and give rise to the
Boltzmann-Enskog contributions and these terms
dominate for very low densities. '4 " For moderate
densities the microscopic and collective effects
compete and lead to things like the long-time tails
discussed in FBKT II. One expects that the coop-
erative effects dominate near a. phase transition,



362 GENE F. MAZENKO

while the microscopic effects provide the "back-
ground. " It is, of course, a great advantage of the
FHKT that the static-correlation functions are
treated as input. This is especially true near the
phase transition where there has been great recent
progress in calculating the static-correlation
functions. ' These theories can then be taken over
as input to the FHKT.

One of the reasons one can understand such a
diverse range of phenomena is because the FBKT
does not single out any expansion parameter until
very far along into the theory. Thus exact static-
correlation functions appear in the theory and no
resummations of the "most divergent" terms is
necessary since there has been no expansion. The
"divergences" of the density expansion of transport
coefficients" is easily understood within this
theory since it can be seen that a direct density
expansion of the memory function involves an in-
ternal expansion of a time-correlation function
in a power series in the density. Because of the
resonant nature of the time correlation function
such an expansion is not admissable.

Since the density cannot be used as a systematic
expansion parameter, "one must introduce a new

expansion parameter. This is a very old problem
in the theory of Quids, and there has not been
much progress. In the theory developed here one
introduces a four-point fully-connected "vertex. "
This vertex appears naturally in the theory and
seems to be a natural expansion parameter. It
will be shown in Sec. VI that if one expands to
lowest order in the vertex, then one has an ap-
proximation that includes the Boltzmann-Enskog
theory, the ring terms, " and the mode-mode
coupling terms which have been successful in
describing critical phenomena. Unfortunately a
direct calculation of the vertex is quite involved
and it has not yet been possible to show that the
contributions from these terms are small. The
attitude here is to ignore the vertex and see that
one is led to reasonable agreement with experi-
ment. For those who are not so optimistic there
is a short discussion of how one can go about cal-
culating the vertex function.

It is hopefully clear from the preceeding re-
marks that the FHKT is a rather flexible and
general framework within to discuss dynamical
problems. The theory is complementary to the
field theoretical work done in calculating static
phenomena, it should be applicable to quantum
as well as classical systems, and it is rather
easy to extend the formalism to the case of multi-
component systems. The theory also provides
a bridge between the sucessful applications of
kinetic theory to the calculation of transport coef-
ficients and the more phenomenological generalized

hydrodynamical theories. " The theory therefore
possesses a unifying quality.

In Sec. II the basic definitions in the formalism
are introduced. In Sec. III these definitions are
used together with the basic equations of motion
to obtain equations for the memory function in
terms of four-point correlation functions. In Sec.
IV the two pieces that contribute to the memory
function are combined in a compact expression
for the memory function. A detailed analysis of
the various components in this expression for the
memory function is carried out in Sec. V. It is
also at this state that the powerful ideas related
to connectedness and cumulants are introduced
and used to advantage. These properties are used
in Sec. VI to develop an iteration scheme that
allows one to identify the Boltzmann-Enskog con-
tribution, the ring terms discussed in FHKT II
(suitably generalized) and the mode-mode coupling
terms important near the critical point. It is then
shown in Sec. VII how the memory-function for-
malism can be used in the hydrodynamical regime.
Explicit expressions for the transport coefficients
(shear viscosity, thermal conductivity, and sound-
damping coefficients) are obtained in terms of the
memory function and as a special case the thermal
conductibility is investigated near the critical
point. Section VGI is devoted to a brief discussion
of results and work remaining.

II. BASIC DEFINITIONS

In this section the various notations and defini-
tions needed in the description of time-dependent
phase-space correlation functions are introduced.

A. System

The system of interest in this paper will be a
classical single-component monatomic fluid. This
Quid contains N particles of mass m enclosed in a
volume A. The system is assumed to be in equi-
librium at temperature T = (ks P) ' and, if r, and

p, are the phase-space coordinates of the ith par-
ticle in the system, then the Hamiltonian for the
system is

where it is assumed that one has a pair-wise addi-
tive central potential.

B. Fundamental fields

It is quite useful to introduce a set of fields that
allow one to carry out the classical equivalent
of second quantization. All of the microscopic
variables of interest can be expressed in terms of
the fundamental fields
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f(1)= Q 6(I -(I(), (2.2)
of an external variable and q, = (r, , p, ), the phase
coordinates of particle i, is an internal variable. "

g(II)= 2 6(l-e()6(I-V, )
i &j=l

=f(I)f(I) -6(II)f(I), (2.3)

h(II I') = Q 6(I -4()6(I -q))6(I'-4~)
f &q &k=1

=f (1)g(1 1') —5(11')g(1 1') —5(1 1')g(11'),

(2.4)

where 1 = (r„p,), etc. denote the phase coordinates

n =&X&/II. (2.6)

Before calculating the averages of the fundamental
fields it is useful to introduce the definition,

C. Thermodynamic averages of the fields

Since one may be interested in considering equi-
librium averages in either the canonical or the
grand canonical ensembles, it is useful to leave
open the specification of the ensemble with the
condition that &N) =N in the canonical ensemble.
The equilibrium density is given by

(d, (12~ ~ ~ s) = 6(I -4, ,)6(2 -4; )" 6(s -q, )
ve ~ ~ 0 S

1 2 S

(2.6)

where"

= n'f (0p, )fo(p, }' ' ' fo(p, )g(r„r„~ ~ ~ r, ), (2.'I)

(2.6)

is the s-particle static distribution function, and

f (p) = (p/2wm)"'e (2.9)

&f(I)&=~.(I) = nf. (P, ), (2.10)

& g(11))=((( (11)= n 'f (p, )f (p , )g(r, —r-, ), -
(2.11)

is the Maxwell distribution. One of the great
simplifications of working with classical systems
is that the momentum dependence of the static-
correlation functions can be evaluated explicitly.
We have then, using (2.6) and (2.7), that h(r, —r, ) = g(r, —r, ) —1. (2.15)

If one integrates (2.14) over p, and p2 one obtains
the structure factor times the density,

nS(r, —r, ) = n6(r, —r~)+ n 'h(r, —r, )

6A =A —&A&. Because of the simple momentum
dependence in classical systems one can write,

C(12}=5(12) n f,(p, )+ n 'f, (P, )f,(P, ) h(r, -r, ),

(2.14)

where

where g(r, —r;}is the pair-distribution function.
Clearly the average of h(111') will be related to
the triplet distribution function g(r„r,—,r —, ).

d P, d p2C12. (2.16)

D. Static correlations between fields

It will be necessary to know various averages
between these fields at equal times. In particular
one will need to know the connected correlation
functions or cumulants

C~(k) = h(k} [I + n h( k)] '. (2.17}

One also needs the three-point correlation function

A related quantity of interest is the direct correla-
tion function C~ that is defined in terms of the
Fourier transform of h as

K(I 2 ~ ~ s) =
&f (1)f (2) ~ f (s)&„ (2.12)

where a cumulant for an arbitrary product of
fields is defined by Kubo." One is particularly
interested in the two-point cumulant"

C(II; 2)=&6f(2)6g(II)&

and the four-point correlation function

C(11 22) =&6g(ll)6g(22)&

(2.18)

(2.19)

I~(12) =&f(I)f(2)&.=&6f(I)cf(2)&=-C(12), (2 13}

where the fluctuation of a field A is defined by

whose counterpart & g, g, & played an important
role in FRKT I [see E(I. (1.2.12)]. Here one can
see how the case of density fluctuations is more
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complicated than the case of self-diffusion because
of the more complicated static correlations.

It mill be very important to consider the cluster
properties of these higher-order correlation func-
tions. Using the definition for the cumulants, "
one can easily express the three-point function
as

C(11; 2) =K(112)+K(1)K(12)

+K(1)K(12)—6(11)K{12). (2.20)

One sees that C(ll; 2} has two disconnected pieces
(portions which are nonzero when a field variable
becomes statistically independent of the other
field variables). A detailed analysis of C(11; 22)
shoms that it contains many disconnected pieces.
This leads to the undesirable feature" that
C(11; 22) does not possess a matrix inverse in
the sense that there is no function C ' such that

C '(ll; 33)C(33 22)= —'[6(12)6(1 2)+6(12)6(12)]

[where repeated internal indices (like 3 and 3
above) imply an integration over that variable in
the above equation and in the remainder of the
paper]. It will therefore be useful to investigate
a new four-point correlation function,

G(11; 22) =C(ll; 22) -C(11; 3)C '(34)C{4; 22).

C(12, t —t') =(6 f(l, t) 6f (2, t')), (2.26)

C(12) = -I d(t —t') e"'('-')C(12, t t')—
0

+" (t~ C(12, ~)
2w

(2.28)

where in (2.28) Imz &0. The correlation function
depends only on the time difference t —t' because
the equilibrium system is time translationally
invariant. will always be a real frequency and
z a complex frequency. Following the analysis
in Sec. IIC in I one can introduce Koopman's op-
erator' to obtain

C(12) =(6f(2) [z+I ] '6f(1)&, (2.28)

where I is the Liouville operator defined by
(I.2.18). In the following it will also be useful to
introduce the correlation functions

where the fundamental fields are displaced in time.
One is also interested in the Fourier transform
of this quantity,

L((2, )=J d(t —t')e""' "L((2, t —t

(2.27)

and the Laplace transform

(2.21)

A simple analysis shows that the disconnected
part of 6 is given by

C(11 2) =(6f(2)[z+L] '6g(11)),

C(II 22) =(6g(22)[z+L, ]-'6g(II))
(2.30)

(2.31)

G (11; 22) =C(12)C(1 2)+C(12)C(12), (2.22)

and the connected part by

G,(11; 22) =K(1122)-K(113)K '(34)K(422).

(2.23)

If any of the particles associated with I, 1, 2 or
2 becomes spatially independent of the other par-
ticles, then G, vanishes. For moderate densities
one can approximate G, as

G,(11; 22)=[6(12)6(12)+6(12)6(12)]

x(d, (1)~,(1)a(r, —r;)

C(111' 22) =(6g(22) [z+I.)) '6lt(II I')) (2.32)

which are the dynamical counterparts of the static
functions introduced in Sec. IID.

III. EQUATIONS OF MOTION

A. Hierarchy

As in. FBKT I the fundamental equations are the
equations of motion satisfied by the correlation
functions in Laplace transform space. These
equations follow once one has proven the identities

which is a very simple two-body result. It will be
of great importance that one can define a matrix
inverse of t" such that

Lf(1)=-t,(l)f(1) —f (. (ldl) L(l)dt (3.1)

C-'(ll; 33) G(33; 22)

=-,'[6(12)6(l 2)+6(12)6(12)]. (2.25)

E. Time-dependent correlation functions

L d(ill = -L((l)d(ll) —
J d ( (111')tt(111'),

(3.2)

where

A basic quantity in the discussion mill be the
time-dependent phase-space-correlation function

1,,(1)= ip, ~ V„ l2n-

is the single-particle Liouville operator,

(3.3)
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I, (11)=IV„V(r,-r-, ) ~ (V -V ) (3.4)

is the interaction part of the two-particle Liouville
operator,

1,(11)=1,,(I)+1.,(l)+I.,(11)

= I.,(11)+I.,(11) (3.5)

is the two-particle Liouville operator, and

o(111')=I,,(11')+1,,(11'). (3.6)

It should be noted, since (I f(1))=(Lg(11))=0,
that one can replace f, g, and h in (3.1) and (3.2)
by the corresponding fluctuating quantities. After
using Eq. (I.3.5) one can then easily obtain the
equations of motion

[, 1.,(1)]C((3) jd(L„()()C(((;2) =C()2),

(3.7)

function can then be calculated from the kinetic
equation.

The memory function has the physical interpre-
tation of a nonlocal, non-Markovian external
source modifying the propagation, described by
z -I.,(1), of a single free-streaming particle.
Consequently, the memory function describes the
effect of the other N -1 particles on a chosen
particle. It was similar reasoning mhich led
Boltzmann to the Boltzmann equation and the au-
thor" has shown that to lowest order in the density
and in the limit of long times and distances y re-
duces to i times the linearized Boltzmann collision
operator. The kinetic equation (3.12) is then es-
sentially the linearized Boltzmann equation.

The program for investigating the memory func-
tion mill follow that developed in Sec. IIIB in I.
One notes on comparing (3.12) to (3.7) that the
memory function satisfies the equation

[3 ~ ),(2)]C(1.2)+ jdll, , (22)C(1; 22)=C(12);

(3.8}
d(13)C(33)=fdl L (11)C(11;2). (3.13)

and

[ ~ l(2)]C(11; 2,) ~ J d21, (22)C(11; 22)

=C(11; 2), (3.9)

[*—l(11)]C(ll; 2) —f 3'((21 (1') C( 1(1'; 2)

=C(11; 2), (3.10)

[*-L(11)]C(ll;22) —Jdl' (11(')C(2(1'; 22)

=C(II; 22}. (3.11)

8. Renormalization of collisional effects

3"'(13)C(32)=JdlL (11)C(ll; 2)

and the collisional part is given by

(3.15)

Then, as in I, one can apply the operator a+i, c(2)
to (3.13}, and after using (3.8}, (3.9}, and (3.13),
one finds an explicit expression for the memory
function,

2(() (13)C (32) = 9)"'(13)C (32) + (P'" (I 3)C (32),

(3.14)

where the static (z-independent) part of the mem-
ory function is given by

The general ideas concerning renormalization
were discussed in I and preceding papers by the
author. "" The main point is that one wants to
make approximations for quantities which do not
contain a 'esonant structure. Since one knows
that the correlation function C(12) is resonant for
long time and distances (in the hydrodynamical
regime} one should shift one's attention to the
quantities that describe the placement and width
of these hydrodynamical poles. It is now well
established that the phase-space memory function
defined by the generalized kinetic equation"

[z —1,,(1)]C(12)—([)(13)C(32) =C(12) (3.12)

controls the location and width of these poles.
This kinetic equation is also valid outside the
hydrodynamic regime. Since one expects the mem-
ory function y to be more susceptible to approxi-
mation than the correlation function itself, one
should focus attention on y since the correlation

(p(c)(13)C(32)=- ' d la 21,i(11)1,~(22)G(11; 22),

(3.16)

where

G(11; 22}= C(ii; 22) -C(ii; 3)C-'(34}C(4; 22).

(3.17)

In the case of self-diffusion the static term van-
ished. In the case of density fluctuation one finds
that d[)(" plays an important role in both the hydro-
dynamical regime and in the high frequency and
wave-number regime where y"} serves as an
effective mean field term. y"' will be evaluated
more explicitly in Sec. VIA.

It should be noted that G, defined by Eq. (3.17),
is the dynamical (z-dependent) generalization of
the static-correlation function 6 defined by Eq.
(2.21). The connection between these quantities
mill be made clearer in Sec. IV.
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IV. CORRELATION FUNCTION G(11;22)

A. Introduction

In I the next step in the analysis was to assume
that the correlation function C(11; 22) satisfies
a kinetic equation [see Eq. (1.3.17)1. It is con-
venient to depart from this approach for three
reasons. First one notes that it is really the
correlation function G(11; 22) that appears in the
expression for the memory function. If one as-
sumes that C(11; 22) satisfies a kinetic equation
of the form of (I.3.17}and goes through the com-
plete projection-operator analysis one eventually
finds an expression for G(11; 22) with the simple
interpretation that G also satisfies a kinetic equa-
tion like (I.3.17). Rather than go through the pro-
jection-operator analysis it is more direct to
assume that 6 satisfies a kinetic equation and then
determine the corresponding memory functions.
A second reason for shifting one's attention from
C to G is related to the poor connectedness prop-
erties of C and its static value C. As was pointed
out in Sec. H one cannot define a matrix inverse
for C. This leads to complications when one comes
to expressions like (I.3.19), where one has an
unknown function multiplied by C. While one can

eventually develop methods for solving for the
unknown (one cannot simply matrix multiply by
C ' since it does not exist), one never encounters
these difficulties if one works with the correlation
function G(11; 22).

The final reason for developing a new technique
(besides the fact it is more direct) is that one
would like to remove some of the restrictions
involved in the projection-operator technique.
These restrictions involved the use of relations
like

C(11; 2) = C(11; 22)
d2

which are ensemble dependent and must be es-
tablished before taking the thermodynamic limit.
The method used here is ensemble independent
and all of the manipulations can be carried out
after the thermodynamic limit has been taken.

B. Equation of motion for 6

One can derive an equation of motion for 6, as
defined by Eq. (3.17), by using the equations of
motion satisfied by C(11; 22) and C(1f; 3) given
by (3.10) and (3.11). One has then that

[z -L(11)]G(11 22)=C(11 22) —C(11; 3)C '(34)C(4; 22)

+ d1'cr 111' C 111'; 22 -C 111' 3 C ' 34 C 4 22 (4 1)

This can be put into a more convenient form if one notes that

C '(34) =C '(35)[g —LG(5)] 5(54}—C '(35) rP(54)

Then, after using the transpose of (3.9), one has

C '(34)C(4; 22)=C '(34) [C(4; 22)+ fd4L (44)C(44; 22) —4(45)C(5; 23)

(4.2)

(4.3)

But if one eliminates C(44; 22) in (4.3) using (3.17) and then uses (3.13) one finds

C '(34)C(4 22) =L '(34)C(4; 22)+C '(34)fd4L (44)G(44 22).

Putting (4.4) back into (4.1) gives

(4.4)

[z —L(11)]G(11;22)+C(11; 3)C '(34) d4L~(44)G(44; 22)

ld1'o(111'}[C(111';22) -C(111' 3)C-'(34)C(4. 22)] G(11. 22). (4 5)

similarly

[*+L(22))G(11;22) —C(22; 3)C '(34) fd41., (44)G(11; 44)

+ d2'v222' C11 222' -C11 4 C-'45 C 5 222' -611 22 46
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C. Memory-function equations for G

One can now proceed very much as for C(12) and assume that G satisfies the kinetic equations

[z —L(11)]G(11; 22) —V(11 33) G(33' 22}= G(11 22)

[z +L(22)] G(11; 22}—G(11; 33}Vr(33; 22) = G(11; 22),

where V and Vr are now "two-particle" memory functions. One immediately sees on comparing (4.5)
through (4.8) that

V(1T; 33)G(33; 22)=-C(1T; 3)C '(34) fd4I(44)G, (44; 22)

(4.7)

(4.8)

and

+ dl'cr 111' C 111'; 22 -C 111'; 3 C ' 34 C 4; 22

G(11; 23)V'(33; 22)=C(22 3)C '(34) Jd4L(44)G, (1T; 44)

(4.9)

d2'(T(222')[C(II 222') —C(11 4)C '(43)C(3 222')] (4.10)

One can now use essentially the same trick used in going from (3.13) to (3.16) and operate to the right on
(4.9) with [z +L(22)] . It is easy to see that this leads to the result

V(1T 33)G(33 22)=fdl'd2'v(111')v(222')[C(111' 222') —C(1T1' 3)C '(34)C(4; 222')]

+ d1'(r 111' 8 111' 22 —C 111'; 3 C ' 34 C 4; 22 —V 11 33 C 33 44 V~ 44; 22

—C(ll; 3)c '(34) f d 3L ($$)[G(33 22) ~ G($3; 44) V (44; 22)].

One can use the same types of arguments used in deriving (4.4) to obtain

C(111';3)C '(34)C(4;22) =C(111';3)C '(34)C(4;22)

(4.11)

—C(22;2}C '(24}fd4L (44)[C(ill';44) —C(111',3)C '(33)c(3;44}]. (4.12)

One can then put (4.12) back into (4.11), use (4.9) and (4.10) to eliminate V and Vr and cancel a large num-
ber of terms to obtain

V(11;22) = U(11;22)+M(11; 22),

where the static or z -independent part of V is given by

C(lT; 32)G(32;22)= Jd T'v(1T1')[C(lT1';22) —C(111',3)c '($4)c(4;22)]

—C(lT;3)C '(34) f44I (44)G(44;22),

while the z-dependent part of V is given by

M(1T; 33) G(33; 22}= —f 4 1' 4 2' v(11 1')v(22 2') G(ll 1'; 22 2')

and

G(11 1'; 22 2') = C (111'; 22 2') —C (111'; 3) C '(34) C (4; 22 2')

—[C(111';55) -C (111';3)C-'(34) C(4; 55)] G-'(55; 66)

x[C(66;222')-C{66;7)C "(78)C(8;222')].

(4.13)

(4.14)

(4.15)

(4.16)

It should be noted that these are actually integral equations for U and M, but, since 6 ' exists, one can
in principle invert these equations. It will be seen in Sec. V that this is in general unnecessary.



GENE F. MAZENKO

D. Relation between p, U, and iM

The next step in the analysis is to introduce a
linear vector space spanned by the complete and
orthonormal set of vectors

(11122}= 2 [~(12)6(1 2}+6(12)6(12)], (4.17)

1 = d1d1 11) 11 . (4.18)

It should be noted that in the case of density fluc-
tuations that one must symmetrize with respect
to the two end indices since the correlation func-
tions, like G(11;22), are symmetric under the
interchange of 1 and 1. One can then define various
operators in this vector space by, for example,

G(ll; 22) =(I i
i G(z)i 22}. (4.19)

It mill also be useful to introduce the transpose
of an operator A by

(4.20)

Using these definitions and the completeness of
the "states, " one can write the kinetic equation
for G(z) in the operator form

[(z -L)G-UG-M(z)G]D=G.

This equation can be inverted to give

D =[(z —L) G —UG —M(z) G] 'G. (5.3)

If one then multiplies this by G, one has a sym-
metrized expression for G

G = G[(z —L) G —UG —M(z) G] 'G. (5.4)

This last rearrangement is another departure from
the approach taken in FHKT I, but mill prove ex-
tremely useful in developing iterated expressions
for the memory function.

It is immediately clear from this symmetrized
expression for G(z) that a new four-point function

G(11;22)=(ll~[zP -W-I"(z)] '~22}, (5.5)

where

(IllwI22}=L(II)G(11;22)+U(11 33)("(33 22)

(5.6}

(5.1)

and then substitutes for G, using (5.1), in (4.21) to
obtain

[z —L —U -M(z)] G(z) = G (4.21) and

which one can formally invert to find

G(11 22) =(11~[z —L -U —M(z)] '4~22}. (4.22)

One can then put this expression back into (3.16)
to obtain for the memory function

p'*'(13)C(M)= —fdld2l, (ll(I;(22)

x (11j[z L —U --M(z)] 'G~ 22}.

(4.2s)

This expression for the memory function should
be compared with Eq. (I.4.28). There are no longer
any factors N Ior the vol-ume present. P" is an
intensive quantity. One easily sees therefore that
this expression is ensemble independent and valid
in the thermodynamic limit.

V. DISCUSSION OF QUANTITIES
CONTRIBUTING TO THE MEMORY FUNCTION

A. Symmetrization

Equation (4.23) is not entirely satisfactory since
it is not symmetric with respect to the appearance
of G. This is intimately related to the fact that
the quantity one really knows is VG [see (4.14)
and (4.15)] not V itself. Equation (4.23) can be
written in a more symmetric form by noting the
following rear rangements.

First one defines an operator D by

(Iii I'(z)i22} =M(II 33) G(35.22) (5.7)

'U(I; 33) = Jt d 1 I. (11)C(11;33). (5.9)

8. End-point vertices

The end-point vertices multiplying the nem

propagator G and given by Eq. (5.9}are completely
determined by the static properties of the system.
In evaluating the form of % more explicitly (and as
will be needed in discussing W) it is very useful
to develop a technique for handling static-correla-
tion functions of the form (A(1}f(2) . f(n)},
where

A(l)=- Jtd1L (11)6g(ll). (5.10)

The evaluation of these correlation functions in
terms of cumulants is discussed in Appendix A.
Since M can be expressed in terms of the set
(A(1}f(2) f(n)}„one can use the results in
Appendix A to obtain '0 ='U, +'U, mhere

will enter the analysis. The introduction of G has
the added advantage that the associated memory
functions W and I"(z) are given directly by (4.14)
and (4.15). The memory function can now be
written in the symmetric form

z(("(13)8 (32) = -v (I; 33)G(33; 44) u(2; 44), (5.8)

where the "end-point" vertices are defined
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'U, (1;22) = -(2)0(22) I ~(22) [6(12}+6(12)]

with

(5.11} limB, (r„r —,) = h(r, —r —,} (5.18)

L,,(22)=ip-2[V, lng(r, -r-, )].(V, —V, ),

(5.12)

1l,(I;22) =i ' "'
(e,(I)(e,(2) ~,(2)

xS '(r, -r,)8(r„r,r;),
where 8 ' is the inverse structure factor, and

(5.13)

8(r„r,r;) = g(r„r„r;)—g(r, —r —,)

&&[A(r, —r,)+k(r; —r,)+I] . (5.14)

Note that B is connected with respect to its three
arguments. Considering first Uy one sees that
the quantity I., appeared in the theory of self-
diffusion [see Eq. (I.5.4)l It is clear that this
is a renormalized two-particle Liouville inter-
action operator since the force -V„V(r) is re-
placed by the "mean" force." In the case of self-
diffusion one finds the end-point vertex (1.5.3),

Vso(1; 22) = -(u, (22) l.i(22) 6(12). (5.15)

This corresponds to the first piece in (5.11). The
second term in (5.11) comes from the "exchange"
process that does not occur when one tags a single
particle. It is even more interesting that the piece
'U, is absent from the self-diffusion case. It should
also be noted that in I the manipulations in the last
section were not carried out. Consequently the
expressions in I were not symmetric with respect
to the appearance of I I ~ This asymmetry in the
theory has now been removed.

One now wants to focus on/, . The analysis is
conveniently carried out in terms of the Fourier
transform over the r, index

u, (i)2„22)=Jd'2, '"' 22, ((;22)

=-(& p, /~) ~.(I) ~.(2) ~.(2)

& 3 2(%)8„(r„r-,), (5.16)

where

82( r2, r 2 ) =
J

d r2 e ("'28( r2;r„r —,). (5.17)

One can see from (5.16}that '0, vanishes as
k-0 and couples only to the longitudinal current
matrix element since it is proportional to
k p, f,(p, ). It is interesting to note that in the
long-wavelength limit B„which depends on three-
particle static-correlation functions, can be ex-
pressed in terms of a two-body quantity since"

These end-point vertices multiply the propagator
G. Since one eventually has to approximate 6 one
needs to know what range of arguments are per-
mitted by the end-point vertices. Consider first

It should be clear from (5.12) that the quantity
V„g(r, —r-, ) controls the range of spatial varia-
tion needed in approximating G(ll; 22). This quan-
tity breaks naturally into two pieces. If one
writes"

g(r) = e '""'g (r) =- g.(r)g (r), (5.19)

then the gradient of g and g, will lead to very
different spatial dependences if the potential is
short ranged. "

The gradient of g, will be very sharply peaked
for short-ranged potentials since V„g,(r) has a
very large maximum near some point ~r~-r, where
r, is an effective hard-sphere diameter. Con-
sequently, the term g (r) V„go(r) can be approxi-
mated by g(r, ) r, 5(r r, ) plus -corrections that
can be computed by expanding g, about its effective
hard-sphere~ value. Thus one sees that this part
of W2 restricts the argument of G(ll; 22) such that
~ r, —r-2~=r, which constrains the "two" particles
to be very close together. Thus it is appropriate
to define the "local" or short-ranged part of the
end-point vertex '0, , by replacing lng with lng, in
Eq. (5.12).

One can now contrast the spatial behavior of ,
with that part of 'V, where lng is replaced with
lng. The question centers about the spatial de-
pendence of g (r). This can be understood from
two simple examples. First consider the low-
density value of g(r). It is not difficult to show
that to first order in the density" and for hard
spheres that

V„g(r)= r( v/)3nr'[1 —(r/2r )']8(2r —r),

where 8(x) =1 for x &0 and is zero otherwise. This
function is not sharply peaked, but varies smoothly
from ,'vnr', at —r=r, (the factor of g, constrains the
product to be zero for r&r, ) to zero at r =2r, and
vanishes for r&2r, . Thus the quantity g, (r)v, g(r)
has a much longer range than g(r}V,go(r) even in
the most restricted case of low densities and hard
spheres. If one does not have hard spheres then
the range of V, g(r) will extend beyond 2r„and for
high densities the range increases as more shells
of neighbors are included in the calculation. " As
one approaches the critical point these effects are
enhanced. Because critical phenomena involve
cooperative long-range effects there is little effect
on the factor g (r)V„g,(r). This term remains
short ranged and well localized, but the term
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S(r) =5(~)+n(g(r) —1)=e "~'/r, (5.20)

where g is the correlation length that becomes
infinite at the critical point. Therefore one has
for large r that

g,(r)V„g(r) = re '~'/r'

which is very long ranged. It should be noted
from (5.1S) that 0, is also a long-ranged quantity

go(r)V, g(r) becomes very long ranged. For r
greater than a few molecular diameters one has

g, (r)V„g (r) = V„g(r), since the potential is approxi-
mately zero in this region and therefore go(r) =1.
Near the liquid-gas critical point the structure
factor has the approximate Ornstein-Zernike"
form

and it is therefore convenient to define the long-
ranged part of the end-point vertex 'U~ as the sum
of 'U, and the part of U, where lnjg is replaced by
lng.

C. Analysis of 4'

Having obtained some understanding of how one
treats the static quantity V one can move on to the
more complicated quantity W defined by (5.6).
This equation, taken with (4.14), is not very il-
luminating as it stands. To gain insight into the
structure of S' it is useful to break 8' into its
connected and disconnected pieces and to display
its momentum dependence explicitly using the
results from Appendix A. One finds after a great
deal of algebra that W=R'~+8'~ where,

(11~W ~22) = (1+P~,—)(1+P~~ ) [5(12)+ {d)0(2)h(r,——r2)] &o (2) {do(2)LO(1)5(12),

(11~W,~22) =(1+P;,}(1+P22)[-ip 'V„E(1;12) Vp +E(1;12)LO(1)]5(12),

where I', , interchangesi and j when it operates on a function of i and j,

E(1;12)={do(1){d)o(1){5(12)h(r,—r,—)+{{)(2)[g(r„r —, , r,—) —h(r, —r , )h(r—,—r,—)]].

(5.21)

(5.22)

(5.as)

&11'Wiaa& = -&afiwi11). (5.25)

It can be seen that 8', has a structure similar to
that of 'U with the major difference that it contains
an additional index. For moderate densities it is
reasonable to approximate lV by'

&111wI 22) = ~.(11)[L.(11)+L, (11)]2&iiI 22&

(5.26)

and the previous discussion about V„g(r} is still
applicable. The above approximation should be
quite good if r, is very close to r-, because of the
sharply peaked behavior of V„, g(r, - r —, }for r,
very near r;. It then follows that in the low-
density limit that'9

lim(11~ W(22) = {d)0(11)L(11)2(ll(22}, (5.2V)

where L is just the two-particle Liouville operator.

D. Investigation of I'(z)

The frequency-dependent part of the "four-point"
memory function is defined by Eqs. (5.7) and

o(r„r„r,) =g(r„r„r,) —h(r, —r, )

—h(r, —r,) —h(r, —r, ) -1. (5.24)

This is a rather simple result. One can see from
this result that S' satisfies the symmetry condition

(4.15). There are a few simple properties that
follow from Eq. (4.15}. First one can see that
I satisfies the conservation of particles condi-
tions

(A[z +L] 'B)=(B[z -L]--'4) (5.29)

or C»(z) =-Cs„(-z) which depends on the commu-
tation of the Liouville operator with the canonical
distribution function. This commutation relation
is very sensitive to approximations since, for
example, the Liouville operator for an N-1 par-
ticle system does not commute with the Hamil-
tonian for a corresponding N particle system.
Since commutation relations between L and the
canonical distribution also leads to a symmetry
relation for the memory function (see Sec. VI)
one must be careful in treating those quantities
that contribute to the memory function to preserve
these symmetries.

In order to make further progress one needs to
separate out the disconnected part of I'. The

(5.26)

It is not so obvious that I satisfies the symmetry
condition I'(z) = -1 r(-z). This symmetry property
for I'(z) is analogous to the symmetry property,
Eq. (5.25), satisfied by W. This symmetry prop-
erty follows from the general result
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I~(ll; 22) = -E(ll; 22}-t) (11;33)

x G~'(33; 44) t), r(44; 22), (5.30)

where

d((l; 22) =(1 it' )(1 „P-)( i) f--dte'"'
0

&& [C(12, t)(A. (1, t)A (2)&,

(f(1, t)A(2)&.&A(1, t)f(2)&.],
(5.31)

cumulant analysis of I'(z) is similar to that for
%" except that one must first go from Laplace
transform space into time space, perform the
cumulant analysis, and go back to Laplace trans-
form space. One finds that the disconnected part
of I is given by

q, (11;33) = (1 +Z„-)(-t)
0

& &A(1, t)f (3)&.C (13, t)

= -qr, (33; 11), (5.33)

G~'(l l; 33}G~(33; 22) = (11122&, (5.34)

where the disconnected part of G is given by

G~(11;22}= -i dt e""G~(11;22; t) (5.35)
0

G~(11;22; t) =C(12, t)C(12, t)+C(12, t)C(12, t).

and G~' is the inverse for the disconnected part
of G defined by

t), (ll 22) =(1+8;,)q, (11 22)

= -t2'(22;11; -z), (5.32) The connected part of I' is given by

(5.36}

(1111'(z)122&=-(1+P,—, )(1+&„-)[(f (1)A(1);f (2)A(2)&; —(f (l)A(l); f (5)&;C '(56)(f (6);f (2)f (2)&;

-Q, (ll; 33) G '(33; 66)Q, (66; 22) +q, (11;33) G~'(33; 66)q, (66; 22)],

where

Q,(11;33) =q, (11;33)+ (f(l)A(1); f (3)f(3)&;—(f (1)A(1);f (5)&*,C '(54)( f (4); f (3)f (3)&;
=-Qr (33 11) (5.36)

and it is convenient to introduce the notation

(d;tt& tf dte e'('d=(-t)tt&' (5.39

One of the reasons for splitting of the disconnected parts of W and F is that S~ and I~ serve as the mem-
ory functions for G~. This can be seen as follows. Consider the case where G and 8' are replaced by
their disconnected pieces and I' is set equal to zero. This leads to the approximation for G

G = G' = (z G~ —W~) '. (5.40)

This, in turn, leads to the approximation for G given by O' = G~G'G~. One can evaluate G' more explicitly
by noting that S~ can, be written

(111W~122 & = ([Ic(1)5(13)+ q)") (13)6(1 3}]+[Lc(1)5(1 3) + (p") (1 3)]]G~(33; 22).

After operating on (5.40) from the left by [zGn —W~] and multiplying from the right by G~, one finds

[z —Lc(11)]G'(ll; 22) —[q)("(13)5(1 3)+ &p")(1 3) 5(13)]G'(33; 22) = Gn(ll; 22).

The solution of this equation is

C'(ll;22) —'f d(t, -t ) "" =[C (12, t, —t )C','(12, t—t ) ~ C (12, t, —, t )C,(ll, t, —t )),
0

(5.41)

(5.42)

(5.43)
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(A(1)' A(2)};=-y'"(l3) C(32)

+ y(13)C(34) rpr(42) (5.46)

(A(1);f (2)&:= 9 (13)C(32). (5.47)

If one puts these expressions into (5.31) and (5.32)
one obtains a rather complicated expression for
l~. One sees, however, that there is considerable
simplification if one assumes that y is Markovian,

q(12, t —t') =- t9,(12)&(t —t'). (5.48)

This was one of the essential properties of the
low-density hard-sphere memory function used in
deriving the "disconnected approximation" in
FRET II. Putting this assumption into (5.46) and
(5.47) and then into (5.31) one obtains the simple
results

where the C,'s satisfy the equation"

[z —Lo(1)]Co(1 2) —p"(13)Co(32) = C(12). (5.44)

If one now defines

G, =[z G, —W, —I;(z)]-', (5.45}

then one can show, following the analysis of G',
that GD = GnGnG~ where G~ is given by Eq. (5.35).
Thus one can separate out the connected and dis-
connected parts of 6 in terms of the connected
and disconnected parts of G, 8', and I'. This will
be very important in dealing with long-ranged
phenomena.

The basic structure of I~ is not obvious from
(5.30). It is not difficult to convince oneself that
l~ must be somehow connected to the disconnected
approximation discussed for MC in FRET D."
Establishment of the connection is instructive and
leads to some insight into the structure of the
theory. The general expression for I~ can be
made more transparent by noting the following
identities. After using (3.13), (3.16), and (3.17)
one finds

This is clearly just the result derived in FHKT II
except for the symmetrization and the appearance
of two "density" memory functions.

The expression for I;(z) given by (5.37) is rather
formidable. It consists basically of a connected
four-point time-dependent correlation function.
The reader may also note that (5.37} is similar
to (3.17) in that there are subtractions from the
first term. One might therefore guess that there
are "plateau-value" like difficulties in dealing
with (5.37). If one takes the approach developed
to treat (3.17) seriously in this respect, then one
might try to write (5.37) in terms of an effective
three-body problem and introduce new "three-
body" memory functions. A preliminary analysis
indicates that such an approach is practical for
treating I;, although things at the three-body level
are quite complicated. There are "local" contri-
butions from connected three-body collisions
which are controlled by the classical Faddeev
equations (see FRET 11) and there are longer-
ranged contributions from three- and higher-
mode contributions as well as contributions from
products of two- and four-point correlation func-
tions. A detailed analysis has not yet been at-
tempted.

The approach taken in Sec. VI of this paper is
that one can expand the memory function in powers
of I;(z}. The validity of this procedure at present
can only be appraised after comparison with ex-
periment. It seems from the analysis presented in
Sec. VI that the lowest-order approximation where
I;(z) is ignored completely is in qualitative agree-
ment with experiment. One expects, however, if
the theory is pursued far enough, that one will
have to compute corrections due to terms linear
in I;(z).

It is worthwhile to note here that I;(z) is of third
order in n (compared to n' in G and W) and van-
ishes as z ' for large z. One suspects that I;(z)
is important only for long times (small z) and
high densities.

F(11;22) = (1+P„-}(1+P„-)[-p,'"(13)C(32)C(12)

+ cp, (13)G~(31; 42) rp,r(42)]

(5.49)

and from (5.32)

S(11;22) = (1+P,, ) (p, (13)Gn—(13;22). (5.50)

The disconnected part of I'(z) is then found, after
some eaneellations to be given by the simple re-
sult 0"(k,f, p.)=- ' sf.(P,)C, (~), (6.1)

VI. PROPERTIES OF p

A. Discussion of p{')

The static part of the memory function is de-
fined by (3.15). Clearly cp"'(13)C(32) is equal to
(A(1)f (2)},and can therefore be evaluated using
the results from Appendix A. One finds, after
multiplying from the right by C ' and Fourier
transforming, that

I'no(11; 22) = (1 +P,—, )(1+P„-)
x yo" & (I 3)C (32)C (1 2), (5.51)

where CD(k) is the direct-correlation function.
Note that cp"' is independent of p, . If one sets
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y'" = 0 one can. solve the kinetic equation exactly. "
This approximation corresponds to a generalized
random-phase approximation or a linearized
Vlasov approximation where the bare potential
is replaced by -P 'C~(k).

d1d2L 11 I 22 G 11;22 . 6.3

It is simply a matter of equilibrium maniyulations
to show that (6.3) can be expressed in terms of
the pair-correlation function and the direct-corre-
lation function. 4'

Forster and Martin4' have analyzed the various
symmetry properties satisfied by C(12) and P".
Here it will suffice to point out that on using (5.29)
in (3.16) that

4"(12}f.(p, ) =-V'"(21 -z)f (p ) (6.4)

which is analogous to the symmetry relation satis-
fied by I'(z) given above (5.29).

C. Discussion of iteration scheme

One can now move on to analyze the ways in
which one can approximate the propagator G de-
fined by (5.5). It is hoped that a reasonable ap-
proximation for G will lead to a quite good ex-
pression for the memory function. This hope is
produced by the knowledge that G must be inte-
grated over to obtain q and one knows that ap-
proximations to integrands can lead to good ap-
proximations for the integral. One also would
like to know the correction to any such approxi-
mation, therefore one would like to develop an
exact iteration scheme for G such that the first
iterate is a good approximation. Because of the
complexity of G there is probably no simple itera-
tion of G that is valid for all of its various spatial
and momentum arguments. However, there are

B. Collisional term-general discussion

One can read off a number of yroperties of the
collisional part of the memory function from (4.23)
or (5.8). One first observes that Eq. (5.8) only
gives one an expression for y'" times C and is
therefore an integral equation for y'". Fortunately
this integral equation can be solved simply due to
the simple momentum dependence of C(12). One
finds that

y "(13)C(32}=(p'"(12)nf (P,).

One of the most obvious properties of P" is the
large-z behavior. Since %' is indeyendent of z
and I" goes as I/z for large z (see 4.16) one has
immediately

lim z y'"(l2) sf,(p, )

two basic ideas that one can use in setting up a,n

iteration approach. The hope is that one can com-
bine these ideas to obtain a sort of mixed per-
turbation scheme.

It is traditional in many-body theory to express
all of the higher-order correlation functions in
terms of a product of lower-order correlation
functions. This is at the root of the recent clas-
sical perturbation theory approach developed by
Martin, Bose, and Siggia. 4' One of the main mo-
tivating physical principles is that a correlation
function can always be written as a, sum of con-
nected and disconnected parts. A main input in
the normal perturbation theories is that the con-
nected part of the correlation function is

proport-

ionall to some interaction and is therefore a per-
turbation of the disconnected part. This is, in
many cases, quite reasonable since one knows
that if the various spatial indices of the correla-
tion functions are well separated, then the corre-
lation function is given by the disconnected approx-
imation. However there is a situation where a
factorization is a very poor approximation. This
was clearly pointed out by Martin and Schwinger4'
in their derivation of the T-matrix approximation
in the theory of quantum systems. If one has,
for example, that G is multiplied by the short-
ranged part of the end-point vertex, J d3d3' u,
x (1;33') G(33'; 44), and 1l, is nonzero only for r,
and very near to r, , then it is a very poor ap-
proximation to represent G by the factorized form
G = G~. This approximation mutilates the behavior
of G for r, near r, which is the important region.
If G is confined to the region r, = r, then one sus-
pects that its inverse is dominated by the terms
I,(11) in W, which are very large in this region.
It seems reasonable that one can ignore I;(11;22)
compared to I, (IT)(11~2%& when r, = r , becau—se of
the large peak in I,(11). One also expects that
I;(z) will be small in this region because the
"initial" or end-states processes in I'(z) do not
originate with 1 and 1 interacting. The end pro-
cess in I'(z } is where 1 or 1 interact with a third
particle. This initial process is then followed by
a sequence of three-particle collisions. It thus
seems reasonable to write 'U, C~'U, G, where"

G, =(zG-W} (6.5)

is a generalization of the two-particle propagator
(z —I } '. If one chose to iterate strictly in terms
of G, then one wouM start to generate something
similar to the binary collision expansion developed
by Zwanzig. ~' One would be emphasizing the two-
particle nature of the processes. This would
contradict the statement made earlier that no one
method of iterating G is valid everywhere. In
fact one finds situations where G is not constrained
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to be in the region r, near r, . Thus one is inter-
ested in the region where the interaction between
particles 3 and 3' is small. If one used the ap-
proximation for G in terms of G, in the region
where r, is mell separated from r, then G, mill

reduce to a product of tmo-free-particle propaga-
tors since I will be approximately L~ in this
region. Thus this approximation is inferior to the

disconnected approximation which says that the

particles are independent but are not free since
they are interacting with the rest of the medium.
Thus one should have a product of full tmo-point

propagators in this region. This is clearly supe-
rior to working with free propagators. It is just
this point mhich leads the workers on, the density
expansion for transport coefficients to spurious
divergences. They did not renormalize their
propagators.

The iteration rules 'U, G='U, G, and V~G=~~GD
are not quite sufficient since there mill occur cross
terms like ~GQ, and the simple rules are ambig-
uous. One has to choose between the two. It seems
more reasonable to choose 'V~G'U, ='V~6, '0, for two
reasons. The first reason is that Q, has a very
strong localizing effect and is large in that region.
At the same time one expects that G, is compen-
satingly small such that the product is mell de-
fined for hard spheres. This effect mas called
"shielding" in FHKT I. The approximation 'U~G'U,

='U~G, 'U, is also superior in that it preserves the
low-density and large-s properties exactly. The
approximation 'U~G'U, ='U J GD, does not satisfy
these properties.

In summary then it seems reasonable to iterate
G in terms of G, in those cases where G is con-
fined to a small interaction region, while using
GD as a first iterate for G in all other regions.
One should note that by choosing either G = G, or
G = GD as the appropriate iterate, one is consis-
tently assuming that l,(z} is small. Thus this
scheme allows one to develop systematic approxi-
mations as a power series in I;(z}. It is the
author's belief that this rearrangement gives one
an intuitive feel for the types of processes that
contribute to the memory function. It will also be
shown hom one can make contact with many of the
previous results derived for short-ranged classical
systems.

One now wants to use these ideas to iterate the
expression for the memory function. The first
step in the rearrangement is to separate out those
terms in G explicitly of order 1,(z). One first
notes that G satisfies the integral equation

f,(z) = I',(z) + r,(z) (6.7)

I',(z) =W, -zc, . (6.8)

If one completely ignores I;(z) then G is given
to "zeroth" order by

G = G~ + G~I,(z }G0

and the connected part satisfies

O', =C, f(0z)O, +O, fa(z}O',

Similarly the connected part of G satisfies

G, = Gn f,(z ) Gn + Gn f,(z }G, .

Then if one defines G' by

Gc=Gc+Gcy

(6.9}

(6.10}

(6.11)

(6.12)

one finds easily that G', satisfies the equation

O', =G r(z)G +O l,(z)G', (6.13)

and so G', is clearly of order I",(z). The memory
function can then be written

-~{')= VG'V+VG'V (6.14}

Henceforth the term proportional to G', will be
dropped and the analysis will focus on the approxi-
mation

~{c) QGOQ (6.15)

In dealing with (6.15) one needs a few properties
of O'. Starting with (6.9) one can easily see that

[6 ' - L,(z }]G =1, (6.16)

GD GD D (6.1'7)

Q~D
' =ZGD -Sg.

One has from (6.5) and (6.16)

C —f0,(z) =O —r„

(6.18)

(6.19)

~{c) ~{c)+ ~{c)

where

-(p,'P ='U, (G, + G, I~G, +G, I~Gnr~G, )'0,

(6.21)

so G' satisfies the alternate integral equation

G =G, +G, I'DGD=G, +G,I'DG, +G, l"DGoI'DG, .

(6.20)

One can then use the "iteration rules" with (6.9)
and (6.20) to obtain

O=O, +C,f,(z)O,

where

(6.6) +~, (O, +O,r,c,)~, +~,(O, +O,r,c,)~,
(6.22)



FULL Y RENO RMALIZED KINE TIC THEORY. III. . .

and have found that the autocorrelation functions for
long times can be written [see Eq. (II.6.1)]

+ +sGs~DGc L + L Gc L' (6.23}
V(s)-as "', (6.29)

a + FaGvFa = Ga (Gu —G~}Gq '. (6.24)

Using (6.24) in (6.22) one has

+~LGDGa 'G.'U. + U.G.~a 'Go'UL+LGo'UL

(6.25)

and, after defining the generalized classical T
matrices (see Appendix 8)

and

T =~,G,G,o-' {6.26)

(6.27)

one can write

-y,'f' =u, G,~, + ( T + u, ) G, ( T'+ ~, ) —TG; T'

(6.28)

y,'," is the memory function one should probably
look at in zeroth-order theory. The first term
'U, G, 'U, can be interpreted as a generalized Boltz-
mann-Enskog term and will be discussed further
below. The second group of terms are mode-mode
coupling terms. If one sets 'UL =0 then these
terms reduce to T(Gn —Go) T which one can rec-
ognize almost immediately as including the ring
terms discussed in FRET II. This can be easily
seen from Eq. (II.4.12). It is satisfying that this
result can be obtained from general considera-
tions thus supporting the physical arguments given
in Sec. II of FBKT II. It was pointed out in this
paper in the discussion of I'c(z) that the "discon-
nected approximation" discussed in FHKT II was
based on a Markovian assumption for y'" that is
valid only for low-density hard-sphere systems.
In the present formulation no such assumptions
are necessary and one has the added benefit that
the exact correlation functions appear in the ring
expression. Thus there have been a large number
of resumrnations beyond the ordinary ring re-
summations; This will, of course, have imme-
diate consequences concerning the long-time be-
havior in the system. For example the previous
kinetic theories dealing with the long time tails

Clearly cp,'," is linear in G', which is in turn pro-
portional to f,(z) Fo.r the time being it is con-
venient to focus on y,',". Later one ean come back
and investigate the relative importance of (I(),',".

One can considerably simplify (It},'," by noting the
identity

n=(D s+u s)
"', (6.30)

On comparing this with 0,6, 0, one sees that y»/
y» vanishes for short times and is first order in
the density for low densities. This term probably

and the subscript E indicates that the transport
coefficients are the Enskog values. One expects
on looking at (6.25) that the transport coefficients
in (6.30) will be replaced by their full values.
This was the prediction of the semiphenomenologi-
eal hydrodynamical theories. " There are how-
ever other modifications in o. that must be dis-
cussed and will be deferred to a separate analysis.

If one sets T =0 in the mode-coupling term then
one has a contribution ULG~'UL. This term is
intimately connected with the mode-mode coupling
approximations developed by Kawasaki' and
Kadanoff and Swift. " The connection between
these results will be developed further in Sec. VII.

One might ask whether there are regions where
the T terms might predominate over 'UL and visa
versa. One is, of course, prejudiced by one' s
knowledge that the T's have led to reasonable
agreement in discussing long-time behavior away
from the critical point and the UL terms, as will
be shown in Sec. VH, lead to good agreement with
experiment near the critical point. One ean see
why T and 'UL play different roles by estimating
their relative "size" via the ratio (T-'0,):

f d'r[r ~ v„g{r)]e 8"'"'
Jd'rg(r)r ~ V e 5"v'"'

This ratio can be evaluated explicitly in the ease
of hard spheres and to lowest order in the density
to find 0~/'0, -—,", mr,'. Consequently the long-
ranged part of the end-point vertex is negligible
compared to the short-ranged part for low den-
sities. If however one is near the critical point
where g(r) is given by Eq. (5.20), then one can
show that (6.31) can be evaluated to give '0~/'U,
- $/r, Conseque. ntly, '0~ dominates near the
critical point where E goes to infinity. This argu-
ment alone w'ould indicate that ULG~'UL is impor-
tant near the critical point.

These last arguments also allow one to estimate
the relative importance of y». Away from the
critical point one expects that the terms propor-
tional to 'UL are less important than those propor-
tional to Q, , so one can approximate

(6.32)
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leads to observable quantitative changes in 'U, t",'U,

only for rather dense systems and for long times.
These statements should however be investigated
further. "

If one is near the critical point then V~ »'U,
and one suspects that -q,',"='ULC, U~ which should
be compared with -y,',"=g~G~+~. One expects
that y,'," is much smaller than rp,',"because one
expects that G~ is longer-ranged than O', . This
is a reasonable assumption in light of recent work"
which indicates that the static two-point correla-
tion functions have a range longer or equal to the
range of the higher order cumulants. It therefore
seems reasonable to concentrate on q,'," first.
Eventually, of course, one is free to come back
and investigate these other terms further.

In summary, since the first term in cp,'," leads
to the Boltzmann-Enskog term and the other terms
in y,'," include the mode-mode terms that explain
both the long-time phenomena in liquids and the
divergence of transport coefficients near the
critical point, s it seems reasonable to approxi-
mate the memory function by rp,'," since it explains
the qualitative features of a fluid over a wide
range of thermodynamic states.

D. Boltzmann-Enskog approximation

All of the information in the Enskog-Boltzmann
approximation plus some corrections are given by

the leading term in E(l. (6.28). One has, putting
in the indices,

(e.ss)

The Boltzmann-Enskog approximation for cp'"
follows from two basic approximations. First one
keeps only the "diagonal" terms that contribute
to G and W. From (2.24) one has

G(11;22}= (do(11)2(11I22}+0(n') (6.34)

and from (5.26)

W(11;22) = (4)0(11)I,(ll) 2(11I22}+O(n8), (6.35)

where

I (11}=ho(11)+L~(11) (e.se)

and L, (11) is given by (5.12). Thus this approxi-
mation is exact to lowest order in the density and
represents a selective resummation of static
contributions to higher orders in the density. The
terms neglected would give corrections from pro-
cesses where the two dynamically interacting par-
ticles are statically correlated with a third par-
ticle in the system. One expects these terms to
be small for low densities. After using E(l. (5.11)
with these approximations one has

y.("(12)nf. (P, )

=-v, (1;33)(ssI[gc —w] 'I44}'U, (2;44).

dt "((3) f (3,)= fd333d4-44 (33) [$(33)[3(13)~ 3(13)]] [4 —4(33)]
(do(33

&& (l)(»I44} .(44) &,(44) [5(24)+ &(2&)1. (6.37)

~.(44) &,(«) =g(r.) ~.(44)L, («),
where

(6.38)

(4~4) =~.(P,) ~.(P;) e '""4 '4'. (6.39)

The second basic approximation is that LI is very
sharply peaked near the point where the collision
occurs. Therefore one can write

Similarly, since the integrand is restricted to the
point where r, is very near r-, one can replace
L(33) by 1.(33) which means neglecting

V„,ing( r, —r -, ) compared with 38'„,[-pV(r, —r,)]. This
should be quite a good approximation. Putting
this approximation back into (6.3V} one has what
will be referred to as the generalized Enskog
memory function"

p'"(12) f,(P, ) =--'g( .) dSd 3 [L,(33)[5(IS)+5(13)][[~ -«33)] ' .(P, ) .(P-, )

x e Bv"8 '8'I, ,(33)[6(24)+5(24)]. (6.40)

It is not difficult to show that this result is simply
g(r, ) times the low-density memory function found
previously by the author. Consequently in the
limit of low densities the approximations made

above are exact as may easily be checked [note
g(r, ) =1 to lowest order in the density]. It is
also quite interesting that in the case of hard
spheres this result gives the exact instantaneous
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value for the memory function, "
lim qr'„" (12) = e)z("„2(12). (6.41}

VII. HYDRODYNAMICS

A. Predictions of hydrodynamics

In the previous sections the analysis has focused

Recently van Leeuween and Konijnendijk have
shown" that this memory function gives the Enskog
values for the various transport coefficients.
Equation (6.40) should also be very useful in the
case where one has a more realistic potential. "

on the calculation of frequency- and wave-number-
dependent correlation functions over the entire
range of frequencies and wave numbers. Consider
now the hydrodynamical region of small frequencies
and wave numbers where only the "modes" of the
system associated with conserved variables" will
survive. Thus one expects that the correlation
functions can be calculated in this hydrodynamical
region through the use of the Navier-Stokes equa-
tions which express the conservation laws. Kadan-
off and Martin" have carried out such a computa-
tion and found that density-density correlation
function is given in the hydrodynamical regime by

, a (-c.)c, c„*~ a'(c.c,(c, -c„)/c ))SI' z + ik2D C z' —C k'+izk2I'S R z =m)2V2 '+
T T P 0

(7.i)

rr(rr2V, )'
z + i k 37/rnn ' ('7.2)

while the transverse current-current correlation
function is given by

I' '=i mnV

X lim [k ' S„„(k,C2k) j .
A~O

(7.7)

where C„and C~ are the specific heats, C, is the
adiabatic speed of sound, DT is the thermal diffu-
sion coefficient, I' is the sound damping coeffi-
cient, and q is the shear viscosity. DT is related
to the thermal conductivity ~ by

One now wants to use these expressions to ob-
tain an equation for q, ~, and I' in terms of the
memory function. This analysis will be carried
out using the projection operator formalism of
Forster and Martin (FM).33'"

D, = ~/mr2C, , (7.3) B. Hydrodynamical projection operators

and 1" is related to g, ~, and the bulk viscosity
g by

In setting up the formalism for extracting the
hydrodynamical limit it is useful to introduce
dimensionless momentum variables

1 = ' +Dr(Cr/C„—1). (7.4)
g =p/mV„ (7.8)

It is clear that the transverse case is considerably
simpler than the longitudinal case. This is be-
cause there is only one collective mode and the
shear viscosity can easily be identified as the
limit

ik2, 1
r}

' =lim lim, „S,(R, z).
Q~p mpl g~o 8 m o

In the longitudinal case the analysis is more com-
plicated. This is, of course, because there are
two modes and one must separate them. One
finds, after a little algebra, that X and 1 can be
calculated from

gg a -l
X-' = 3 mnv2, urn(C, -C„)

(2(c)= J d'(&'(()~(()c(i) . (7.io)

The matrix elements of some "operator" R( $, ( ')
are defined by

(0(3(c& = }~'(~'( 2'(()~(( ( ))r.(( ) c(( ).

('7 .11 )

where m V~ = P '. It is also useful to introduce
the dimensionless weight function

gr ( t) (2+}-3/2 e- 2 /2 (7.9}

One then wants to introduce a bracket notation for
integrals in momentum space. The scalar product
for two functions H( f, ) and G( $) is denoted by

and

x lim lim[k2S„„(k, z)]
0~0 e~o

(7.6)
The hydrodynamical states H„( $ ), are defined by

H, (()=I(()=1, (7.i2)

H. (&)=a(~) = ~„ (7.18)
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If.(()=z(&) =(I/~S)(&'-3), (7.14)

Jf.(t) =g, (~) = ~„ (V.15)

If.(t) =g,'(() = (., (V.1s)

where the wave vector k is taken in the 3 direction
so that H„, with p, =1,2, and 3, are longitudinal
modes and H„, with p. =4, 5, are transverse modes.
These five states can be understood as part of a
complete orthonormal set ]H, (g)}. One does not
have to specify the form of these functions for
i &5 at this point.

It is now quite useful to introduce the projection
operator P that projects onto the five hydro-
dynamical states,

I =Jiff, &&If, l-=l -e. (V.17)
k=1

Using an operator notation one can then formally
solve the kinetic equation for C to obtain for the
transverse-current correlation function

S„„(%,z) =ng(k) G„(%,«). (7.23)

FM show, in complete analogy to the transverse
case, that one can write

Q[zS„-D„(k,z)] G„(k,z) =5„, (7.24)

where

D„(k,z) = &il ql j&+ &flee[« -eq 0] qq I j&

(7.25)

and

longitudinal momentum and energy correlation
functions are coupled. Because of this coupling,
FM considered the matrix correlation function

G„(fc,z) =&il[z -z'(k) —y(k, z)] I j&, (7.22)

where i, ) =1,2, 3 are the three longitudinal states
n, g, , and a. One should note that

S,(k, z) =s(mV, )'[z -D, (K, z)] -', (v.13) &fI p" (k)l j&=- cs~(k) kv, s, , s~ .2

C. Shear viscosity

(7.2s)

D, (k, «) =&g, l4lg, &+&apl~[« Qie]-eqlgd&,

(V.19)

y(%, z) =z'(k) + y(fc, z),

and the operator z'(k) has the explicit form

&tl«'(k)l('&=vP 9(( -t').

(V.20}

rl = lim lim (imn/k')Dd(k, z).
f0+ k~o

(V.21)

In the case of the longitudinal modes the density,

If one compares this E(I. (7.18) with (V.2) from
hydrodynamics one sees that the shear viscosity
is given by &g ld" (k, z)lp. &=kI'.&T (k, z)IP.&, (7.2V)

where (T,(k, z)lp, & has a finite limit as k and z go
to zero. This can be most easily seen from (3.16}
and the result

One now needs to compute various matrix ele-
ments of the memory function in the limit of small
A' and z. These matrix elements will be needed
in evaluating D, and D„.

In the case of the transverse excitations, where
there are no coupled modes, one can calculate
the matrix elements appearing in (7.19}rather
directly.

One first notes that one can write

rd(dlP, '2 '"" l.,(11)G(11;22)=—fdld121, (
' ' I ,22(r, —;)(G11; 22),

j=I

where T„(r)=r, r, lrl '(d/dr)V(r} and j,(x) =(sinx)/x. In the transverse case one has then

(V.28}

(7.29)

One has immediately then that

&gdl9 lap& = &gdl 4"(k, z)lsd& = (kv.)'4', (k, «), (7.30)

2(22)= —
2 f 1(' '

) ),(, 2
'

) 2„(,—;)2„(,—;)G(11;22)

and it follows that 4), (0) =4, (0,i0') is given by

(7.31)
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4, (0) = lim
p2 dl d1d2d 2

T„(r, —r;) T»( r, —r —, ) G(11;22).
4n

Combining these results, one obtains

n = i~«.'f@~(0)+&(44+~i(0))IQl&(iK)Q~ 'ol((,' $3+T&(0))&li

(7.32)

(7.33)

where

iK= lim limp&(%, z),
3O+ k~O

&T, (0)l= lim lim &T, (%, z)l,
ho+ k o

(7.34)

(7.35)

in analogy with (7.27). One also has, expanding
to second-order in k and z,

&ply" (k, z)lv&=kV, 4 „",', +z4'„'„', + (kV)'4'„", ,

and

& 4 &, I
=

kv &g, lz'(k)
0

(7.36}

4, (0) = lim lim k» &g, ly'"(k, z)lg, } (7.37)
s .kO+ k O OI

Thus a calculation of the shear viscosity reduces
to a calculation of

The T's and 4's can be unambiguously identified
with various small k and z limits of matrix ele-
ments of y(".

One can show using symmetry arguments that
all of the T„,are nonzero except T, , and the only
nonzero T„, is

T lp ) Iim (,), P' " dl d 1 d2d'v,
g~ ~o+ Pl J Q

and x V(r, —r —, ) I.z(22) G(11;22). (7.42)

&T,(0)l('&= lim lim „&g,lP"(k, z)l('&
fO+ k O O

('l. 38)

together with the determination of the eigenspec-
trum of the operator QiKQ.

D. Thermal conductivity and

sound attenuation coefficient

The analysis of the shear viscosi', y is consider-
ably more direct than the calculation of the ther-
mal conductivity and the sound attenuation coeffi-
cient. This is primarily because of the coupled
modes and the fact that one of them is a traveling
mode. In the case of the transverse modes one
found that

D, (%,z) = (kVO)'M, (k, z),

where M, had a finite limit as k and z go to zero,
given essentially by (7.33). In that case M, is
determined by ~, , T, , and K. In the case of
longitudinal excitations the D's have the more
general form

D„,(k, z) =kV,~„„(z)+(kV,)'M„,(k, z), (7.39)

where the &'s and M's must be determined in
terms of matrix elements of the memory function.

It is now convenient to note that if p. is one of
the conserved states then one can write

It will be shown that all of the 4"} can be evalu-
ated explicitly in terms of thermodynamic deriva-
tives. The 4"' contributions cannot be evaluated
explicitly, as with @, , since they depend on the
dynamics of the system. One can show however
that many of the 4""s are zero due to symmetry
requirements. This follows from the condition

q'"(-k, -f -0', z) =q'"(k, PI ', z). ('l.43)

I32(y(1) (k)1 j2
23 k 3 n sp

+
p2

(7.44)

where P is the equilibrium pressure, and

@(1) 2 p' az 3 n~
sp n 2 p -~

(7.45)

where e is the equilibrium energy density. It is
very easy to show that all of the & p. lz'(k)l v) are
zero except,

Consequently, one can easily show that the matrix
elements 4'22, k & 4'22 k @23 k @33,k and @33,k
all vanish. A number of other terms vanish be-
cause they are explicitly proportional to k and
vanish as k goes to zero. These vanishing ele-

nonvanishing second-order matrix elements are
nd 4,",'k. The non-

zero first-order matrix elements have been
evaluated in Appendix C. One finds

&i lP" (k, z)l g'&=kV, &T„,(k, z)l g')

+z&T„,(k, z)l ~'& (7.40)

&llz'(k)12&=kV, = &2lz'(k)ll),

&2lz'(k)l3) = (-'}"kV, = &3lz'(k}l2&.

(7.46)

(7.47)



GENE F. MhZENKO

Combining all of these results one finds

~„„(x)= 1 —nC~ (0)

) g g (8)')

(~), g, )) (II)')
(V.48)

M, „=Mq, =0,

M„(x) =«@,".I, + & (8 + T, ,,)lq[q (-iff) ql 'ql ((,'z (5')+ T, ,, +xr~,.)},
M„(x)=«4,",', +((],~(t)+ r, , +xr, ,)lq[q (-iz)q] -'ql (~,"+r, ,)},
M»(x) =@/",I, +((e3+T2,,)lq[q(-if~)q] "ql(t'3'+Ta. a)&

M„(x)=@,",I„+x'@,",I, + &($,~(()+T, ,+»,„)lq[q(-iA') q] 'ql (5,'&((')+ T, , ), +xr, „)&

(v.5o)

(v.51)

(v.52)

(v.53)

where x =z/kV, .
One can further reduce these expressions for

the M's by noting the symmetry properties of the
T's as $- -$. These results mill not be needed
here.

One can nom use the above results in a direct
calculation of G«. Starting with (V.24) one easily
finds that

G„(k,z) =[det(z-D(k, z))] '

x [(z -D»)(z -D„)-D„D„] (7.54)

where the D's are given for small k and z by
(7.39). In the analysis here one is most interested
in finding the thermal conductivity and the sound
attenuation coefficient. One sees from (V.6) and
(7.23) that the thermal conductivity can be obtained
from

lim lim kzG»(k, z).
A~O 8~0

From (7.54) one easily finds to lowest order in k

(v. 55)

Then, using (V.29), one has from (7.6) that

&).
' =nS(0) imnV20 mn(C~ —C„)VoO gy P t& O

~i2 ~u M»(0)
(v.56)

After noting that S(0) = (6n/6P)r ksr and using the
explicit expressions for the rG's given by (7.48),
one obtains

[i4),» +i( (,e ($) + T, ,l q(q (-iK)q } q l((,' ~ ((') + T3,)}].-1
(V.57)

det[kCO —kVO ~(x)] = 0, (7.58)

This is an exact expression for the thermal con-
ductivity in terms of the memory function.

There is a new element that enters into the
calculation of I'. One can see from (7.7) that one
must set z = C, k mhere Co is the location of the
sound mode. Therefore, before one can find an
expression for I', one must determine C, in terms
of the ~'s. Comparing (7.7) and (V.54) one sees
that C, is defined by the condition

(
2Co " - ~22 ~~~

V " " I -(3 (x)/x (V.59)

Putting in the explicit expressions for the ~'s
from (7.48), one easily finds that

(v.60)
It is then a simple matter of thermodynamics to
shorn that this can be written

which is just the equation determining the un-
damped collective modes in the system. One finds
that this determinental equation can be written which is just the adiabatic speed of sound.

(7.61)
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In calculating the sound-absorption coefficient,
one then needs to find G«(%, kC, ). One finds after
some algebra that

where

C[C —(d„(C}]—(d„(e„
(kV }2~0

(V.62)

s =M„(C)(C' —{e„{e„)+C[C —(e„(C)]M„

+C[{d„M„(C)+ (e M„(C)] . (7.63)

and C =C,/V, . Combining (7;62) with (V.V), one
finds after a few rearrangements and use of the
identity

further reduce 4, but this will not be carried out
here.

E. Mode-mode coupling contribution to X

A nontrivial example of the usefulness of these
expressions involves the calculation of the thermal
conductivity near the critical point. The analysis
here wi11 be rather rough since this calculation
will be described in detail in another paper.

One can show that near the critical point the
main contribution to the thermal conductivity in
(7.5V) is given by the L)~Go%3 contribution to
4,",', . One has then

(7.64)
3 n(CA —C„)' T (p'/33}2(sp/ep}2(s33/sp},

(7.66}

It is not difficult to show, in the case where P"
O'Uz„ that

(7.65}

This is an explicit expression for the sound atten-
uation coefficient in terms of the memory function
and thermodynamic quantities. One can, of course,

@(s} -2z p
gV23N(mVA)

dt , Q k, t,
(7.67}

()(ai) ar (a, )s={a'A[s.„(a,A ss, (a, i)]++M,(a),( a M(a))as„„(a, i)s, (a, i)

dM(k) —,— d2
k2S, (k, -t) M(k} „-M(k) -„S„„(k,t)+ S„„(k,t)+-'M(k), M(k) S„„(k,t) (7.66)

dk dk

M(a)=[{- A (a)] (a{a)~ a' Jd're '"'r(r)% rd(r')I, (7.69)

li(a) = fd'ra '"'[d(r) —{], (7.70)

F(r) is the Mayer function and S, is the longitudi-
nal current correlation function. If one is very
near the critical point, one can make a large num-
ber of simplifications. First one notes that it is
the small-k behavior that is important in the inte-
gral for 4,",'.59 One therefore sees because of
explicit powers of k that one can approximate

Q(k, t)=M2(k)S„„(k, t)[S,(k, f)+2S, (k, t)].
(7.71)

One also knows that for small k that S (k) diverges
at the critical point, therefore I -nCe (k} must
vanish. This seems to indicate that M(0) vanishes
at the critical point, but closer analysis shows that

k(0) = k(0) (7.72)

[I —nC, (0)]k(0) =C, (O) = I/s,

so at the critical point and for small 4'

M(0) = I/33.

(7.73)

(7.74)

Putting these results back into the integral for
4,",', assuming only small values of W contribute,
one has

(g) 2 1p dt
d

33 3 gy2 333(3331{ }2 (23)3

)d: S„„(k, t) [S,( k, t) + 2 S (k, t)s] . (7.75)

This expression can be evaluated more explicitly
if (since K is small) one assumes S„„,S, , and S,
are given by their hydrodynamical time depen-
dences,

S„„(k,t) =n8(k) [(1 —C3/C„) e

+(C„/C, )cos(C, kt)e " '~'], (7.76)

and S,(k, t) =ne-' "', (7.77)
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where v =q/mn. S, can be expressed in terms
of a second time derivative of 8„„.One can show
that the coupling between S„„and 8, leads to no

divergences in 4» near the critical point. One
should therefore focus on the S„„-S,coupling.
If one notes that C„/C~ « I near the critical point,
then

@,(2)
»gk

4ip ' + d'k
gnV', (mV,}', (2~)'

x S(k) e )) (-Dr+)))(

The time integration can then be done explicitly
to obtain

4fP 1 d k S(k)
~«'.(ml'. )' (D, + v) (2sP V

(V.V9}

One can now evaluate the 0 integration explicitly
if one uses the Ornstein-Zernike form

praetieal near the critical point, and the relation-
ship with the mode-mode coupling theories has
been discussed.

There are many more details of the theory that
remain to be worked out. Many of these are of a
computational nature. It would, for examyle, be
quite interesting if some matrix elements of the
low-density memory function could be worked out
explicitly for the case of a I ennard-Jones-type
potential. Much of the analysis centers around
more complete evaluation of the mode-mode
coupling terms appearing in E(l. (6.28} and in a
better understanding of the properties of I; (why
one seems to be able to neglect it), and further
study of the static corrections to transport coeffi-
cients as would arise in finding corrections to
approximations like (6.24). There appear, how-
ever, no conceptual obstacles in carrying out such
investigations.

S(k) =k~T
BP ~ A,'~+$ 2

One then obtains the result

kk~T g
' Bg

gran

(Dr+ v) aP

Putting this result back into (7.66) gives

k (C—)C„) (,B)')'())')'

(7.80)

(((.81)

(7.82}
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If one further notes that for a van der %aals equa-
tion of state the term in brackets can be approxi-
mated by 1, that near the critical point C~» C„,
and that v»B~, then one has the Kawasaki~
result

APPENDIX A: ANALYSIS DF THE QUANTITIES

&(&)f(&)" f(n) &

To facilitate this analysis one introduces a
source function

~, -(k, r/6~gq) mnc, . (7.83)

The reader should realize that there have been a
large number of approximations in going from
('t.67) to (7.82). Many of these approximations
are quite good, while others must be discussed
further. " This will be discussed in detail else-
where.

VIII. DISCUSSION

The FBKT, as developed in this paper, gives
one a practical, microscopic method for calcu-
lating the dynamical properties in classical, equi-
librium systems. It has been shown how one can
make contact with the Boltzmann-Enskog approxi-
mation for low densities and the ring terms for
high densities. Thus one regains some of the
major results from kinetic theory. However,
because the FBKT treats the static properties of
the system in a natural way, the theory is also

8(q) =exp
J dig(1) f(1), {Al)

where q(l} can be considered as an external poten-
tial. Then for example

W(q) =-in(S(q)) (A2)

is essentially the partition function in the presence
of the external one body potential q(1). W is also
the generating function for the cumulants for the
fields f,

(()n(() ()n(2) )n(N) },=.

(As)

Next one defines the quantity

&&(1)),= &&(I)8(n))(8(n)) '.
It is immediately clear that
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&A(I)f(2)" f(n)&.,„=, 2 ", (A(1)&,

(A5)
Consequently, if one wants to evaluate

(A(1)f (2) ~ ~ f (n)), then one needs an expression
for &A(1)&„. This can be accomplished directly.
Working, for convenience, in the canonical en-
semble

&A(I)&„=-&8(3})& '&(L,f(1))8(3})&

=-«(n)& ' 'J (di), e '" ()(i)l,f&()

=- &()(q» '* ' -&l f(dq) ()(n)P&,', (-3 ' " )()((-e,)].
i=1

(A6)

(A7)

(AB)

After integrating by parts,

&&(()&, = &()(n)& '3 ' v,' P v,' ((&((-q,)()(q)l)
i=1

=g. p-'v,' -v„' f 1 )„+ 8g -' 6 i-q, v„'I q (A10)

&,,()(i) =()('a)f ((' R(( )&f(i ),,

=8(n) ~„n(r, );

so one finds eventually

&A(I)&„=tP-'&„' [-&,', & f (I)&„.& f (I)&„~,,n(I)]

(A11)

Similarly one finds from (6.18) that

&11)GD0 (~22& =[z —L,(11)] 2&11~22& &()3(1)&()3(1).

(85)

One has then that

& I ~T')22& =V'(I; 33}G', (33;44}G' '(44; 22) (86)

=4 d31 13 z-L 13 ' z -I 33

which is very useful since the potential no longer
appears explicitly. One can now evaluate the cu-
mulants of interest by taking functional deriva-
tives and using (A3).

APPENDIX 8: LOFTI-DENSITY LIMIT FOR T

x & 33) 22 & ~,(2) ~,( 2).

And since the classical T matrix is defined by

t(12}-=L,(12)[z -L(12)]-'[z -L,(12)],

one has

(87)

V (1;22) = -u (22) L~(22) [6(12) + 6 (12)] .

Similarly from (2.24) and (5.26) one has

G3(11;22) = (u3(11) 2&11122&,

&II(W'~22&= ~.(II)L(») 2&III22&,

(81)

(82)

(83)

One now wants to know the relationship of the
generalized T matrix defined by (6.26) to the usual
classical T matrix introduced by Zwanzig. " This
connection can be seen by evaluating T to lowest
order in the density. One must first evaluate
'U, G,C~ ' to lowest order in the density.

It is easy to see from (5.11}that

1&T(' (33)4fd3 ()13) &3(( 23&,( )3,(2). (39)

APPENDIX C: CALCULATION OF 4 23' AND 433~

The first matrix element to be evaluated is

@3(3'„=Iim lim &2)cp'"(k, z)~3&.
&~0 0 g~ i0

One can then use (7.29) and take the small-k and
-z limit to obtain

4,',"„=lim lim " (-', )'t3—~~0 ~ 1

,„, kV, . .., 6 ' n

so that

1
&IIIG'(22&= — [z -L(11)] '2&11~22&. (84)~,(11)

x dl d1 "2"2
0 33 rl —r i

x (--,') V( r, —r —, ) L3(22) G(11;22). (C2)
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It is then convenient to use the transpose of (4.22} to represent G so that

4(» =lim lim — 3
/2 T» r, —r-, 1 6 a+I. +/Jr+Mr - I r 22) C

I », P' did 1 d2d2

k 0 $0 0

One can then use the operator identity [A +B] '8 =1 —[A +8] 'A to obtain

m lim
-&2P dldld2d2 T„(r, —r-, ) V(r, —r;)&11~[G—G(z) [a+I,'+U'+M'(-z)])~22&.,„, ,„„+ 12&3 n

One can easily show that

So one has, after letting z -iO'

-P &2 di d 1 d2 d2
A

x T»( r, —r-, ) V( r, —r;) G(ll; 22}. (c6)

one easily sees that

4,",', = lim (-')'r ' —[(6V P'
&

k~0

—&ov, n, &&a, n, }&n,P',}],
(C6}

One now has a strictly thermodynamical problem.
If one eliminates G by using (2.21) and introduces
the potential-energy fluctuation

5V, =—,r, e""')5g(11)V(r, —r —, ),
1 d141 +]], r

where e, the mean energy per particle, equals
&E,&/n and

2e=n' — ' + V r, -r -e e'"'~
i=1 )- f &j

(C10}

is the fluctuation in the energy per particle. Then
after substituting for Ek in terms of e, , one finds
that the term elk does not contribute and

4,",'„=1im (-')' r ' P' [(e P'
&

k~O

—
& e, )r, }&n, n, } '& n, P', ) ] .

Since Schofield" has shown that

se . &e s,&= lim
en 8, , &rr, rr, &

'

one has

4)~",'~ = lim (—', )'~'p &e~Pr, }— &r)~Pr, }
k~0 Pl

(c13}
Schofield~ has further shown that this expression
can be reduced to

is the potential-energy contribution to the pres-
sure-operator fluctuation and ek is the Fourier
transform of the density. It should be observed
that one can replace &Vk by Vk since the average
term ( V, ) does not contribute in the limit )t —0.
If one substitutes V, =Ek -Ek, where Ek is the
kinetic-energy density and E, the energy density,
into (C6) one finds, after some cancellation, that

4&)) =lim (-'))r2 [&8 Pr }
k 0

—&S, rr „}&s,rr, }-)&s,P',}].
(C8)

Following Schofield, "one writes the energy density

(C9}

4)() ) (2 }1r2 p
23k 3 ~ gp

(C14)

(c16)

where P' is the potential contribution to the equi-
librium pressure. Since the full pressure is given
by P = np '+P', one has

)I)()) ( )1/2, )rP-2 +P BP
23)k 3 ~ gp

The matrix element 433', can be evaluated in a
manner very similar to that used in evaluating
42'3", . The major difference is that P', is re-
placed by V, and one obtains the simple result

4,",'g = lim —lim ( 3~ C)'" (%) z)
~
3}

1

g
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