
PHYSICAL REVIEW A VOLUME 9, NUMBER 6 JUNE 1g 74

Critical behavior of an Ising model of cLNssical spins in a transverse field
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The critical behavior of an Ising model of classical spins in a transverse field 0 is derived for

dimension d = 4 —e using an e expansion based on the Wilson renormalization group, To first order
in a the model exhibits a line of critical points T,(H) with the same fixed point and critical exponents

as in previous studies of the %'ilson effective Hamiltonian.

INTRODUCTION

Recently, the critical exponents for the classical
Ising and n-vector models were derived for dimen-
sion 4=4-~ using an ~ expansion based on the
Wilson renormalization group. '~ Here we present
a similar derivation, valid to order c, for an
Ising-like model of classical spins o in a trans-
verse field.

The model we consider has the Hamiltonian

K= ——,'J P a, (R)cr, (R+5) —Hg a„(R) .

H denotes the position of a point in the lattice and
R+ 5 is the position of a neighboring lattice point.
Each spin is coupled to its neighbors through the
component cr, and to the transverse field H through
the component a„. This Hamiltonian is of interest
as a model of a ferromagnet with strong uniaxial
anisotropy in a transverse magnetic field. Also,
the case d = n = 3 with Pauli spin operators instead
of classical spins occurs in pseudospin formalisms
for a variety of physical systems, ' ' as, for ex-
ample, in theories of rare-earth magnetism, ' '
where II represents a crystal field, and in theories
of displacive-ferroelectric transitions, ' where H
is related to the tunneling frequency. An extensive
list of these and other systems is given by Stinch-
combe. ' Various properties of the model have
been examined using mean-field or random-phase
approximations, ' ' expansions in the reciprocal of
the lattice-coordination number, ' expansions' in
powers of 1/nt and expansions" in H/Jor d/H.

'

To investigate the critical behavior of the above
model, we obtain a Hamiltonian of the form dis-
cussed by Wilson by integrating over the variables
v, ~ ~ g„ in the partition function, keeping contribu-
tions of order ~. We are then in a position to apply
the results of previous studies of the Wilson Ham-
iltonian based on the ~ expansion. ' ' The calcu-
lation yields a line of critical points T,(H) with

the same fixed point and critical exponents as in
the previous studies. Similar results have been
obtained by Suzuki' with the 1/n expansion and by
Elliott, Pfeuty, and Wood with a series expansion
method io

CRITICAL BEHAVIOR OF THE MODEL

Choosing a phase-space factor' 4 of the form
exp(-ll'a' —-,'oa ) where h is of order e, we write
the partition function in the form

II [da, (R) da„(R}
R

-1 Cr(R) /2-b, O(R /4i -RXe ]8 (2}

A Hamiltonian of the type discussed by Wilson is
obtained from X(a,) by introducing " Fourier
transforms a(q) of the spin variables a, (R},

—PX,=- — q'+r, 0 q 0 -q

—uo 0 qaq'cr q

x a(-q —q'- q")+ F(I', 4, PH) .

The spin variable a(q) has been scaled to yield the
coefficient of q shown in Eq. (4) with the q inte-
gration'" over the interval 0& ~q~& 1 instead of
-m & q~ & m. The quantities r, and u, are given by

r, =m ' I' —QPJ+4 +, 2d P n —1 (PH}'

u, = v 4~(d/qPd }'O. ,

Expanding Z to first order in 6 and then integrating
aver a, ~ a„, one may readily compute X(a,) de-
fined by
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where Q is the coordination number of the lattice,
The explicit form of E, which has no spin depen-
dence, will not be needed.

In the renormalization group procedure'~ a
sequence of Hamiltonians is generated from the
initial Hamiltonian. The parameters r, and u„
which characterize the sequence after enough
iterations are performed so that irrelevant pa-
rameters are no longer involved, approach fixed-
point values if the starting parameters are chosen
so that r, is at its appropriate critical value ro, .
As discussed by Wilson and Fisher, '~ the Hamil-
tonian of Eq. (4'} has a stable Gaussian fixed point
for d ~ 4 and a stable non-Gaussian fixed point for
d & 4. Taking over these results, one finds that
to first order in z and 4 the system we are con-
sidering has the same fixed point and critical
exponents as discussed by Vhlson and Fisher for
a line of critical points.

If one neglects irrelevant parameters repre-
senting corrections to Eq. (4), the line of critical
points is determined by the criticality condition

ro =r~(uo). To obtain an expression for P,(H) in

terms of interaction parameters and phase-space
factors, one needs to know r~, (u,) explicitly. How-

ever, even without this information an expression
for the change in P, due to the transverse field
can be derived to first order in e and h. Assuming
that r„and h are of order e and that r„(u,) can be
expanded about its value for zero field, one finds

Unfortunately, it is not clear how to relate a to

the physical parameters of a system with discrete
rather than continuous spins.

On, the basis of a random-phase calculation with

d = n =3 and with quantum-mechanical spins„Wang
and Cooper" suggest the existence of a first-
order transition in the system we are considering.
Within the limits of our calculation we see no
evidence for a first-order transition, "a result
which is consistent with Refs. 9 and 10.

In concluding, we point out that these results
may readily be extended to a more general class
of Hamiltonians with the form

Since the coupling between neighboring spins is
independent of o„, the o, integration in the partition
function of Eq. (2) may be carried out to first
order in s to yield an (n —l)-component effective
Hamiltonian of the form discussed by Fisher and

Pfeuty. ' One obtains a line of critical points with

the same fixed point and critical exponents as in
the n- 1 vector model.
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'2The critical properties of the Hamiltonian of Eq. (1)
can readily be calculated in the spherical approxima-
tion [G. S. Joyce, in Phase Transitions and Critical
Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, 1972), p. 375l for all values
of n and d. One evaluates the partition function of
Eq. {2}exactly in the case 6 =0 and chooses I' to be
a function of P and H so that (o Q is normalized to a
constant value. The calculation yields the usual
spherical exponents (Joyce) and a critical line
Pc(0)j~c(H) =1—H j(P )(QJ) . There js no first-order
transition.


