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It has recently been suggested that a radiative correction of relative order & lno.' may con-
tribute to the 1s2s 3S&-1s 80 magnetic dipole transition of the heliumlike ions. The low-fre-
quency contributions to the correction are evaluated and shown to vanish.

The magnetic dipole transition 1s2s'5, —1s3'S,
+hv of helium and the heliumlike ions is the dom-
inant process in determining the radiative lifetime
of' the 1s2s'S, metastable state. Since the nonre-
lativistic transition matrix element vanishes, it
is necessary to evaluate the relativistic and finite
wavelength corrections of relative order 0.'Z' to
obtain a nonvanishing transition probability' '.
These terms have been evaluated and decay rates
predicted for the heliumlike ions up to Fe XXV.'
The experimentally measured life times for HeI, 4

Cl XVI, ' Ar XVII, and Ti XXI,' are all somewhat
shorter than the predicted values, suggesting that
higher-order radiative corrections may be neces-
sary to bring theory and experiment into agree-
ment. It is tempting to associate the particularly
large 30% discrepancy in the case of heiiumiike
Cl XVI' with the large nuclear magnetic dipole
and electric quadrupole moments, but as shown
in Ref. 1, these terms are smaller by a factor of
O(~n, /m„„,). Feinberg and Sucher' have suggested
that there is a self-interaction radiative correc-
tion of order a in@ relative to the leading nonvan-
ishing term. In this Comment, the low frequency
contributions to the n lno. correction are evaluated
and shown to vanish. Other corrections of relative
order ~ and ~'Z' are too small to alter signifi-
cantly the theoretical lifetimes. Some of these ef-
fects not involving self-interactions have now been
calculated in the Dirac-Hartree-Fock approxima-
tion. '

The plan of the calculation parallels that for the
evaluation of the Lamb shift '. Since contributions

to the transition moment arising from the electron-
electron interaction are smaller than the one-elec-
tron terms by at least a factor of i/Z, it is suffi-
cient to consider the corresponding one-eLectron
2s-1s transition in hydrogenic ions. The one-elec-
tron radiative corrections correspond to the dia-
grams shown in Fig. 1. As for the Lamb shift,
the contributions from low- and high-frequency
virtual transverse photons should be evaluated
separately. Only the low-f requency contribution
is discussed here.

The diagram 1(a) corresponds to the third-order
interaction-energy matrix element

U{3) 2o'
PdP ~ (U )n,n'(4s~ &tn) ' (kn', ~W~)

where u is the fine-structure constant, 4 is the
virtual-photon energy, K is a high-energy cutoff,
and U ' is the first-order interaction-energy
operator for a magnetic dipole transition of ener-

(b)

FIG. 1. One-electron radiative corrections to the
spontaneous emission of radiation.



2800 G. %. F. DRAKE

gy @~=EA - EB. In the nonrelativistic limit, the
M = 0 component is given by

U = — L,+ p, , +O(n'Z'} ic 2mc

p, =(eK/2mc}o, .

The transition rate is obtained from

N = (2w/g') I U„„aI '(Jt/wc) (3)

The L, term in Eq. (2} makes no contribution
when (5) is summed over intermediate magnetic
substates, leaving only the p, , term.

To the same approximation, the sum of diagrams
1(b) a,nd 1(c) yields

K

n

(U'")a. a (U"'}a.a

Since (p,)„„=(p, ,}a a =(p, ,)„„

for each contributing
intermediate state n, Eq. (5) and (6) sum to zero
in lowest order. In the absence of cancellation,
these terms would contribute a correction of
O(u' lno. ).

The analogous calculation for the Lamb shift
yields terms containing o' in(E/E, „),while the
high-frequency part contributes terms involving
u' In(A/m), where A, is an assumed small photon
mass. Use of the relationship ln~=ln2E-+
yields a final result independent of both ~ and K,
but containing terms of O(o' lna}. Since the low-
frequency part of the present calculation is inde-

(j ) (3)
UA~B UA~B + UA~B +

where A is the radius of a sphere in which the
emitted photon wave function of definite angular
momentum and parity is normalized, and U(A" B
contains the first-order contributions of O(a'Z'}
evaluated previously, " in addition to the terms
displayed in Eq. (2). Since the matrix element
(Is I

U '~ I2s) is O(u'), the corrections to be evalu-
ated are O(n') and O(n'lna}. In the nonrelativistic
limit, a in Eq. (1) is replaced by v/c and U~'1 has
only diagonal matrix elements so that

(3) 2a
~dit ~ (U )n.n(Way van) (any vkA)

3 wc', Z (E„Ea+k)(E„E„+0)

pendent of K to order a', the high-frequency part
must be independent of In(&/m) to the same order
to avoid an infrared divergence in the limit ~-0.
Thus the same terms which give the dominant con-
tribution to the Lamb shift do not contribute to
the magnetic dipole transition probability.

A detailed calculation of the high-frequency part,
including off-mass-shell and binding-energy ef-
fects, is necessary to prove that there are no
other sources of a'in@ terms. Such a calculation
is lengthy and intricate, but it seems likely on
physical grounds that when all such terms are in-
cluded, they will sum to zero. For example, the
leading term in the anomalous electron magnetic
moment is of order n and not a in+, One would
certainly expect an anomalous-magnetic-moment-
type correction of O(o') from the high-frequency
contributions to the magnetic dipole transition.
The interaction-energy operator which gives rise
to the anomalous magnetic moment of an electron
iS

oU = -(p, o/2w)(pZ X —i/a E), ~

where p =elf/2mc, JC = VxA, E =-(I/c)SA/et, and A

is the vector potential of the emitted photon. The
equivalent nonrelativistic operator for magnetic
dipole transitions obtained as in Ref. 1 by means
of a Foldy-%outhuysen' transformation is

6U~ =(pc./2w)[o X(1 —p'/2m'c')

-JC ~ r x (V Vx o)/2m c') ] (S)

with V= —Ze'/r. The above can be written in the
form

oU =(o/2w)[U&'& -X ~ px(px5)/4mc']

where Ul ~ =Q, X and Q, is given by Eq. (30) of
Ref. 1. For the 2s —1s transition of hydrogenic
ions, the matrix element is

& lsl U'"+ oUNa I 2s) = (1+n/4w)(1sl U"'
I 2s&

(10)

since the matrix element of the second term in

Eq. (9) is exactly half that of the first. This re-
sult is only approximately valid for the ls2s 'S,

1& Sp trans ition of helium, but is a good approx-
imation for large values of the nuclear charge.
There may, of course, be other contributions of
O(u') arising from the high-frequency part or
from virtual transitions to negative frequency
states.
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