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Our recently published variational treatment of the R-matrix method for multichannel
scattering requires computations involving unsymmetric matrices. An alternative deriva-
tion by Schlessinger and Payne has shown that the method can be reformulated in terms of
symmetric matrices. Special techniques applicable to symmetric matrices simplify the
computations and improve numerical accuracy.

In a recent paper' (referred to hereafter as I) a
variational version of the II-matrix theory ' was
derived and applied to a two-channel model scat-
tering problem with long-range potentials. The
variational approach uses basis functions that are
not constrained by a particular boundary condition
at r„ the 8-matrix boundary radius. Removing
this constraint significantly improves convergence
of the variational expansion and makes it possible
to use basis functions that greatly simplify the in-
tegrals required by the method. However, as for-
mulated in I, the method requires inversion of an
unsymmetric matrix whose dimension is the num-
ber of basis functions. Numerical difficulties are
encountered as the number of basis functions in-
creases, since this matrix becomes singular.

More recently, Schlessinger and Payne' have
proposed a new method for computing scattering
solutions of the Schrodinger equation, which turns

QQQ~'qcg~= ,'q~(r, )x~„—, all P, n,
q 8

(16')

where, in the notation of I, a symmetric matrix
is defined by

out to be equivalent to the variational R-matrix
method. This can be seen by comparing the equa-
tions given by Schlessinger and Payne with those
to be derived here by reformulating the method of
I in terms of symmetric matrices. Because spe-
cial computational techniques are available for
symmetric matrices, this revised formulation is
preferable to that originally presented. This com-
putational advantage is illustrated here by applying
the revised method to a model problem considered
in I.

The revised method is derived by replacing Eq.
(16) of I by the equivalent equations

Q':, = M"., + ,'q'. (r, )r},' (r-, )6„

"o 1. . . I,(i, +I) 1,
qs 5~ +g 2

——kp 5~, + V~, qa dr.
J

This is the multichannel generalization of the ma-
trix H „defined by Eq. (2.21) of Ref. 4.

Subsequent equations in I are to be replaced by

g g Q':e r8' = tv'. (r.)&...

u, (r,}=+ p„(r,}v,' (r,},

'u(r, }=+p, ,'(r, )u, (r,).

(24')

(25')

p„(r)=;g P n'. (r)(Q-')'.;n, (r.),
1

0( 8

c' = y' X.

& ~(ro) = Q p~.«o)~.

(20'}

(22')

(23')

Since Q is a real symmetric matrix, p~, (r, ) as
defined by Eq. (20') can be evaluated by a special
triangular factorization algorithm that is numeri-
cally stable and involves significantly less compu-
tation than either inversion or diagonalization of
Q. This algorithm was used for the model calcu-
lations reported here.
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18.589
15.539
7.998
5.589
5.170
5.154
0.000
0.260
4.770
0.008
3.741
3.522
0.065
4.044
l.791
0.180
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8

18.593
15.538
7.997
5.588
5.169
5.153
0.000
0.260
4.770
0.008
3.741
3.522
0.065
4,044
1.791
0.180
1.883

Bt

18.589
15.536

7,997
5.589
5,170
5.154
0.000
0.260
4.770
0.008
3.741
3.522
0.065
4.044
l.791
0.180
1.884

D

18.635
15,559
7.998
5.585
5.165
5.149
0.000
0.260
4, 765
0.008
3.741
3.516
0.065
4.044
1.773
0.177
1.889

Dl

18.595
15.543
7.998
5.588
5.168
5.152
0.000
0.260
4.770
0.008
3.741
3 ~ 521
0.065
4.044
1.790
0.180
1.884

TABLE I. Cross sections Q;&, in units a20, as in Table
I of Ref. 1. Numerical results are given in column A.
For columns 8 and D, N=10 and ro ——8 and 12, respec-
tively. For columns 8' and D', N =16 and ro = 8 and 12,
respectively.

The revised variational method has been applied
to the two-channel model problem of Matese and
Henry, ' with parameters appropriate to the results
given in Table I of I. The new results are given in
columns B' and D' of Table I, here, with columns
A, 8, and D copied from I. Column A gives val-
ues of cross sections obtained by direct numerical
integration; column 8 gives cross sections corn-
puted in I with r, =8 and N (the number of monomial
basis functions) = 10; for column B', r, = 8 and N
= 16; for column D, copied from I, r, =12 and N
=10; for column D', ~, =12 and N=16. In the cal-
culations reported in I, numerical instabilities be-
gan to appear for N& 10, and this made it difficult
to achieve adequate convergence for r, &8. The re-
vised method, as indicated by the results shown in
columns B' and D' of Table I, can achieve adequate
convergence for x, =12. The required number of
basis functions appears to increase in proportion
to ~,. %hen N =10, the revised method gives re-
sults identical with those of the original method,
sho~n as columns B and D in Table I.
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