Critical behavior of an Ising model of classical spins in a transverse field

Theodore W. Burkhardt

Department of Physics, Lincoln University, Lincoln University, Pennsylvania 19352

James D. Gunton*

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (Received 10 September 1973)

The critical behavior of an Ising model of classical spins in a transverse field H is derived for dimension $d = 4 - \epsilon$ using an ϵ expansion based on the Wilson renormalization group. To first order in ϵ the model exhibits a line of critical points $T_c(H)$ with the same fixed point and critical exponents as in previous studies of the Wilson effective Hamiltonian.

INTRODUCTION

Recently, the critical exponents for the classical Ising and n -vector models were derived for dimension $d = 4 - \epsilon$ using an ϵ expansion based on the sion $a = 4 - \epsilon$ using an ϵ expansion based on the
Wilson renormalization group.^{1–4} Here we presen a similar derivation, valid to order ϵ , for an Ising-like model of classical spins $\tilde{\sigma}$ in a transverse field.

The model we consider has the Hamiltonian

$$
\mathcal{H} = -\frac{1}{2}J \sum_{\vec{R},\ \vec{\delta}} \sigma_1(\vec{R}) \sigma_1(\vec{R} + \vec{\delta}) - H \sum_{\vec{R}} \sigma_n(\vec{R}) \,. \tag{1}
$$

 \vec{R} denotes the position of a point in the lattice and $\overline{R}+\overline{\delta}$ is the position of a neighboring lattice point. Each spin is coupled to its neighbors through the component σ_1 and to the transverse field H through the component σ_n . This Hamiltonian is of interest as a model of a ferromagnet with strong uniaxial anisotropy in a transverse magnetic field. Also, the case $d = n = 3$ with Pauli spin operators instead of classical spins occurs in pseudospin formalisms for a variety of physical systems,^{$5-8$} as, for exangle, in theories of rare-earth magnetism,^{5,6} where H represents a crystal field, and in theories of displacive-ferroelectric transitions,⁷ where H is related to the tunneling frequency. An extensive list of these and other systems is given by Stinchcombe.⁸ Various properties of the model have been examined using mean-field or random-phase approximations,⁵⁻⁸ expansions in the reciprocal of μ pproximations, expansions in the reciprocal the lattice-coordination number,⁸ expansions⁹ in powers of $1/n$, and expansions¹⁰ in H/J or J/H .

To investigate the critical behavior of the above model, we obtain a Hamiltonian of the form discussed by Wilson by integrating over the variables $\sigma_2 \cdots \sigma_n$ in the partition function, keeping contributions of order ϵ . We are then in a position to apply the results of previous studies of the Wilson Hamiltonian based on the ϵ expansion.¹⁻⁴ The calculation yields a line of critical points $T_c(H)$ with

the same fixed point and critical exponents as in the previous studies. Similar results have been obtained by Suzuki⁹ with the $1/n$ expansion and by Elliott, Pfeuty, and Wood with a series expansion $method¹⁰$

CRITICAL BEHAVIOR OF THE MODEL

Choosing a phase-space factor¹⁻⁴ of the form $\exp(-\frac{1}{2}\Gamma\overline{\sigma}^2 - \frac{1}{4}\Delta\overline{\sigma}^4)$ where Δ is of order ϵ , we write the partition function in the form

$$
Z = \int_{-\infty}^{\infty} \prod_{\vec{R}} \left[d\sigma_1(\vec{R}) \cdots d\sigma_n(\vec{R}) \right]
$$

$$
\times e^{-\Gamma \cdot \vec{\sigma}(\vec{R})^2/2 - \Delta \vec{\sigma}(\vec{R})^2/4} \Big| e^{-\beta \cdot \vec{K}} . \tag{2}
$$

Expanding Z to first order in Δ and then integrating over $\sigma_2 \cdots \sigma_n$, one may readily compute $\mathcal{R}(\sigma_1)$ defined by

$$
Z = \int_{-\infty}^{\infty} \prod_{\mathbf{R}} \left[d\sigma_1(\vec{\mathbf{R}}) \right] e^{-\beta \mathcal{K}(\sigma_1)} . \tag{3}
$$

A Hamiltonian of the type discussed by Wilson is A Hamiltonian of the type discussed by Wilson
obtained from $\mathcal{R}(\sigma_1)$ by introducing^{4, 11} Fourie: transforms $\sigma(\vec{q})$ of the spin variables $\sigma_1(\vec{R})$,

$$
-\beta \mathcal{K}_0 = -\frac{1}{2} \int_{\tilde{q}} (q^2 + r_0) \sigma(\tilde{q}) \sigma(-\tilde{q})
$$

$$
-u_0 \int_{\tilde{q}} \int_{\tilde{q}'} \int_{\tilde{q}''} \sigma(\tilde{q}) \sigma(\tilde{q}'') \sigma(\tilde{q}'')
$$

$$
\times \sigma(-\tilde{q} - \tilde{q}' - \tilde{q}'') + F(\Gamma, \Delta, \beta H).
$$
 (4)

The spin variable $\sigma(\bar{q})$ has been scaled to yield the coefficient of q^2 shown in Eq. (4) with the \bar{q} integration^{4, 11} over the interval $0 < |\mathbf{\bar{q}}| < 1$ instead of $-\pi < q_{\alpha} < \pi$. The quantities r_0 and u_0 are given by

$$
r_0 = \pi^{-2} \frac{2d}{Q\beta J} \left[\Gamma - Q\beta J + \Delta \left(\frac{n-1}{\Gamma} + \frac{(\beta H)^2}{\Gamma^2} \right) \right] ,
$$

$$
u_0 = \pi^{d-4} (d/Q\beta J)^2 \Delta ,
$$
 (5)

9

2802

where Q is the coordination number of the lattice. The explicit form of F , which has no spin dependence, will not be needed.

In the renormalization group procedure¹⁻⁴ a sequence of Hamiltonians is generated from the initial Hamiltonian. The parameters r_i and u_i , which characterize the sequence after enough iterations are performed so that irrelevant parameters are no longer involved, approach fixedpoint values if the starting parameters are chosen so that r_0 is at its appropriate critical value r_{0c} . As discussed by Wilson and Fisher,^{1,4} the Hamiltonian of Eq. (4) has a stable Gaussian fixed point for $d > 4$ and a stable non-Gaussian fixed point for $d < 4$. Taking over these results, one finds that to first order in ϵ and Δ the system we are considering has the same fixed point and critical exponents as discussed by Wilson and Fisher for a line of critical points.

If one neglects irrelevant parameters representing corrections to Eq. (4), the line of critical points is determined by the criticality condition $r_0 = r_{0c}(u_0)$. To obtain an expression for $\beta_c(H)$ in terms of interaction parameters and phase-space factors, one needs to know $r_{oc}(u_0)$ explicitly. However, even without this information an expression for the change in β_c due to the transverse field can be derived to first order in ϵ and Δ . Assuming that r_{0c} and Δ are of order ϵ and that $r_{0c}(u_0)$ can be expanded about its value for zero field, one finds

$$
\beta_c(H) - \beta_c(0) = \Delta H^2 / (QJ)^3 \,. \tag{6}
$$

Unfortunately, it is not clear how to relate Δ to

the physical parameters of a system with discrete rather than continuous spins.

On, the basis of a random-phase calculation with $d = n = 3$ and with quantum-mechanical spins. Wang and Cooper^{5, 6} suggest the existence of a firstorder transition in the system we are considering. Within the limits of our calculation we see no Within the limits of our calculation we see no
evidence for a first-order transition,¹² a resul which is consistent with Refs. 9 and 10.

In concluding, we point out that these results may readily be extended to a more general class of Hamiltonians with the form

$$
\mathcal{K} = -\frac{1}{2} \sum_{\alpha=1}^{n-1} \sum_{\vec{\mathbf{R}}, \vec{\delta}} J_{\alpha} \sigma_{\alpha}(\vec{\mathbf{R}}) \sigma_{\alpha}(\vec{\mathbf{R}} + \vec{\delta}) - H \sum_{\vec{\mathbf{R}}} \sigma_{n}(\vec{\mathbf{R}}) . (7)
$$

Since the coupling between neighboring spins is independent of σ_n , the σ_n integration in the partition function of Eq. (2) may be carried out to first order in Δ to yield an $(n - 1)$ -component effective Hamiltonian of the form discussed by Fisher and Pfeuty.² One obtains a line of critical points with the same fixed point and critical exponents as in the $n-1$ vector model.

ACKNOWLEDGMENTS

Ne are grateful to Dr. Norman Berk for arousing our interest in this problem with an explanation of its relevance to crystal-field effects in rare-earth magnetism. One of us (T. W. B.) appreciates the hospitality of the Physics Department of Temple University.

- *Work supported by NSF Grant No. GP 16336.
- 1 K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, $240(1972)$.
- $2²M$. E. Fisher and P. Pfeuty, Phys. Rev. B 6, 1889 (1972).
- 3 K. G. Wilson, Phys. Rev. B 4, 3174 (1971).
- 4 K. G. Wilson and J. Kogut, Phys. Rep. (to be published).
- ⁵B. R. Cooper, Magnetic Properties of Rare Earth Metals, edited by R. J. Elliott (Plenum, New York, 1972), p. 17.
- $6Y.$ L. Wang and B. R. Cooper, Phys. Rev. 185, 696 $(1969).$
- ${}^{7}R.$ J. Elliott, Structural Phase Transitions and Soft Modes, edited by Emil J. Samuelsen, Eigil Andersen, and Jans Feder (Universitetsforlaget, Oslo, 1971), p. 235.
- ${}^{8}R.$ B. Stinchcombe, J. Phys. C 6 , 2459 (1973); 6 , 2484 (1973); 6, 2507 {1973).
- ⁹M. Suzuki, Prog. Theo. Phys. 49, 1451 (1973).
- $^{10}P.$ Pfeuty, Ann. Phys. (N.Y.) 57, 79 (1971); R. J. Elliott, P, Pfeuty, and C. Wood, Phys. Rev. Lett. 25, 443 (1970).
- 11 A. Aharony and M. E. Fisher, Phys. Rev. B 8 , 3323 (1973).
- 12 The critical properties of the Hamiltonian of Eq. (1) can readily be calculated in the spherical approximation [G. S. Joyce, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1972), p. 375l for all values of n and d . One evaluates the partition function of Eq. (2) exactly in the case $\Delta = 0$ and chooses Γ to be a function of β and H so that $\langle \vec{\sigma}^2 \rangle$ is normalized to a constant value. The calculation yields the usual spherical exponents (Joyce) and a critical line $\beta_c(0)/\beta_c(H) = 1-H^2/\langle \bar{\sigma}^2 \rangle (QJ)^2$. There is no first-order transition.