Critical behavior of an Ising model of classical spins in a transverse field

Theodore W. Burkhardt

Department of Physics, Lincoln University, Lincoln University, Pennsylvania 19352

James D. Gunton*

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (Received 10 September 1973)

The critical behavior of an Ising model of classical spins in a transverse field H is derived for dimension $d = 4 - \epsilon$ using an ϵ expansion based on the Wilson renormalization group. To first order in ϵ the model exhibits a line of critical points $T_{c}(H)$ with the same fixed point and critical exponents as in previous studies of the Wilson effective Hamiltonian.

INTRODUCTION

Recently, the critical exponents for the classical Ising and n-vector models were derived for dimension $d = 4 - \epsilon$ using an ϵ expansion based on the Wilson renormalization group.¹⁻⁴ Here we present a similar derivation, valid to order ϵ , for an Ising-like model of classical spins $\vec{\sigma}$ in a transverse field.

The model we consider has the Hamiltonian

$$\mathcal{H} = -\frac{1}{2}J\sum_{\vec{\mathbf{R}},\vec{\mathbf{\delta}}}\sigma_1(\vec{\mathbf{R}})\sigma_1(\vec{\mathbf{R}}+\vec{\mathbf{\delta}}) - H\sum_{\vec{\mathbf{R}}}\sigma_n(\vec{\mathbf{R}}).$$
(1)

 \vec{R} denotes the position of a point in the lattice and $\vec{R} + \delta$ is the position of a neighboring lattice point. Each spin is coupled to its neighbors through the component σ_1 and to the transverse field *H* through the component σ_n . This Hamiltonian is of interest as a model of a ferromagnet with strong uniaxial anisotropy in a transverse magnetic field. Also, the case d = n = 3 with Pauli spin operators instead of classical spins occurs in pseudospin formalisms for a variety of physical systems,⁵⁻⁸ as, for example, in theories of rare-earth magnetism,^{5,6} where *H* represents a crystal field, and in theories of displacive-ferroelectric transitions,⁷ where His related to the tunneling frequency. An extensive list of these and other systems is given by Stinchcombe.⁸ Various properties of the model have been examined using mean-field or random-phase approximations,⁵⁻⁸ expansions in the reciprocal of the lattice-coordination number,⁸ expansions⁹ in powers of 1/n, and expansions¹⁰ in H/J or J/H.

To investigate the critical behavior of the above model, we obtain a Hamiltonian of the form discussed by Wilson by integrating over the variables $\sigma_2 \cdots \sigma_n$ in the partition function, keeping contributions of order ϵ . We are then in a position to apply the results of previous studies of the Wilson Hamiltonian based on the ϵ expansion.¹⁻⁴ The calculation yields a line of critical points $T_c(H)$ with

the same fixed point and critical exponents as in the previous studies. Similar results have been obtained by Suzuki⁹ with the 1/n expansion and by Elliott, Pfeuty, and Wood with a series expansion method.¹⁰

CRITICAL BEHAVIOR OF THE MODEL

Choosing a phase-space factor¹⁻⁴ of the form $\exp(-\frac{1}{2}\Gamma \vec{\sigma}^2 - \frac{1}{4}\Delta \vec{\sigma}^4)$ where Δ is of order ϵ , we write the partition function in the form

$$Z = \int_{-\infty}^{\infty} \prod_{\vec{\mathbf{k}}} \left[d\sigma_1(\vec{\mathbf{k}}) \cdots d\sigma_n(\vec{\mathbf{k}}) \times e^{-\Gamma \,\vec{\sigma}(\vec{\mathbf{k}})^{2/2} - \Delta \vec{\sigma}(\vec{\mathbf{k}})^{4/4}} \right] e^{-\beta \,\mathcal{K}} \,.$$
(2)

Expanding Z to first order in Δ and then integrating over $\sigma_2 \cdots \sigma_n$, one may readily compute $\Re(\sigma_1)$ defined by

$$Z = \int_{-\infty}^{\infty} \prod_{\vec{\mathbf{R}}} [d\sigma_1(\vec{\mathbf{R}})] e^{-\beta \mathcal{K}(\sigma_1)} .$$
(3)

A Hamiltonian of the type discussed by Wilson is obtained from $\mathfrak{K}(\sigma_1)$ by introducing⁴, ¹¹ Fourier transforms $\sigma(\mathbf{q})$ of the spin variables $\sigma_1(\mathbf{R})$,

$$-\beta \mathcal{K}_{0} = -\frac{1}{2} \int_{\vec{q}} (q^{2} + r_{0}) \sigma(\vec{q}) \sigma(-\vec{q})$$
$$- u_{0} \int_{\vec{q}} \int_{\vec{q}'} \int_{\vec{q}''} \sigma(\vec{q}) \sigma(\vec{q}') \sigma(\vec{q}'')$$
$$\times \sigma(-\vec{q} - \vec{q}' - \vec{q}'') + F(\Gamma, \Delta, \beta H) . \tag{4}$$

The spin variable $\sigma(\vec{q})$ has been scaled to yield the coefficient of q^2 shown in Eq. (4) with the \vec{q} integration^{4, 11} over the interval $0 < |\vec{q}| < 1$ instead of $-\pi < q_{\alpha} < \pi$. The quantities r_0 and u_0 are given by

$$\boldsymbol{r}_{0} = \pi^{-2} \frac{2d}{Q\beta J} \left[\Gamma - Q\beta J + \Delta \left(\frac{n-1}{\Gamma} + \frac{(\beta H)^{2}}{\Gamma^{2}} \right) \right] ,$$

$$\boldsymbol{u}_{0} = \pi^{d-4} (d/Q\beta J)^{2} \Delta ,$$
(5)

9

2802

where Q is the coordination number of the lattice. The explicit form of F, which has no spin dependence, will not be needed.

In the renormalization group procedure¹⁻⁴ a sequence of Hamiltonians is generated from the initial Hamiltonian. The parameters r_1 and u_1 , which characterize the sequence after enough iterations are performed so that irrelevant parameters are no longer involved, approach fixedpoint values if the starting parameters are chosen so that r_0 is at its appropriate critical value r_{0c} . As discussed by Wilson and Fisher,^{1,4} the Hamiltonian of Eq. (4) has a stable Gaussian fixed point for d > 4 and a stable non-Gaussian fixed point for d < 4. Taking over these results, one finds that to first order in ϵ and Δ the system we are considering has the same fixed point and critical exponents as discussed by Wilson and Fisher for a line of critical points.

If one neglects irrelevant parameters representing corrections to Eq. (4), the line of critical points is determined by the criticality condition $r_0 = r_{0c}(u_0)$. To obtain an expression for $\beta_c(H)$ in terms of interaction parameters and phase-space factors, one needs to know $r_{0c}(u_0)$ explicitly. However, even without this information an expression for the change in β_c due to the transverse field can be derived to first order in ϵ and Δ . Assuming that r_{0c} and Δ are of order ϵ and that $r_{0c}(u_0)$ can be expanded about its value for zero field, one finds

$$\beta_c(H) - \beta_c(0) = \Delta H^2 / (QJ)^3 .$$
 (6)

Unfortunately, it is not clear how to relate \triangle to

the physical parameters of a system with discrete rather than continuous spins.

On the basis of a random-phase calculation with d = n = 3 and with quantum-mechanical spins, Wang and Cooper^{5,6} suggest the existence of a first-order transition in the system we are considering. Within the limits of our calculation we see no evidence for a first-order transition,¹² a result which is consistent with Refs. 9 and 10.

In concluding, we point out that these results may readily be extended to a more general class of Hamiltonians with the form

$$\mathcal{K} = -\frac{1}{2} \sum_{\alpha=1}^{n-1} \sum_{\vec{\mathbf{R}},\vec{\delta}} J_{\alpha} \sigma_{\alpha}(\vec{\mathbf{R}}) \sigma_{\alpha}(\vec{\mathbf{R}} + \vec{\delta}) - H \sum_{\vec{\mathbf{R}}} \sigma_{n}(\vec{\mathbf{R}}) .$$
(7)

Since the coupling between neighboring spins is independent of σ_n , the σ_n integration in the partition function of Eq. (2) may be carried out to first order in Δ to yield an (n-1)-component effective Hamiltonian of the form discussed by Fisher and Pfeuty.² One obtains a line of critical points with the same fixed point and critical exponents as in the n-1 vector model.

ACKNOWLEDGMENTS

We are grateful to Dr. Norman Berk for arousing our interest in this problem with an explanation of its relevance to crystal-field effects in rare-earth magnetism. One of us (T. W. B.) appreciates the hospitality of the Physics Department of Temple University.

- *Work supported by NSF Grant No. GP 16336.
- ¹K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. <u>28</u>, 240 (1972).
- ²M. E. Fisher and P. Pfeuty, Phys. Rev. B <u>6</u>, 1889 (1972).
- ³K. G. Wilson, Phys. Rev. B <u>4</u>, 3174 (1971).
- ⁴K. G. Wilson and J. Kogut, Phys. Rep. (to be published).
- ⁵B. R. Cooper, *Magnetic Properties of Rare Earth Metals*, edited by R. J. Elliott (Plenum, New York, 1972), p. 17.
- ⁶Y. L. Wang and B. R. Cooper, Phys. Rev. <u>185</u>, 696 (1969).
- ⁷R. J. Elliott, Structural Phase Transitions and Soft Modes, edited by Emil J. Samuelsen, Eigil Andersen, and Jans Feder (Universitetsforlaget, Oslo, 1971), p. 235.
- ⁸R. B. Stinchcombe, J. Phys. C <u>6</u>, 2459 (1973); <u>6</u>, 2484 (1973); <u>6</u>, 2507 (1973).

- ⁹M. Suzuki, Prog. Theo. Phys. 49, 1451 (1973).
- ¹⁰P. Pfeuty, Ann. Phys. (N.Y.) <u>57</u>, 79 (1971); R. J. Elliott, P. Pfeuty, and C. Wood, Phys. Rev. Lett. <u>25</u>, 443 (1970).
- ¹¹A. Aharony and M. E. Fisher, Phys. Rev. B <u>8</u>, 3323 (1973).
- ¹²The critical properties of the Hamiltonian of Eq. (1) can readily be calculated in the spherical approximation [G. S. Joyce, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and M. S. Green (Academic, New York, 1972), p. 375] for all values of *n* and *d*. One evaluates the partition function of Eq. (2) exactly in the case $\Delta = 0$ and chooses Γ to be a function of β and *H* so that $\langle \vec{\sigma}^2 \rangle$ is normalized to a constant value. The calculation yields the usual spherical exponents (Joyce) and a critical line $\beta_c(0)/\beta_c(H) = 1 - H^2/\langle \vec{\sigma}^2 \rangle (QJ)^2$. There is no first-order transition.