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Cross sections for the ionization of atoms by the impact of ivy, charged particles are expressed as a

function of the impact parameter b of the incident projectile. The ionization probability P(b), which is

obtained in a peaked-binary-encounter approximation {BEA), is compared to several recent experiments and

to the semiclassical Coulomb approximation (SCA). At high energies the SEA and plane-wave SCA models

give the same result, the shape of which is proportional to a simple function of 2b/a (a is the atomic

radius). The functional form is independent of both projectile and target for isotropic target-electron

distributions. At low energies the SEA and SCA models give similar but not identical results. The scaling

properties at low energies are the same for both models. Comparison to experimental results at intermediate

energies does not strongly favor either model at this time. Typically, the shape of P(b) is within ~ 50% of
experiment. A table of P(b) for the BRA model is given which, together with scaling laws, may be used to
find P(b) for arbitrary projectiles and targets at various energies,

I. INTRODUCTION

In principle, ion-atom scattering may be repre-
sented by a single quantum-mechanical wave func-
tion. In practice, however, such a wave function
is often complicated both mathematically and con-
ceptually. In the case of atomic ionization, where
the projectile carries enough energy to excite an
infinity of possible configurations, an exact under-
standing is practically impossible at the present
time. Consequently, approximations and models
have been introduced to provide a conceptual guide
for the interpretation of experimental data.

The two models used most widely in interpreting
data corresponding to total cross sections of
atoms ionized by the impact of ions are the Born
approximation' and the binary-encounter approxi-
mation' (BEA). It has been shown' that in the
high-energy classical limit both approximations
agree. Furthermore, both approximations are
generally within 30-20~ of experimental total
ionization cross sections of atoms by proton and
alpha-particle impact over a wide range of en-
ergies, including low energies, where application
of these models is theoxetically questionable. In
other words, both of these models have served
as a useful conceptual guide for quite a broad
sampling of atomic total ionization cross sections.

Recently, there have been experimental stud-
ies'-' of the dependence of the ionization cross
section on the impact parameter of the projectile,
where it is assumed that the projectile may be
localized as a classical particle, and that the
projectile is deflected by Rutherford scattering
with the target nucleus. In addition to being con-
ceptually simple, these studies represent a finer

probe of the ionization mechanism than do mea-
surements of total cross sections. Moreover„
they yield detailed information about the ionization
probability as a function of the impact parameter.
These studies of single scattering events may
be used for multiple scattering where combina-
tions of single scattering probabilities have been
employed.

The underlying theoretical basis for these
studies lies in time-dependent perturbation theo-
ry, ' which defines the scattering amplitude as a
function of impact parameter. In j.959 a detailed
analysis of the ionization probability P(b) was
done in first-order time-dependent perturbation
theory by Bang and Hansteen. ' Such calculations, "
now referred to as semiclassical Coulomb ap-
proximation (SCA) calculations, require the equiv-
alent of at least four numerical integrations, in
general, for the evaluation of P(b) at each impact
parameter and each value of the projectile en-
ergy. Recently, however, Brandt, Jones, and
Kraner' have developed a simple algebraic ex-
pression for P(b) which is within I% of the SCA
result for projectile velocities much less than
the orbit velocity of the target electron.

In this paper, we develop an expression using
the BEA model for P(b) which requires a single
numerical integration. Simple scaling laws are
then derived for hydrogenic electrons. These
scaling laws may be used„ together with a table
of P(b) vs h over a wide energy range, to evaluate
P(b) for arbitrary projectiles and targets Fur-.
thermore, the BEA scaling laws are the same as
in the low-energy SCA approximation. At high
energies it is shown that the BEA and SCA models
give the same universal curve for P(b). And
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finally, a detailed comparison of the BEA and SCA
results is made with recent experiments.

II. FORMULATION

A. Binary-Encounter Approximation

In the BEA calculation of total ionization cross
sections, one first considers the Coulomb scat-
tering of the incident projectile with velocity v&

t
I

4lf8] 35) 5~

with a free electron with velocity v, . In this sys-
tem the energy transferred to the electron, &F.,
is a simple function of the scattering angle, and
the differential scattering cross section is taken
to be a function of &E. In order to compute cross
sections for isotropically distributed atomic elec-
trons, one then effectively integrates over the
directions" of 8& and S„andover energy trans-
fers. All of this may be done in closed form,
according to

z')M' (v; /M) —(v, /m) (v,"—v', ) —(v('+ vs)

z'me4 -2v,"
n.E & u and 2mv, & (M —m) v,.Sv(v, &E 2

=0 bE &a and 2mv, & Pf -m)v, , or if energy conservation
is violated. (1)

Here M and m are the masses of the projectile
and the electron, z is the projectile charge, and

4M'a = ... ,2 [E, E, +»v, -v, (M -m )],
(jM +'ffI)

4Mm [E; E, —2v, -v, (M -m)J,
(M+m)'

where vQ = ve4 = 6.56 x 10-" eV2 cm2, and g (V) is a
function of the scaled velocity V = v; /v„which has
been tabulated. "

B. Derivation of BEA P(b}

%'e now wish to express the BFA total ionization
cross section per electron in the form

v' =(v' —2&E/M)'~' v' = (v'+2&E/m)' '
o(V}= 2rbP(b) db, (7)

The cross section for removing a single atomic
electron with binding energy —U = &me', is then
found by averaging over the density distribution
of the atomic electron corresponding to

(V)=j 4w ,'p(u„v,)v, (v, , v, )dv„

where V = v; /v„and

corresponding to Fig. 1, where P(b) is ionization
probability per electron and A is the range of the
interaction. First, we assume a relationship be-
tween v, and r using conservation of energy. ,

namely,

&my», — =IV[= 2mvQ,
Ze

or

o; =(v;, v, ) =-
dc(

d&E d8] dg2
U

v, (r }= (2a/r —1)' ~',

(4)

For hydrogenic electrons in closed shells, p(v, }
is given by

vo
p( 2) Q) (p p)4 )

E=~Mv2
vz(r }

. -'"~"b r

z

&(V) =
~

' G(V), (6)

and the total ionization cross section per target
electron, corresponding to E(I. (8), may be simply
expressed as

I IG. 1. Representation of the SEA Model. The inci-
dent projectile with velocity v; scatters via a two-body
Coulomb interaction from an electron with velocity v2.
The atoznic electron is characterized by a density dis-
tribution p(r}.
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where a is the orbital radius of the atomic elec-
tron.

Assuming that p(v, (r) ) is isotropic in v, at each
r, we rewrite Eqs. (3) and (4) as

unique, since equating two integrals does not
necessarily equate the integrands.

At zero impact parameter, P(0}may he ex-
pressed as

g]
o(V) = dAE dr 4m'p(r) db, db, p(0) o( v&~ vs(&))

2m.2

x (v, , v„bZ)
4m',

and consider a projectile with a mell-defined im-
pact parameter incident on an iosotropic electron
cloud, as depicted in Fig. 1. For an isotropic
electron cloud there are only two directions de-
fined by this problem —namely, 8& and 8,. Since
the cross section is a scalar quantity, the inte-
gration over &, can depend only on v, and v, (and
not 6,). Since v, depends on r (and not r), we may
directly use Eqs. (4) and (1) for o,( v, , v, (y)), and
write

o(V) = dr 4n"'p(r) o(v, , v, (r) ).
The integrand is an isotropic function of z, so that
we may write

&(V) = d'~ p(~)&(v, v, (~))

8 + (g2 Q Q) 1/2

db 2sb dz p( (b'+ z')'i')
-(R~-b ~) ~/~

x o( v, , v, [(b'+z']'~') ),
where the integrand is zero for r &A. %e now
identify

(~s ~2) 1./p

P(b) = 2 p((bs+ z')'~')

xo(v, , v,([b'+ z']'~')) dz

as the ionization probability per electron. %'e now

assume that the two-body cross section is peaked
when the projectile and electron are close to-
getherso ,that we may identify b as the impact
parameter of the projectile. This approximation,
introdhced by Gryzinski, " is plausible for ioniza-
tion since at large impact parameters the projec-
tile cannot transfer enough energy to the electron
to remove it from the atom. This idea may be
expressed in a semiquantatative way by largely
ignoring the target nucleus and writing es/2a
=U» &E» (APE) &ze'/2b As a result. , b&za,
where b is the impact parameter of the projectile
relative to the target electron.

It should be noted that this expression is not
unique. Even a unique definition of v, (r} and p(r)
would leave our expression for P(b) formally non-

corresponding to the average of twice the cross
section for ionization divided by the surface area
of the electron cloud. The factor of 2 indicates
that the projectile has two chances of hitting the
electron —namely, on the way in and on the way
out.

In general, P(b) is proportional to the density
of the electron cloud seen by the projectile
weighted by the cross section appropriate to v, (r).
The total cross section cr(V) is, of course, identi-
cal to that computed from Eq. (3).

C. Isotropic Hydrogenic Density Distributions

The density distribution corresponding to elec-
trons in a hydrogenlike atomic K shell is not
unique in our approximation. Ne could choose

p(r) = e '" '/a' [ v, (r) =0 for r &2a]

corresponding to
~ g(r) P, or we could choose

0.5

0.5 2.0

FIG. 2. P(b) vs 5 at V=1. The coordinate-spare elec-
tron density distribution p(r) is given by Eq. (14), and
the coordinate representation of the momentum space
density distribution p(vtir}), is given by Eqs. (15}snd
(8). P(b) is the probability per target electron.

(2r/a —1)' ~' v, (r)
27T6P 2K' 'Uo

p( (~v))= i

! 0, r 2a

corresponding to using Eq. (8) with [it(v, (r)) ~'. On
the one hand, it seems natural to use p(r}, since
the impact-parameter formulation requires that
we work in a coordinate representation. On the
other hand, the BEA model itself is developed in
velocity space, and the values of total cross sec-
tions change if we use p(r}. Consequently, it is
instructive to compare the two approximations.
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In Fig. 2 we have plotted both results near V =1.
These results are similar, namely, that the
shapes are similar (although not identical by any
means), and they both give the same values of
b =0. Furthermore, the two distributions give
total cross sections which are within a few per-
cent of each other, "except for V «1.

In both cases, P(b) may be expressed as
(g2 b2)l/2

P(&) = p'(r/a)
0

(18)

p'(r/a) =

(2r/a —1}'~z/2z, p =p( vz(r }).

In both cases, it is straightforward to show from
Eq. (1) that

P (b) = (z/Z}'f (5/2a, V) (18)

Z = ( ) U ) /13.6)' z (19}

where [ U [ is the binding energy of the target elec-
tron. As we shall see later, Eq. (10) will enable
us to find P(b) for arbitrary projectiles and tar-
gets at various energies from a table of values
of P(b) for protons incident on hydrogen.

where z is the projectile charge, Z is the effec-
tive nuclear charge of the target, a =n'a JZ (n is
the principle quantum number of the electron,
a, = 5.29x 10-' cm) and V = (mE/MU)'~' is the scaled
velocity. The effective nuclear charge Z is de-
fined by

TABLE I. gag(g) vs g. For g&) 1, XKj(g) (7t'z/2) 8 ".

@Kg(x) xK)(x) xKg(x)

0.1
0,2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1,0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.985
0.955
0.917
0.874
0.828
0.782
Q. 735
0.689
0.645
0.602
0.561
0.522
0.484
0.449
0.417
0.385
0.356

1,8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

0.329
0,303
0.280
0.258
0.237
0.218
0.201
0.185
0.170
0.156
0.143
0.131
0,120
0,110
0.101
0.0928
0.0850

3.5
3.6
3.7
3.8
3.9
4.0
4.1

2
4.3
4 4

4.6
4.7
4.8
4.9
5.0

0.0778
0.0713
0.0652
0.0597
0,0546
0.0499
0.0457
0.0417
0.0382
0.0349
0.0319
0.0291
0.0266
0.0243
0.0222
0.0202

~(R b ) /2

P(b) =2o(V)) p((b'+z )'~2)d2z,
0

and the expression for P(0) becomes

(20)

D. High-Energy Limit

As the speed of the projectile, v&, becomes
much greater than the spec/ of the target electron,
v„the scattering cross section given by Eq. (1)
becomes independent' of v, . In this high-energy
limit, our expression for P(b) takes on a simple
form, namely,

2.5
P(0) =o(V)

1
(21)

2.0

Here o(V) is the total ionization cross section
defined by Eq. (3).

The idea of taking o(v, , v, ) to be independent
of v, was introduced to Gryzinski" several years
ago, to estimate ionization probabilities according
to

P = o(V)/4' (22)
I.O

0.5

0.5 I.O I.5 2.0

Gryzinski defined r as the mean distance between
scattering events, and used it as a parameter in

fitting various double ionization data. From Fig.
3 we see that such an approximation is reasonable
only at high energies, i.e., v&» v, .

For a hydrogenlike density distribution in coor-
dinate space, corresponding to Eq. (14), the high-
energy form of P(b) may be evaluated in closed
form; namely,

FIG. 3. P(b) vs b at V=1. The solid curves are com-
puted using; p(~), and the dashed curves using p(e2(g).
In the upper set of curves, 0(e&,v2) is assumed to be in-
dependent of v2 in Eq. (12). where

(23}
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x=2b/a.

In Table I, xK, (x) is listed. It is straightforward
to show that P(0) =o(V)/sa' for both coordinate
and velocity hydrogenic electron density distribu-
tions given by Eqs. (14) and (15). o„= db 2mb A„~) (28)

The square of A„represents the probability that
the system is in a state corresponding to P„,and
the cross for scattering into p„att=+~ is given
by

III. CORRESPONDENCE TO SCA

A. Low Energies

In the SCA model when the velocity of the pro-
jectile is small compared to the orbit velocity
of the target electron, the impact-parameter
dependence of P(b} is proportional to an integral
over modified Bessel, functions; namely,

In first-order time-dependent perturbation the-
ory for protons in hydrogen, Mittleman' has
shown that A„satisfies the following differential
equations for excitation to the nth level of hydro-
gen:

dA„ . 3 2 1 d~R' (b*. ( ) I-
" K,(y)

'
P(b) -x' dy, (24)

where x =qp6 and Q'0 is the minimum momentum
transfer of the projectile. Brandt, Jones, and
Kraner' have pointed out that this may be approxi-
mated to a numerical accuracy of - 1% by (a,
+ a,x+a,x')e '*, so that P(b) may be express-
ed at low energies in the SCA model as,

P(b) = 2» (0.128+0.250x+0.178x»)e-»*. (25)

Here we have used q =2aV, where a =aJZ and
v = v;//v, .

Since o(V) -e', we may write Eq. (25) as

P (V) = (z/Z)' f (b/'2a, V) .

In other words, the SCA model has the same
scaling properties at low energies as the BRA
model [cf. Eq. (18)]. It is interesting to note
that P(0) may be written in the low-energy SCA
model as

where e„—e, = (E„-E,, )t, R is the interproton coor-
dinate, and y is the electron coordinate relative to
the center of mass.

We now apply this to atomic ionization by the
impact of fully stripped charged projectiles of
charge z. Noting that in the case of ionization
there is an additional final-state momentum vari-
able corresponding to the momentum k of the
electron removed, we write the probability for
ionization as

For a straight-line trajectory, corresponding to
R(f }=5+v, i, we express A» as

d. (d)=fd( '"'"f d'd d'(v)= - d (dl,IR-yl

where ft(V} is linear in V and a, and R(V} repre-
sents the distance at which P(b) tends to zero.
At low energies the BEA model qualitatively has
the same behavior, as we shall see in Table II.

where IV, »= »&'-I/; (U; is the binding energy of
the hydrogenlike electron in an initial bound state,
labeled by f).

Taking the Fourier transform of I R -y I ', we
have

(d)=)f dt 'f d'dd

B. High Energies

In time-dependent perturbation theory, the full
scattering wave function is expanded in a basic
set of wave functions for the asymptotic Hamil-
tonian, corresponding to

(28)

In the very-high-energy limit (v; » v, ) we may
take (IP} g to be a plane wave, and write

d, (d)= f dt ' '" d'd "'"d, (d —K), (dd)

Substituting these into the Heisenberg equation
leads to a set of coupled first-order differential
equations for the probability amplitudes, An (t ).

where 4, is the momentum space wave function
of an electron in the ith level of hydxogen.

Using
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d q (5 ) fC,

(35)

where (j), (R} is the coordinate wave function, we
have 2.0

d, (b)=(2 )'f dt '"'"e '"'"b)(R) (36)

whereupon

P(b)=(2 ) fffdt, dtd le'", '

For Uf +~ 5Q the e '~
& ~ term may be replaced by

unity, the f d'k is proportional to v&
' 6(t, —f,), and

b (IO cm)

(38}

where z =e, g and R'=5'+z'. Normalizing to the
total ionization cross section, we have for iso-
tropic (j), (ft},

FEG. 4, p g) vs 5 for p+ Se34 at 2 MeV. The upper
curve is a fit to the data [Ref. (5}l vvhile the curve la-
beled BEA corresponds to our calculations. P(b) is
the ionization probability per E-shell electron.

0
(38)

}4+
It has been shown that in the high-energy limit,
the SCA and BEA models' "give the same value"
for differential cross sections da/dKdg propor-
tional to E-'. Comparing Eqs. (38) and (23), we
see that the SCA and BEA models give the same
result for P(b)/o in the same high-energy limit.

This result now solves our dilemma of whether
to use p(r) or p(,v(r)) in the BEA model. Ac-
cording to Eq. (38), p(r) is the correct distribu-
tion.

Furthermore, we may now use Eq. (23) together
with the scaling laws defined by Eq. (18) to pre-
dict a universal curve for P(b) at high energies.
Our results indicate that the impact-parameter
data for all targets and projectiles may be plotted
on a single curve as a function of the impact
parameter. In Table I we give xK, (x).

Equations (23) and (38) also indicate that the
projectile energy dependence of P(b} is the same
as the total ionization cross section o(V) for
V = v, /vo» 1.

I.G

0.8
IA
b~

JD 06—
CL

p+ Aq

l MeV

b(~O cm)

IV. RESULTS

A convenient feature of the BEA calculation is
that Eq. (18}may be used to scale the results for
protons on hydrogen to other targets and projec-

FIG. 5. P g} vs 5 for p+ Ag 7 at 1 MeV. The curve rep-
resenting the data of Ref. (5) has been doubled so that
the shapes may be more closely compared; i.e., the
theoretical and experimental cross sections differ by
about a factor of 2.
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TABLE II, P(b) vs b at various V for z =Z. Here z is the projectile charge and Z the effective target charge. The
impact parameter b is given in units of the radius a of the atomic electron, where a = ao/Z, ao =5.29' 10 cm, and
Z =U/13. 6 {U =~me~o is the atomic binding energy). The scaled velocity V =e&/vo is the ratio of the speed of the pro-
jectile divided by vo. For z &Z, P{b) scales as (z/Z)~ at fixed V. To use the table, compute V ={m E;/M&U)~i, find
P(b) from the table, and multiply by (z/Z)~. The coordinate-space hydrogenic E-shell electron density distribution is
used.

0,05 0.1 0.15 0.2 0,3 0.35 0.4

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.50
3,00
3.50
4.00
5.00
6.00
7.00
8.00
9.00

10.00

0,642 {-2)
0.127 (-I)
0.235 (-I)
0.362 (-I)
0.510 (-I)
0.706 (-I)
0.929 {-I)
0.117 (0}
Q.142 (0}
0.171 (0)
0.202 (0)
0.233 (0)
0.265 (0)
0.298 (0)
0.332 (0)
0.368 (0)
0.460 (0)
Q.sss (0)
0.789 {0)
0,979 (0)
0.114 (I)
0,127 (I)
0.139 {I)
0,157 (I)
0.170 (I)
0.179 (I)
0.176 (I)
0.174 (I}
0.177 {I)
0.145 (I)
0.125 (I)
0.114 (I)
0.10v {I)
o.ves (0)
0.562 (0)
0.431 (0)
0.340 (0)
0,276 (0)

0.517 {-2)
0.110 (-I)
0.220 (-I)
0.351 (-I)
0.503 (-I)
0.702 (-I)
0.930 (-I)
0.117 (0}
0.143 (0)
0.173 (0)
0.203 (Oj

0.23S (0}
0.268 {0)
0.301 (0)
0.335 (0)
0.371 (0)
0.465 (0}
0.561 (0)
0.797 (0)
0.989 (0)
0.115 (I)
0.128 (I)
0.141 (I)
0.159 (I)
0.172 (I)
0.181 (I)
O.1v8 (I)
0,177 (I)
0,177 (I)
0.146 (I)
0.128 (I)
0.120 {I)
0.811 (0)
0.564 (0)
0.414 (0)
Q.317 (0)
0.2SI (0)
0.203 (0)

0.303 (-2)
O. V98 (-2)
0.186 (-I)
0.319 (-I}
0.471 {-I)
0.672 (-I)
0.902 (-I)
0.115 (0)
Q.141 (0)
0.171 {0)
0.202 (0)
0.234 {0)
0.267 {0}
0.300 (0)
0.335 (0)
0.3VI (0)
0.465 (0)
0.562 (0)
0.799 (0)
0.992 (0)
0.115 (I)
0.129 (I)
0.141 {I)
0.159 (I)
Q. IV3 (I)
0.181 (I)
0.179 (I)
o, lv8 (I)
0.172 (I)
0.144 (I)
0.127 {I)
0.989 (0)
0.635 (0)
0.442 (0}
0.32S (0)
0.249 (0)
0.197 (0}
0.159 {0)

0.123 (—2)
O.S14 (-2)
0.147 (-I)
0.275 (-I)
0.42S (-I)
0.623 (—I)
0.852 {-I)
0.110 (0}
0.136 (0)
0.166 (0)
0,197 (0)
0.229 (0)
0.262 (0)
0.295 (0)
0.330 (0}
0.366 (0)
0.461 (0)
Q.ssv (0)
Q.v9s (0)
0.988 {0)
0.115 {I)
0.128 (I)
0.141 (I)
0.159 (I)
0.172 (I)
0.180 (I}
Q.lvv {I)
0.177 (I)
0,164 (I}
0.138 (I)
0.105 (I)
0.810 (0)
0.520 (0)
0.362 (0)
0.266 (0)
0.204 (0)
0.161 (0)
0.130 (0)

0.222 (-4)
0.279 (-2)
0.106 (-I)
0.226 (-I}
0.369 (-I)
0.561 {-I)
0.787 (-I)
0.103 (0)
0.129 (0}
0.158 (0)
0.189 (0)
0.222 (0)
0.2ss {0)
0.288 (0)
0.322 {0)
0.3S8 (0)
0.453 (0)
0.549 (0)
0.785 (0)
0.979 (0)
0.114 (I)
0.127 (I}
0.140 {I)
Q.asv (I)
O. IVI (I)
O.lvv {I}
0,175 {I)
Q.lv4 (I)
0.154 (I)
0.120 (I)
0.886 {0)
0.680 (0}
0.436 {0)
0.303 {0}
0.223 (0}
0.IVI (0}
0.135 {0)
0.109 (0)

0.132 (-2)
0.676 {-2)
0.176 (-I}
0.311 {-I)
0.493 (-I)
0.713 (-I)
0.9S2 (-I)
0.121 {0)
O. ISO (0}
0.180 (0)
0.212 (0)
0.245 {0)
0.278 {0)
0.312 (0)
0.348 (0)
0.441 (0)
0.537 {0)
0.772 (0)
0.965 (0)
0.112 (I)
0.12S (I)
0.138 {I}
0.155 (I)
0.168 (I)
O.lv2 (a)
0.170 (I)
O.IVI (I)
0.143 (I)
0.102 (I)
0.7S4 (0)
0.579 (0)
0.372 {0}
0.258 (0)
0.190 (0}
0.146 (0)
0.115 (0)
0.932 (-I)

0.338 {-3)
0.377 {-2)
0.130 (-I)
0.2S3 (-I)
0.422 (-I)
0.632 {-I)
0.865 (-I)
Q. la2 (0}
0.140 (0}
0.170 (0)
0.201 (0)
0.233 {0)
0.26e (0)
0.299 (0)
0.335 (0)
0.427 (0)
O. S22 (0)
Q. vss (0)
0.946 (0)
0.110 (I)
0.123 (I)
0.13S (I)
0.151 (I)
0.165 (I)
0.167 (I)
0.165 (I)
0.164 (I)
0.124 (I}
0.878 (0)
0.648 {0)
0.498 (0)
0.320 (0)
0.222 (0)
0.163 (0)
0.125 (0)
0.989 (-I)
0.801 (-I}

0.162 (-2)
0.887 (-2}
0.2QO (-I)
0.352 (-I)
0.551 (-I)
0.775 (-I)
0.102 (0)
0.129 (0)
0.158 (0)
0.189 (0)
0.221 (0)
0.25'3 (0)
0.285 (0)
0.320 (0)
0.411 (0)
0.505 {0)
0.736 {0)
0.924 (0)
Q. lov (I)
0.120 {I)
0.132 (I)
0.148 (I}
0.160 (I)
0.161 (I)
0.159 (I)
O. IS2 {I)
0.108 (I)
0, 760 (0)
0.561 (0)
0.431 (0)
0.2vv (0)
0.192 (0)
0.142 (0)
0.108 (0)
0.857 (-I)
0.694 (-I)

0,45 0.5 0.6 0.8 1.0

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0,30

0.582 {-3)
Q.sso (-2)
0.151 {-I)
0.286 (-I}
0.471 (-I)
0,685 (-I)
0.916 (-1)
0.118 {0)
0.146 (0)

0.553 (—4)
0.28V {-2)
0.108 (-I)
0.22S (-I)
0.394 (-I}
0.596 (-I)
0.816 {-I)
0.107 (0)
0.134 (0)

0.269 (-3)
0.430 (-2)
0.126 (-I)
0.256 (-I)
0.429 (-I)
0.626 (-I)
0.846 (-I)
0.120 (0)

0.795 (-3}
O.sv9 (-2)
0.147 (-I)
0.286 (-I)
0.455 (-I)
0.646 (-I)
0.86V (-I)

0,343 {-5)
0.166 (-2}
0.714 (-2)
0.171 (-I)
0.309 (-I)
0.472 (-I)
0.660 {-I)

0.832 {-4}
0.262 (-2)
0.86V {-2)
0.191 (-I)
0.326 (-I)
0.482 (-I)

0.356 (-3)
0.353 (-2)
0.102 (-I}
0.207 (-I)
0,336 (-I)

Q. V85 (-3)
0.433 (-2)
0.115 (-I)
0,217 (-I)
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TABLE II (Continued)

0.45 0.5 0.6 0.7 0.8 0.9 1.0

0.32
0.34
0.36
0.38
0.40
0.4S
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.50
3.00
3.50
4.00
5.00
6.00
7.00
8.00
9.00

10.00

0.176 (0)
0.207 (0)
0.239 (0)
o.2vl (o)
0.304 (0)
o.394 (o)
0.486 (0)
0.714 (Q)

0.900 (0)
0.104 (1)
0.117 (1)
0.129 {1)
0.143 (1)
o.lss (1)
0.154 (1)
o.ls2 (1)
0.139 (1)
0.942 (0)
0.662 (0)
0.489 {0)
0.375 (0)
0.241 (0)
0.168 (0)
0.123 (0)
0.944 (-1)
Q.v46 (-1}
0.604 (-1)

o.163 (o)
o.193 (o)
0.224 (0)
O.2SS (O)

0.28S (0)
0.3vs (0)
0.466 .(0)
0.691 (0)
o.8v3 (o)
0.101 (1)
0.113 (1)
o.12s (1)
0.139 (1)
0.148 (1)
0.147 (1)
0.142 (1)
0.124 (1)
0.824 (0)
o.sv9 (0)
o.42v (o)
0.328 {0)
o.211 (o)
0.147 (0)
O. 1OS (O)

0.826 (-1)
0.653 (-1}
0.529 (-1)

o.13v (o)
o.les {o)
0.194 {0)
0.223 {0)
0.253 (0)
0.336 (0}
0.424 (o}
0.642 {0)
0.816 (0)
0.947 {0)
0.106 (1)
0.116 (1)
0.128 (1)
0.134 (1)
O.131 (1)
0.116 {1)
0.96S (0)
0.63v (o)
0.447 {0)
o.33o (0)
0.254 (0}
0.163 (0)
0.113 (0)
0.833 (-1)
0.638 (-1)
O.SOS (-1}
O.4O9 (-1)

0.111 (0}
o.13v (o)
0.164 (0)
0.192 (0)
0.220 (0)
0.296 (0)
0.380 (0)
o.s93 {o)
0.755 (0)
O.SVV (O)

0.984 (0)
0.107 (1)
0.118 (1)
0.119 (1)
0.110 (1)
0.915 (0)
o.vss (o)
0.497 (0)
0.349 (0)
O.2SS (O)

0.198 (0)
O.12V (O)

O.88S (-1)
0.651 {-1)
0.499 (-1)
O.394 (-1)
O.319 (-1)

0.877 (-1)
o.111 (o)
0.136 (0)
0.162 (0}
0.188 (0)
0.256 (0)
o.336(o)
0.546 (0)
0.694 (0)
0.807 (0)
o.9ov (o)
0.976 (0)
0.106 (1)
0.104 (1)
0.882 (0)
0.723 (0)
o.s9v (o)
0.391 (0)
0.2vs {0)
o.2o3 (o}
0.156 (0)
0.100 (0)
0.697 (-1)
0.512 (-1)
O.393 (-1)
0.310 (-1)
o.2sl (-1)

0.668 {-1)
0.877 {-1)
0.110 (0)
0.134 (0)
0.158 (0)
0.219 (0)
0.290 (0)
0.501 (0)
o.63s (o)
0.739 {0)
0.828 {0)
Q.884 (0)
o.941 (o)
0.860 (0)
0.704 (0)
0.574 (0)
0.473 (0)
0,310 {0)
o.21v (o)
0.161 (0)
o.123 (o)
0.793 (-1)
O.SS2 {-1)
0.406 (-1)
O.311 (-1)
0.246 {-1}
0.199 {-1)

0.487 (-1)
0.667 (-1)
0.867 (-1)
0.108 (0)
0.130 (0)
0.187 (0)
0.245 (0)
0.453 (0)
Q. svv (0)
0.676 (0)
0.750 {0)
0.798 (0)
0.821 (0)
0.697 (0)
0.563 (0)
0.457 {0)
o.3ve (o)
0.246 (0)
0.173 {0}
0.128 (0)
0.982 (-1)
0.631 (-1)
0.439 (-1)
0.323 (-1)
0.248 {-1)
0.196 {-1)
0,159 (-1)

0.340 (—1)
0.486 {-1)
0.658 (-1)
O. S48 (-1)
0.105 (-1}
0,158 {0)
0.212 (0)
0.406 {0}
0.523 (0)
0.616 (0)
o.ev6 (0)
0.717 (0)
0.690 (0)
0.562 (0)
0.451 (0)
0.365 {0)
0.301 (0)
0.197 {0)
0.138 (0)
0.102 (0)
Q. vas (-1)
0.505 (-1)
0.351 (-1)
0.258 (-1)
0.198 (-1)
0.157 (-1)
0.127 (-1)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.10
0,12
0,14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.45
0.50
0.60
O. 70
0.80
0.90
1.00
1.20
1.40

0.372 (-5)
0.124 (-2)
0.513 {-2)
0.124 (-1}
O.222 (-1)
0.338 (-1}
0.478 {-1)
0.642 (-1)
0.822 (-1)
0.131 (0)
0.183 (0)
0.363 (0)
0.475 (0)
o.ssS (o)
o.eov (o)
0.633 (0)
0.567 (0)
0.453 {0)

0.379 {-4)
0.161 {-2)
o.se9 (-2)
0.129 (-1)
0.222 {-1)
0.330 {-1)
0.462 (-1)
0.617 (-1)
0.107 (0)
0.155 (0)
0.325 (0)
o.433 (o)
0.503 (0)
0.544 (0)
o.ssl (o)
0.462 (0)
0.366 (0)

0.105
0.182
0.592
0.128
0.216
0.318
0.438
0.836
0.130
0,291
0.395
0.452
0.480
0.465
0.376
0.295

(-3)
(-2)
(-2)
(-1)
(-1)
(-1)
(-1)
(-1)
(0)
(0)
{0)
(0)
(0)
(0)
(0)
(0)

0.150 (-3}
0.185 (-2)
0.574 (-2)
0.122 (-1)
0.205 (-1)
0.301 {-1)
0.614 (-1)
0.106 {0)
0.267 (0)
0.357 (0)
0.406 (0)
0.416 (0)
0.386 {0)
0.306 (0)
0.239 (0}

0.121 (-3)
o.les (-2)
O.SO3 {-2)
0.106 (-1)
0.189 (-1)
0.436 (-1)
0.728 (-1)
0.246 (0)
o.323 (o)
0.361 {0)
0.3s1 (o)
Q.318 (0)
0.249 (0)
0.194 (0)

0.427 {-4)
0.120 (-2)
0.389 (-2)
0.928 (-2)
0.302 (-1)
0 ~ 576 (-1)
0.218 (0)
0.294 (0)
0.314 (0)
O.293 (O)

0.262 (0)
0.203 (0)
0.158 (0)

0.478 (-3)
0.256 {-2)
0.161 {-1)
0.429 (-1)
0.199 {0)
0.265 (0)
0.267 (0)
0.244 {0)
0.216 (0)
0.166 (0)
0.129 (0)

0.944 (-6)
0.513 (-2)
Q.187 {-1)
0.185 (0)
0.231 {0)
o.224 (o)
0.202 (0)
Q.17S (0)
0.136 (0}
0.106 {0)
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TABLE II (Continued)

1.4 1.8

1.60
1.SO

2.00
2.50
3.00
3.50
4,00
5.00
6.00
7.00
8.00
9.00

10,00

0.362 (0)
o.293 (o}
0.241 {0)
o.158 (o)
0.111 (0)
o.s19 {-1)
0.630 (-1)
0.405 {-1)
0.282 {-1)
0.207 (-1)
0.159 {-1)
0.126 (-1)
0.102 {-1)

0.291 (0)
0.236 (0)
0.194 (0)
o.12v (o}
0.891 (-1}
0.659 {-1)
0.507 {-1)
0.326 (-1)
0.227 (-1)
0.167 (-1)
o.128 (-1)
0.101 (-1)
0.820 {-2)

0.235 (0)
0.190 {0)
0.156 (0)
0.102 (0)
0.718 {-1)
O.531 {-1)
0.409 (-1)
0.263 (-1)
0.183 (-1)
0.135 (-1)
0.103 (-1)
0.816 {-2)
0.661 (-2)

0.190 (0)
0.153 (0)
0.126 (0)
0.826 (-1)
0.581 (-1)
0.430 (-1)
0.330 (-1)
O.213 (-1)
0.148 (-1)
0.109 (-1)
O.S35 (-2)
0.660 (-2)
0,535 (-2)

0.154 {0)
0.124 {0)
0.102 (0)
0.669 (-1)
0.470 (-1)
0.348 (-1)
0.268 {-1)
o.lv2 (-1)
0.120 (-1)
0.883 {-2)
0.677 (-2)
0.535 (-2)
O.434 (-2)

0.125 (0)
0.101 (0)
0.833 {-1)
0.545 (-1}
0.383 {-1)
0.284 (-1)
0.218 {-1)
0.140 (-1)
o.ev8 (-2)
0.720 (-2)
O.552 (-2)
0.436 (-2)
0.354 {-2)

0.102 (0)
0.826 (-1)
0.679 {-1)
0.445 (-1)
0.313 {-1)
0.232 (-1)
0.1VS (-1)
0.115 (-1)
0.799 (-2)
0.5ss (-2)
0.451 (-2)
0.356 (-2)
0.289 (-2)

0.837 {-1)
o.6vv (-1)
0.557 {-1)
O.365 (-1)
0.257 (-1)
0.190 (-1)
0.146 (-1}
0.940 (-2)
0.655 {-2)
0.482 (-2}
0.370 (-2)
0.292 (-2)
0.237 (-2)

tiles. In Table II we present values of P(b) as
a function of b over a range of scaled velocities
V. At large scaled velocities, we see that the
shape of P(b) tends to be independent of V, and
at low scaled velocities we see that the cutoff
distance is roughly linear in V, both in accord
with ear lier discussion.

In Figs. 4-6 we compare our results to the
experimental data of Laegsgaard, Andersen, and
Feldman, ' as well as to SCA results" taken from
their paper. In general, the shapes of P(b) are
in somewhat better agreement than the total cross
sections. The SEA values of P(b) tend to come

40

into b =0 with zero slope, while the SCA values
of P(b) have a finite slope near b =0. Compared
to experiment, the BRA calculations tend to cut
off too quickly, while the SCA results tend to over-
shoot at large impact parameters. For 2 MeV p
+Ag4', the low-energy SCA result given Brandt,
Jones, and Kraner' (not shown) is within 35% of
the full SCA calculation at all values of 5. In this
case V =0.206.

In Fig. 7 we compare BRA, full SCA, low-energy
SCA, and experiment for 2-MeV protons on cop-
per. The comparisons of BEA, SCA, and experi-
ment are not dissimilar from those given above,
except that in this case the BEA result has a shape
somewhat closer to experiment than the SCA re-
sult. The full and low-energy SCA results are

Z.O

CL

1.0

g 75&

IX—E.pt.

SCA-'g

-BEA

Low Energy

CCl

0.5 I.O ~.5

b(lQ cmj

FIG. 6. P(b} vs b for p+ Ag47 at 2 MeV. The curve la-
beled SCA corresponds to the calculations of Ref. 10.

I » I I

0 2

IMPACT PARAMETER (IQ crn)

I IG. 7. P(b} vs b for p+ Cu2~ at 2 MeV. The low-en-
ergy SCA curve corresponds to Ref. 6.
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FIG. 8. P(b) vs b for 0+8+ Cu at 25, 35, and 43 MeV.
The theoretical curves have been normalized to the data
points [Ref. (7)] near b =0. Experimental and theoretical
total cross sections differ by a factor of from 3 to 6.
In this case, the dashed curves represent BEA calcula-
tions using p(r) and the solid curves represent BEA cal-
culations using p(vt(r})

within 10% for barr, "but at 5 =0 the full SCA
calculation is twice the low-velocity result. In
this case the scaled velocity V is 0.25 (corre-
sponding to a value of E~=—0.8 in the notation of
Brandt, Jones, and Kraner). However, the total
cross sections are within 10%, since f db2sbp(b)
tends to suppress the values of P(b) near 5 =0.

In Fig. 8 we compare the shapes of the BEA
predictions to recent results of Cocke' for 0+Cu
at 25, 35, and 43 MeV. The predicted values of
P(0) are 2 to 8 times larger than experiment, and
we have normalized to a point near 5 =0. The
shapes for coordinate-space density target-elec-
tron distributions are favored over the velocity
space distribution, in accord with Sec. III. The
SCA calculation (not shown) lies within experi-
mental error at most values of 5 when normalized
to the experimental cross section in this case.

Y. DISCUSSION

In the BEA and SCA calculations, the probability
for ionization is much smaller than unity and of
similar magnitude when the projectile charge z
is small compared to the effective nuclear charge
Z. This is consistent with perturbation theory

upon which the SCA, and presumably the BEA,
calculations are based. However, since both
scale as s', as s/Z increases the ionization prob-
ability increases, and for s-Z, P(b) exceeds
unity near V =1, throwing into serious doubt the
validity of either the BEA or SCA calculation. One
temporary remedy is to argue, at least at low
scaled velocities, increased binding-energy ef-
fects become more important as z/Z increases,
and that the unperturbed nuclear charge Z must
be replaced by an increased charge (Z+ss), where
e is an energy-dependent parameter such as that
of Brandt, Basbas, and Laubert. " Another reme-
dy is to use Hansen's constrained probability,
which can never exceed unity. However, since
perturbation theory, itself, is of questionable
application, it seems more appropriate to adopt
a completely different approach, such as that of
Russek" where energy lost by the projectile is
statistically distributed among the electrons of
the target atom.

It is not proper, from a quantum-mechanical
point of view, to use an algebraic one-to-one
relationship between the position and velocity of
the orbiting atomic electron as in Eq. (8). Rather
the relationship should be statistical, so that at
each value of r there is a range of values of r,
in accord with the uncertainty principle. Such a
statistical spread means that for r & 2a in Eq. (8),
it will be possible to have well-defined nonzero
values of v, . Consequently, P(b) will tend to
spread out toward larger impact parameters when
quantum mechanics is introduced. Relaxing the
peaking approximation introduced in Sec. II B will
also tend to spread out the probability distribu-
tion. In the SCA calculations the Hamiltonian of
the atomic electron is treated quantum mechan-
ically, giving rise to relatively larger values of
P(b) at large impact parameters.

In Sec. IV we remarked that there is better
agreement on the shape of P(b), in comparing
to existing data, than on the normalization. How-
ever, the importance of the shape of P(b) should
not be minimized for it contributes to calculations
of multiple ionization phenomena where combina-
tions of P(b) are used. For example, double
K-shell ionization is proportional to f db 2sb
&& [P(b)]', for P(b) «1. Normalizing both results
to the same single ionization cross section, we
find a factor-of-3 difference between low-snergy
SCA calculations and BEA calculations" of double
g-shell ionization for 30-MeV O+'+Ca, where
V =0.5. The factor of 3 is entirely due to dif-
ferences in the shape of P(b).

At low energies (V«1) in the SCA approxima-
tion, bP(b) peaks when q, b —= 1.05. Since q,
=1/(2aV), V«-, implies that q, '«a, where a is
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the radius of the participating electron. In other
words, as we have noted, at low velocities, the
cutoff distance for P(b) is determined by q, ',
which is linear in V in the SCA calculations. From
Table II we see that the BEA and SCA calcula-
tions are qualitatively similar at low V. As V

approaches unity in our BEA calculations, the
cutoff distance saturates near 2a, and the shape
of P(b) changes from a characteristic low-energy
shape to the universal high-energy shape given

by Eq. (23). At high velocities the cutoff distance
remains fixed near 2a. The maximum of P(b)
occurs near V =—1.5, while the cross section
maximizes near V=—1.0 in the BEA model.

Recently, Wu, Hill, and Merzbacher" have com-
puted the effects of excitation to the first excited
level of electrons found in an isotropic harmonic
oscillator, and found that much of the contribution
to P(b) occurs at impact parameters greater than
2a. Interpreting this as a projectile-induced dis-
tortion of the atom which has been included in
neither our calculation nor the SCA calculations,
suggests motivation for careful study of P(b) at
large impact parameters. At small impact param-
eters, there has been some recent experimental
evidences' of a dramatic increase of P(b) possibly
due to molecular-orbital effects at low energies.

Computing P(b) in the BEA model is relatively
simple. Using Eqs. (I) and (16), one integral is
done numerically. Forty values of P(b) may be
thus computed in about 30 sec on a relatively
slow IBM 360/50. In contrast, the full SCA cal-
culation requires the equivalent of four numerical
integrations corresponding to a double integration
over a product of a Bessel function and a hyper-
geometric function.

Another advantage of the BEA calculation of
P(b) is that it may be trivially extended to other
systems. By adjusting the range of energy trans-
fers over which one integrates, one may evaluate
P(b) for excitation. Furthermore, one could use
the procedure to evaluate P(b) for atomic ioniza-
tion and excitation by electron impact. However,
in all of these extensions, one should check his
theoretical footing before proceeding with numeri-
cal calculations.
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