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Resistance anomaly in a weak acid near the critical point
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Recently published data on the resistance anomaly in a critical isobutyric acid-water mix-
ture near the phase-separation critical point are analyzed. It is shown that the data below a
value of t =—{T —T~)/T, ~ 5&& 10 may be influenced by gravitational effects which were not
accounted for in the original analysis. In the temperature range above this value of t, a fit
of the form {R~-R)/R~ At ' + Bt {with 0. the specific-heat exponent) is shown to be satis-
factory, ard a semiquantitative theory which yields this result is presented.

I. INTRODUCTION

In a recent publication' an anomaly in the elec-
trical conductivity of a critical mixture of iso-
butyric acid and water near the phase-separation
critical point was reported. In Fig. 1 the quantity
(R, -R)/R, vs t = (T- T,)/T, is plotted with R the
resistance and R, its (finite) value at the critical
point. Measurements on two different samples are
shown in the figure along with a plot of the function

(R, -R)/R, = 4.1t ' —1.6t

with 0. = 0.12, which is approximately the specific-
heat exponent for three-dimensional Ising sys-
tems. ' The above quoted value of o, is the specific-
heat exponent for this binary liquid mixture as de-
duced from scaling. ' The fit is quite acceptable
over the range 2 x 10 '& t~ 10 ', the range of most
previous critical-point experiments on mixtures of
this type.

The coefficients on the right-hand side of (1.1)
are particularly sensitive to specific choices of
the exponent a: in a least-squares fit the ampli-
tude of the singular term can change by as much
as a factor of 2 if a change of 0.04 is made in
1-n. Hence we do not take the specific ampli-
tudes in (1.1) too seriously. Below we shall indi-
cate our reasons to expect an energy-density
singularity in (1.1), and we shall show that the
over-all numerical variation of (R, —R)/R, is
roughly in accord with our estimates.

In Sec. II we comment briefly on the fact that
gravitational effects may be influencing the data
in the temperature range js 5 x 10 '. In Sec. III
the mechanism which we believe produces the
energy singularity in (1.1) is discussed. Section
IV is devoted to summary and further comments.

II. GRAVITATIONAI. EFFECTS

It has been appreciated that experiments on one-
component fluids are susceptible to gravitational

effects, and it has been argued' that in binary mix-
tures concentration gradients could be induced
which are of the same order as density gradients
in one-component fluids. Gravity does indeed
separate the A-rich and 8-rich phases in a typical
binary mixture below the critical point.

As can be seen in Fig. 1, below t —2x10 ', the
two sets of measurements break away, and the
function (1.1) is no longer adequate. An order-of-
magnitude estimate indicates that below that tem-
perature, gravitational effects can be influencing
the data.

One can make an order-of-magnitude estimate
which is based on thermodynamics and which is
similar in spirit to the initial estimates of Hohen-
berg and Barmatz' for one-component fluids. If
we use' the number fraction x = N„/N and the
chemical potential 6 which couples to the number
difference N„—Ns =N(2x —1), we find the following
equation for the spatial (z direction) variation of
the concentration at constant temperature:

y '[1~ a*[(—)
~ —,'g[sa„- w (1+a))=0. (2.1)

Here m„and m~ are the molecular masses of the
two species; y is the susceptibility-measuring
order-parameter fluctuations and is given by

q
-=(ex/s t[,)„
=(A/ksT, )t [', t-0+.

The dimensionless parameter a is given by

(2.2)

c=(ev/&x)r ~(v —x(sv/sx)r j.) ', (2.2)

with v = V/N the mean molecular volume of the
system. Equation (2.1) results from expressing
the chemical potentials p„and p~ of the two
species as i[, , = g,'(T, P, x)+m, gz (i =A, 8), where
P and g depend on position z, and requiring that
the p, , are independent of z. To obtain an order-of-
rnagnitude estimate the equation is linearized by
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FIG. 1. Resistance of a critical mixture of isobutyric
acid and water near the critical point. (R, —R)/R, vs t
for two runs using the data of Ref. 1. The solid line is
a plot of Eq. I,
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1+cx

(2.6)

PB~ Vg —PISA g)g (2.7)

where e„and v~ are the partial molecular volumes.
The form of this result is identical to that used in
the order-of-magnitude estimate of Hohenberg and
Barmatz' for a one-component fluid [see their
Eq. (3.4)j. Note that it is not the mass difference
alone which determines the relative importance of
the gravitational effects in a given temperature
range.

We estimate a (and hence m') using an ideal-
solution approximation: ff = «ff„+ (1—x)ffs where

treating g and a as independent of z, then for a
given sample height Jg, we find a top-to-bottom
concentration difference 6«(t) which depends on
temperature principally through y. At some tem-
perature t, & 0, 5x is equal to the concentration
difference between the two coexisting phases at
temperature -t, . Hence an estimate of the tem-
perature regime where gravitational effects should
become apparent is given by the identification

(2.4)

where the shape of the coexistence curve is speci-
fied by

(2 6)

Carrying out the above prescription we find

v„and v~ are the molecular volumes of the pure
individual species. In the isobutyric-acid-water
system, x,=0.11 (3& wt% acid), T, =26.23 'C; the
acid has molecular weight 88, and the acid density
= 0.96 g/c m'. Approximately, then, a = 4 from
which we find go= 5 && 10 ', where we have used
h = 1 cm" and B=A = 1. Ne have also used the
Ising exponent values' y=~ and P =~6, which are in
good agreement with experimental values for this
material' and sufficient for estimation purposes.
The value for Bseems quite reasonable for many
binary mixtures and single-component fluids.
However, direct measurements of the amplitude
A are not generally available; three-dimensional
Ising models, which are frequently used to repre-
sent such systems, have A =1. Since the acid-
water mixture does not have a critical concentra-
tion x, =-,', and since specific amplitudes are not
in general universal, it is possible that A might be
as small as, say, 0.1-0.2, as we have roughly
estimated. This reduction would lower our esti-
Inate of to by about a factor of 2. In any event we
feel that one can be suspicious of the interpretation
of the data below perhaps 10=2~ 10 '; the original
data and analysis' extend as low as t=3X 10 '.

III. CONDUCTIVITY ANOMALY

There are several mechanisms which contribute
to the conductivity of a weakly dissociated acid
which we denote symbolically as KA. In an aqueous
solution of a strong or weak acid one finds that the
dominant conduction mechanism is the rapid dif-
fusion or "hopping" of the H' from water molecule
to water molecule, temporarily forming H,O' ions.
For example in a dilute isobutyric-acid-water so-
lution, the H' mobility is more than 10 times that
of the basically diffusive A mobility. A small
fraction of the H' mobility (on the order of 10/l) is
due to diffusion from the random motion of H,O'
ions as contiguous units. ' In a first crude picture
of the conductivity of isobutyric (and similar) acid-
water mixtures, we focus on the H' hopping mech-
anism and ignore for the moment all other contri-
butions. We are in effect assuming that (i) the
same mechanisms which prevail in very dilute so-
lutions continue to dominate in these more concen-
trated systems (x, =0.11) and (ii) contributions
from diffusive mechanisms are either less singular
or small in magnitude in the temperature range
considered. As to (i), our reading of related mea-
surements indicates that hopping continues to
dominate, although perhaps not as strongly as in
dilute solutions. Vfe shall comment further on dif-
fusive contributions in Sec. IV.

Although the system is in reality a multicompo-
nent system with chemical dissociation taking
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place, the phase transition is basically of the
binary liquid type: below T, the liquid separates
into acid-rich and acid-poor coexisting phases.
The degree of dissociation is sma11, due to the
weakness of the acid. Defining the volume per H'
ion as +m,', we estimate r, - 50A in this system.
As far as the phase separation is concerned, the
positive and negative ions may be treated as 'im-
purities" perhaps inducing constraints (see below).
But viewed alternatively, the strong concentration
correlations in the medium can have an important
effect on the ion system and can induce anciQary
critical phenomena such as conductivity anomalies.
In fact, over cells large compared to r, one might
expect large ion-number fluctuations, since in a
given region the ion numbers will depend on the
acid concentration, a strongly fluctuating quantity
near T, ." Near the critical point T ~ T, the ions
are preferentially in the acid-rich phase even
though the degree of dissociation is lower. This
last fact allows us to proceed with our semiquanti-
tative theory of the resistive anomaly.

Basically, the idea is to reduce the multicom-
ponent system to two components which can be
represented in Ising lattice- gas language. To a
good approximation the phase separation can be
described by considering the two "components, "
water molecules and "acids." The second com-
ponent consists predominantly of HA molecules
with a very small fraction (due to weak dissocia-
tion) of A and H,O' (we neglect water dissocia-
tion). The phase separation is into water-rich and
"acid"-rich phases. Consider a given H,O' ion
slightly above T,. The hopping mobility of the pro-
ton will surely depend on the H,O'-H, O correlation
function at short range (nearest neighbors in a
lattice-gas sense). Given an H,O'-H, O nearest-
neighbor pair, the intrinsic hopping rate depends
on a rotation time for the two molecules to orient
properly. ' In general, the rate is modified by the
nearest-neighbor correlation function or a con-
ditional probability that the proper jurnp site is
available. This fact alone gives an indication that
the energy-density singularity appropriate to the
acid-water phase separation should appear in the
mobility, hence in the resistive anomaly given in
(1.1).

To be slightly more quantitative, we note that
the above correlation is simply the nearest-neigh-
bor "acid"-water correlation [treating the H,O' as
an "acid" (A) since the ions tend to phase separate
from the water (W)]. In Ising lattice-gas language
this is

(s~(r)n„(r+ 6)) =(-,'[1+a(r)]-,'[I-o(F+ E)]), (3.1)

where o(r) =+1, the upper (lower) sign correspond-

ing to the presence of a water ("acid" ) molecule
in the cell at r. From this analogy we conclude
that the proton hopping mobility p(t), which is
determined in standard kinetic theory arguments
by the effective hopping rate, is related to the
ordinary Ising nearest-neighbor correlation func-
tion according to

p(f ) ~ 1 —I"(6; t) (3.2)

with

r(&) = (o(r)o(r + &)& . (3.3)

I', =0.248, E=2.03, E=2.02 (fcc)

I",= 0.328, E ™=1 94 ~ ~ ~ (sc)
(3.5)

The value of E for the sc lattice cannot be obtained
from Ref. 11 but seems to be fairly lattice inde-
pendent when deduced from values for two-dimen-
sional lattices which are quoted. Focussing on
the fcc values" (there not being a great difference
among the three-dimensional lattices), one would
expect a mobility decrease (or a resistance in-
crease assuming for the moment a fixed number
of carriers) as the critical point is approached
according to

= 2.7Ot'- -2.69), t -0+ (3.6)

which can be compared with (1.1).
While we do not take the specific amplitudes

seriously as a measure of the resistance, they
compare favorably with the fit to the data quoted
in (1.1). We have commented earlier that the
amplitudes in (1.1) are very sensitive to the exact
choice of 1 —u, analogously to the difficulties one
experiences in evaluating amplitudes in the series-
expansion method. " Nonetheless, the order-of-
magnitude agreement of the coefficient of the
singular term in (1.1) with that of (3.6) is ex-
tremely encouraging.

Since slight changes in the choice of 1- o. have
a strong effect on the specific coefficients in (1.1),
the over-all fit to the data remaining unaffected,
it makes sense to compare numerically the over-
all measured variation of resistance to our esti-
mates based on Ising values. One finds from the

In three-dimensional Ising systems we believe that

r(6)= r, -zf'- +st, f-0+ (3 4)

where numerical estimates of the constants I"„E,
and E, and o. = g have been made' using the method
of high-temperature series expansions. For ex-
ample, for the fcc and sc lattices a specific-heat
analysis'" allows one to deduce
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data approximately a 30% fall in resistance from
t=0 to t=0.1, whereas the Ising prediction based
on (3.6) would be around 10%. In light of the
crudeness of the approximations, this agreement
is again encouraging.

IV. DISCUSSION

We have shown that in the temperature range
above about t = 2 ~ 10 ' the resistance of a critical
isobutyric-acid-water mixture is fit well by the
form (R, -R)/R, =At' +Bt, using a deduced
value of n which is approximately equal to the
Ising value n = k. We have also a,rgued that the
data below this temperature may require correc-
tions for the effects of gravity in order to obtain
a proper interpretation. While this may be pos-
sible in principle, the scarcity of accurate equa-
tion-of-state (and hence critical-amplitude) data
for binary mixtures limits the quantitative study
that can be made.

We then argued that the proton-hopping contribu-
tion ta the conductivity is determined by short-
range correlations in the system, the hopping
distance being much less than the correlation
length $ near T, . This fact provides evidence for
the energy-density singularity" which has been
found to provide a fit to the data. Furthermore,
it has been shown that sensible numerical esti-
mates are obtained simply by considering the
numerical behavior of the Ising-model nearest-
neighbor correlation function.

In fact the arguments of Sec. III can be put on a
somewhat more microscopic basis by mapping the
system onto a quantum lattice-gas Hamiltonian.
In that way the linear-response equation for the

hopping conductivity (ignoring complications due to
Coulomb forces") is mapped onto the kinetic co
efficient L for spin diffusion in a uniaxial (Ising-
like) magnet with short-range exchange. As has
been shown by Kawasaki, "in such systems L, re-
mains finite at the critical point (corresponding to
finite conductivity); further analysis" of Kawa-
saki's equations indicates that L, = L,,+L,,t'
which is consistent with the present phenomeno-
logical result for the behavior of the mobility.

Up to this point we have assumed a constant
charge-carrier density which is determined by
the over-all acid concentration. The chemical
reaction, namely dissociation, imposes a con-
straint equation on the chemical potentials of the
various species involved. Considered from the
point of view of critical exponent renormaliza-
tion, "the ion density itself may have an energy-
density singularity or a finite (renormalized) tem-
perature derivative' depending on experimental
conditions. This latter possibility may prove to be

experimentally unobservable, however. Since dis-
sociation is a phenomenon which samples energy
and entropy densities in a medium experiencing
concentration fluctuations, it seems reasonable to
expect some sort of energy-density singularity in
the ion concentration. Specifically, the dissocia-
tion of an acid molecule depends conditionaQy on
the presence of a water molecule in its neighbor-
hood. It would seem that arguments similar to
those used in Sec. III should apply, thereby indi-
cating that short-range correlations determine the
resulting anomaly. These are posed here as pos-
sibilities which are receiving further attention.
Suffice it to say that an energy singularity in the
ion density does not disturb our over-all conclu-
sians but may affect numerical estimates.

Finally, we can comment an alternative contri-
butions to the total conductivity. The divergence
of the kinetic coefficient for diffusion in an ordi-
nary binary liquid is pictured qualitatively as due
to fluctuating spheres of A-rich region of linear
dimension $ diffusing through the B medium ac-
cording to Stokes law. " Such events probably do
not account for electrical-current Quetuations,
as we suppose the concentration fluctuations are
slow and electroneutrality is preserved in these
regions. In other words, a region of concentration
fluctuation may have a greater ion number on the
average, but always maintains ion balance. Fluc-
tuations involving motion of one ion species rela-
tive to the other would not seem to involve the
long-range velocity-field correlations that yield
a strong anomaly in ordinary diffusion. " Dilute
electrolyte theory (which is probably not directly
applicable) produces a specific conductivity or
mobility which depends on the Debye length (which
in turn depends on the ion density) and the vis-
cosity. VITe have already commented on the ion
density. The whole question of a viscosity anomaly
in binary fluids is not settled; in any event the
singularity observed in the temperature range
considered is far different than what could be ac-
counted for by the cusplike behavior sometimes
seen in the viscosity of simple fluids and binary
mixtures. " A serious consideration of diffusive
contributions to the conductivity would require
further attention.

Finally we mention that experiments are under-
way to study the resistive anomaly in a critical
phenol-water solution. Phenol is also a weak acid.
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