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An attractive é6-function potential is introduced in a Fermi gas. The contribution to the
liquid-impurity correlation function of bound states is calculated exactly in a Green’s-func-
tion formalism. The exact results are compared with those obtained in a self-consistent ap-
proximation and the range of validity of the latter is discussed.

I. INTRODUCTION

The many-particle problem has been the major
difficulty in the understanding of the physics of
condensed matter. It has been the subject of an
extensive literature for many years.'

Several theoretical techniques have improved
the understanding of many-particle systems sub-
stantially, such as Green’s functions, graphs,
self-consistent-field theory, and so on. One of
the most successful approaches in dealing with
quantum liquids is the self-consistent-field ap-
proach of Singwi ef al.,? which we shall abbreviate
as SCA. We must remind the reader that Singwi’s
theory is one of the many self-consistent-field
approximations in the literature, but owing to the
extremely good results of the theory for the elec-
tron gas it is the one approximation which shall
concern us in this paper.

The ansatz which allows the SCA has been dis-
cussed under several different forms but to give
a brief account of the method we shall use the
original, and to our understanding, the most intu-
itive one. The heart of the matter is to assume
that long-range macroscopic fields can be dealt
with semiclassically, as well as the correlation
functions which generate them.

In order to obtain a self-consistent field acting
on the one-particle distribution function one de-
couples, and this is the ansatz, the two-particle
distribution function into a product of the two
one-particle distribution functions times the static-
pair-correlation function

Fo(F 1,005 Ty Ba [ £)=£1(F 1, Do; 1 (85, Dy; g (T, = F,) .
(1.1)
This decoupling scheme leads to an integral equa-
tion for g(r) which can be solved by numerical
methods.
The SCA was later extended by Sjolander and
Stott® to deal with the case of the interaction of
an electron gas with impurities. The method is

very attractive and straightforward but, as the
authors mention in their paper, has not been suc-
cessful for positive impurities of infinite mass.
Also, the calculated positron annihilation rate in
metals broke down in a similar fashion to the
more conventional T-matrix approaches; i.e.,

it shows an anomalous enhancement in the low-
density region.*

A short time after the Sjolander and Stott paper,
Bhattacharyya and Singwi® calculated again the
positron annihilation rate in metals obtaining,
through a slightly different ansafz, a very nice fit
with the experimental data. It was not clear,
nevertheless, if bound states could be accounted
for in the theory and, more generally, when the
SCA would be correct even in the absence of bound
states.

In order to help clarify some of these problems
a study has been carried out of a simple model
system. The induced particle density has been
calculated around a fixed 6-function potential in
a noninteracting Fermi gas. For this system a
closed-form expression can be obtained for the
induced particle density and compared with the
result of the SCA. In this way the validity of the
approximate method may be tested.

A well-known problem of the three -dimensional
6-function attractive potential is that it must be
renormalized in order to give finite results. This
renormalization procedure and the solution for
free particles is shown in Sec. II.

In Sec. III, a brief account of the SCA is pre-
sented, the renormalization is again discussed,
and a closed solution is found.

In Sec. IV the exact Green’s-function solution
is found. Four cases are discussed for the re-
normalized 6 potential. It is shown that the bound-
state solution is outside the scope of the SCA.
Moreover, only for weak repulsive potentials is
the approximation correct but, in this case, it
is exact up to second order in the interaction. In
an intermediate region the SCA is not exact but
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may be a good approximation if the bound-state

contribution is not preponderant. The case of an

interacting Fermi system is briefly discussed

in Sec. V, where the results are analyzed.
Numerical results for the SCA and for the exact

Green’s-function solution are compared and shown

in several graphs.

[I. 6 POTENTIAL FOR FREE PARTICLES

The existence of bound states for the three-
dimensional attractive 6 potential is well estab-
lished in the literature. Giittinger et al.® have
shown that the bound-state problem is essentially
connected to resonance effects and that for a
three-dimensional attractive  function, the exis-
tence of a bound state requires an interaction
strength that goes to zero in such a way that reso-
nance states are preserved in the limiting pro-
cesses. In this section we rederive their results
both for completeness of our exposition and for
introducing the renormalization procedure, which
must be performed in every step of our work.

Consider one particle, without spin, in the
presence of an attractive, very sharply localized,
potential ¢(r) of strength A, which is put at the
point ¥ =0, and is given by a 6 function,

P(r)=A6(T). (2.1)

The Schrodinger equation for that particle in a
real space is

—V2Y(F) +AB(T)Y(T) = Ey(T) . (2.2)

Equation (2.2) may be rewritten in momentum
space and solved for y(p). (In this work we are
using units which 2m =%=1.) We obtain

ATy YD) ) (2.3)

¥(p) = E-p°

If we add Eq. (2.3) for all p’s, an implicit equation
for E follows:

1 1
- = . (2.4)
A ;E_pz

The right-hand side of this equation is divergent
for all E’s. However, this divergence may be
eliminated by adding and subtracting into Eq. (2.4)
a term

K
1

Then, we may rewrite Eq. (2.4) in terms of a
renormalized interaction 3 as

where K — « at the end of the calculations. From
this last equation we find for the energy E of the
bound state the expression

©

V2
l+-—1—K=IE| tan'l(‘E[l{x/z>+ 1
=K

A 2n? 2m? E-p*’

(2.6)

We now perform the limiting processes A -0 and
K-« in such a way that

. 1.1 )1
A*l(}?_m(A +2n'2 K> "5 (2.7)
where 1/3 is finite and positive. Then, the energy
for the bound state is given by

E,=-167%/8 2.8)

for 3>0. If 5<0 there is no bound-state solution.
In Fig. 1 we show schematically the graphical
solution of Eq. (2.5) for 3>0.

If we define in a square well the potential as

V=2AK?®, (2.9)
the condition that

1 1
itk

be finite implies that K/x~1, where X is the wave-
length of the bound state, A =27(E - V)™"2, and

1/K is the range of the potential. Resonance states
are thus preserved in the limiting processes, Eq.
(2.7), with 1/8 being a measure for the proximity
to resonance.

[II. SELF-CONSISTENT-FIELD APPROXIMATION

Recently, Singwi et al.? developed a new treat-
ment for the dielectric function of metals for the
metallic density range (1 <7 <86). (r,is defined
in the usual way, namely, » =7,/a,, where 7, is
the average particle distance and ¢, is the Bohr
radius.) In their theory the short-range correla-
tions, responsible for the local-field correction,
are calculated in a self-consistent way, and the
dielectric function becomes a functional of the
electron-gas self-correlation function g(r).

The ansatz, in the semiclassical case, replaces
the two-particle distribution function in the Liou-
ville equation for the one-particle distribution
function (¥, p|¢) by

L@ 5,0 [0 =f,(F,BIOf,(F, ' [0g(E® - T),
(3.1)

thus making it possible to obtain a closed-form
scheme for calculating the pair-correlation func-
tion g(r) as follows.
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The Fourier transform of g(r) -1 is
1/p)[S@) -1}, (3.2)

where p is the average density of the fluid and

S(@) is the static structure factor. The structure

factor is related to the susceptibility of the fluid

through the well-known relation

- 1 ~ -
S@)=~-— f Im(x(q, w)]dw . (3.3)
o %
With the ansatz used above, the susceptibility of
the fluid becomes

O(&) w)
1-9@x(q, w)
where x,(d, w) is the susceptibility of a noninter-
acting system with the same mass, density, and

statistics as the one under consideration. y(q)
is the self-consistent potential, given by

1D 0@+ [ 3L

X@, w)= (3.4)

$@)[(sa-q)-1]
(3.5)

and here ¢(q) is the bare particle-particle inter-
action potential. The susceptibility is now a func-
tional of S(qQ) and the scheme is thus closed.

The SCA represents a definite improvement on
the theory of the electron gas, several experi-
mental results being explained theoretically from
first principles, as the reader can verify in a
large number of papers which use this theory as
a starting point.”

Sjdlander and Stott® have extended the theory
for the case of two interacting systems of dif-
ferent particles, a and b, and again a self-con-

2n)? ¢

|
pz (E-p2) |

'o[\/]
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sistent procedure was presented to calculate the
cross-correlation function g®*(r). This new ap-
proach can be used to treat particles with infinite
as well as finite masses with positive or regative
charges.

If one of the systems, b say, is very dilute and
has a very large mass, the calculation is simpli-
fied a great deal and the change of density (p%(q))
of the system @ around the b particle may be cal-
culated, in a momentum space, simply as

“(d)x8(d, 0)
- ¥*%@)x5(q,0) ’
where x(q, 0) is the free a-particle susceptibility

and d)""(ﬁ) is the self-consistent interaction given
by

(p"@)=7 (3.6)

~ - R ’)
ab = Aab ab —-qa’
1@ =¢ (q)(1+f(27,)3 Z 7 @-a99). 8.7
Here, y(Q) is related to the cross-correlation
function g2(r) by

yo@= [ dF T [ 1], (3.8)

$®(q) is the Fourier transform of the a-b inter-

action potential, and the induced density of the
system a in terms of y%(q) is

(p%@)) = p&r®(@) . (3.9)

Looking at Eq. (3.9) we see that the induced density

is now directly related to the cross-correlation

function g®(r) through the equilibrium density p¢.
To discuss the problem we have in mind, we

assume an attractive 6 interaction between a and

b and neglect the interactions among a particles.

Assuming an attractive 6 interacting potential of

FIG. 1. Schematic graph-
ical solutions of Eq. (2.5)
for 8 > 0. The two sides of
that equation are plotted vs

-1/4 T VEI
/

E E. Its intersections give
the scattering-state ener-
gies for E > 0 and the bound-
state energy for £ < 0.
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strength A acting between ¢ and b, we obtain the
following equation for the induced density:

. . 1 .
(p*Q))=Axs(q,0) 1+2—7T?FE fdPP2<p“(P)/>-
(3.10)

This equation may be solved algebraically by inte-
grating both sides in § and grouping the terms. We
then have the result

- - 1 1 -
0@ =360 (} - 5 [ #0™36,0))
(3.11)

In Eq. (3.11) we see that the second term in the
denominator is divergent, as y3(p,0) goes as p~2
for large p’s. We may eliminate this divergence
following the same procedure as in Sec. II, re-
normalizing the potential, defining B as

1 1 j’
B _A 27;, p dt)[) XO py (3-12)
so that at the end of the calculations we shall
make A—~0 and K~ « in such a way that 1/3 be-
comes finite. We end up with an induced density
for a particles given by
(p%@)) = px3(d, 0) (3.13)
We may now calculate (p%(r)) by taking the in-
verse Fourier transform of Eq. (3.13),

(0@ =22 [ dg qsin(arxs@, 0 (3.14)

Here ¢ is taken in units of Fermi momentum g,
and 7 in terms of ¢;'.

To clarify the » dependence of the induced density
we separate the right-hand side of Eq. (3.14) into
two parts which have different » behavior:

(pa(r)) = ﬂtb qu Sin;q'r BqF quqsm(qr)

X(xS(E,O) +£2—) ,

where 7=2¢q,/37°. The first term in the right-
hand side of Eq. (3.15) diverges as 1/» when » -0,
while the second term is well behaved for all »’s.

Finally we obtain an expression for the cross-
correlation function,

(3.15)

g(F) =1 +(p(r))/p?. (3.18)

Inserting the induced density obtained in Eq.
(3.15) into Eq. (3.16) we may write

= Bait
ab =1 -
g®(r)=1 4mplr

+—égf3—quqsin(qr) x“(a 0)+_T_
anpg’}’ 0 ’ q2 .

(3.17)

We calculated numerically g®(r) assuming a
noninteracting Fermi gas for several densities.
In Fig. 2 we plot the numerical result of [g(r)
-1]/Bqp vs qpr for » =4. For large values of
r, g®(r) exhibits an oscillatory behavior which is
inserted in Fig. 2 expanded X2 horizontally and
x40 vertically. Curves for other densities as well
as for a-a interacting systems via a Coulomb
potential were omitted since they do not differ
substantially from the result shown in Fig. 2.

IV. GREEN’S-FUNCTION SOLUTION FOR THE
§-FUNCTION POTENTIAL

We briefly summarize the theory to be used in
this section.® The standard problem of one-
particle quantum theory is that of the free particle
acted upon by a local potential qb(f). The Green’s-
function approach is known to be one of the most
successful theoretical tools to deal with such
problems. In general, one may solve, formally,
the Green’s-function equation for an arbitrary

10F
osl rs = 4
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FIG. 2. [g°%) —1]/Bqr Vs qp7 for r,=4. The insert

shows the oscillatory part expanded x 2 horizontally and
x40 vertically.
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system by the use of Dyson’s equation,
G=G,+G,ZG, (4.1)

where G, is the free-particle propagator and T is
the summation of all irreducible self-energy
graphs, i.e., those which cannot be divided in two
by the cut of just one particle line. In the simple
case of an external potential acting on an assembly
of noninteracting particles, Dyson’s equation re-
duces to that of the one-particle problem with the
free propagator G, being considered in the un-
perturbed noninteracting medium. Dyson’s equa-
tion assumes the simple form

G=G,+GyoG, (4.2)

which corresponds to the well-known Brillouin-
Wigner perturbation series through the method of
the resolvent.

We again assume an attractive 6 potential acting
on a noninteracting Fermion gas. We take this
potential to be located at point T =0. We now solve
the problem using Dyson’s equation for the exact
Green’s function of the gas in terms of the free-
particle Green’s function G,(t, ', E) of the un-
perturbed noninteracting medium,

G, r',E)=G,(T,T', E)
+ f GO(;! 'r’”, E)¢(;")G(;”, ;/, E) d;ll ,
(4.3)
where
o(T)=Ad(r) with A <0 (4.4)
and
. dp eiE (r-1"
GO(r>r )E) (2,”)3 E - E’*‘ln; ’ (45)
with
my=n>0 if [pl>p,
==n if ‘5|<p}r
Solving Eq. (4.3) for G(r,T’, E), we find

- >

G(r,r',E)

AG,(T,0,E)G,(0,T', E)

— o] (
=Golr, 7, E) #1206 0,0, E)

(4.6)

We are interested in the density change of the
gas due to the external potential. We are thus
interested in finding 6G(T, T, E), which can be
obtained directly from Eq. (4.6) as

8G(r,T,E)=G(T,T,E) -G,(T,T,E)

-

_AG(r,0,E)G,(0, 1, E)
1-AG,0,0,E)

(4.7)

We now define the Fourier transform of
6G(T, T, E):

6C@, B)= [ dF e TG, F, B) @.8)

or

GG—(&,E) - J’(dp GgL(p)E)GQ(p+q’E) (4.9)

21)° 1/A-G,(0,0,E) ’
where G,(p, E) is the Fourier transform of
Go(r =T/, E). The denominator of the right-hand
side of Eq. (4.9) may be evaluated by noticing that
for real E

-

(& EN(E;
Go(0,0, E)= J(z ¥ E3 Pder»E'(E—EET)

-i6,7N(E), (4.10)

where P is the principal part of the integral,
N(E) is the density of states and b is defined as

6p,=1 for E>E,
= -1 otherwise.

For complex E we keep the complex integral rep-
resentation as in Eq. (4.5) for r=71'.

G,(0,0,E) is divergent in the same way as the
divergences found in Secs. Il and III. We follow
again the renormalization procedure, defining
1/8 as

. 1 f‘f g 1 )_1
A—»l%.mx—--o(A B ARCE Ez) B’ (4.11)
Thus, Eq. (4.9) may now be rewritten as
. dp 1 1
0@, ) @) E-Eg+iny E-Ef.;+ing.;
1 EN(Ep) . )‘*
< PdepE (E-ED) i8N (E) .
(4.12)
The induced density is given by
Q) =-i fz 6Gd, E) . (4.13)

We must therefore integrate Eq. (4.13) for all
E’s to obtain (p(q)). The integration is performed
by closing the contour on the upper half of the
complex plane, avoiding the cut 0 <E <E, as
shown in Fig. 3, and encircling the pole E, if
B>0. Otherwise, no pole exists and the integra-
tion reduces to that around the cut.

I 8>0, the contribution C, to {p(@)), I,, is
given by

1,=~/@,E /f dEp(EN(E;),)Z, (4.14)
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where
- Y . N(E$)
f(q,E)—JO. dEP(E—E;)(E—E;;) (4.15)
and
E,= -1672/3. (4.16)

The integrals shown above may be calculated
exactly, as shown in Appendixes A and B. We
then may rewrite Eq. (4.14) as

=msql v [% _tan_l(&l_g;l‘_”)] 4.17)

11
The evaluation of I,, the integral around the
branch cut, is shown in Appendix C. Its contri-
bution for the induced density (p(q)) is transcribed
below:

I,= !B—P J; dE3N(E3)

n(E3)
% ((E; “E;.)[1/F + TN (E7)]

pta

- - - 2a72 - ’ .
Ez.;-E)[1/F + PN E3.7)]

ptq

where n(E;) =1 for E; <E; and n(E;) =0 for
E;>E; were introduced to avoid an explicit re-
striction on the region of E7-integration.

We now examine in detail the induced density of
Fermi particles due to the § attractive potential
as a function of the renormalized potential B.

A. Case I: 1/Blarge, 1/°>>7°NY(E,)

a. 1/>0
. 32
(p(@) = 2ELLE
8 [m _ (81)
B [2 tan Pre } (4.19)

E plane
| Cs
c, c, c,
&, <
Ep [ I T real axis
G

FIG. 3. Contour for evaluation of {p(d)) given by Eq.
(4.13).

Only the bound state contributes to the particle-
density enhancement, the other contributions being
of higher order. For large ¢’s, (p(q)) goes as
1/q, leading to a divergence of the particle density
around the impurity of the form 1/#®. This limit
result is the same as that obtained in Sec. II for the
one-particle problem.

In this case,

)2 1/2
g(?)_]:l (r)| = I-Mz—e‘zlgb“/z’ (4.20)

Po 2mp,r
and
fd?po[g(f») -1]=1, (4.21)
this being the contribution of the bound particle.
b. 1/B<0

(p@) = Bxo(d,0)
“ (E3) -n(E3+3)
= AP dE"N(E’)n—p—'——Lq—.
{ PP ER-ERg
(4.22)

Singwi’s result? is obtained in this case up to
terms of the order °. The divergence of g(r), for
r—=0, is of the form 1/». The plot of g(r), for
r,=4, is shown in Fig. 2. Only scattering states
are important and Singwi’s theory is exact to first
order in 8.

B. Case II: 1/8small, 1/8°<<n’NY(E,)

a. 1/8>0
-, 87 [71 _, /87
=— |~ —tan ‘(—-ﬂ
(@ =273 e
+2—2P f n(Es) 1
B . pN(E;) E;-E;.3
(4.23)
or, performing the integration,
-~ 8m \[m 8n
=— J| >~ —tan™' ——ﬂ
(@ -2% {[2 ( ”
2 1 1+x
1 %2 gy —In . (4.24)
+— x 1-x
21 J .

There are now two contributions to g(?), one
due to the bound state and another due to scattering
states. Both are of the same order B~'. The
bound-state contribution is of the same form as
case Ia, but the scattering contribution is different
from that in Singwi’s theory.? The difference
is due to the fact that in case I the T matrix is es-
sentially independent of the scattered-wave ener-
gies, while in case II the effective T matrix is
energy dependent and thus the simple effective-
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potential approximation is no longer valid. g(r)
shows a combined behavior, the bound-state con-
tribution predominant for small »’s, going as
1/7%; the scattering-wave contribution goes as
1/7 in this limit (see Fig. 4).

b. 1/8<0
=4 (29 1 |1+x
b @)=25 ) dx ~ln|3— (4.25)

The same comments as those in case Ila apply
here, the bound-state contribution being subtracted
off.

V. DISCUSSION AND COMPARISON OF THE
RESULTS: CASE OF INTERACTING PARTICLES

We now summarize the results found in the
previous sections. The self-consistent approach
of Singwi ef al. does not take into account bound
states for the potential chosen in this paper. We
believe this to be true and extendable for any
potential. The self-consistent approach is correct
for a range of energies where the T matrix is
approximately energy independent. For an ener-
gy-dependent 7 matrix their result is only qualita-
tively correct.

One might expect that the particle-particle inter-

FIG. 4. [g(») —1]1Bqp vs qg7. Curve 1 is the bound-
state contribution calculated for fq =87 and curve 2 is
the scattering-state contribution.

action would minimize the imperfections of the
theory and help in preventing the formation of
a bound state. We believe, nevertheless, that
our conclusions would still be the same and, in
the case of a 6 potential, the replacement of
¢(@) =B by

@) =58/€@) (5.1)

does not affect essentially our results.

We could start, from the beginning, with the
shielded potential ¢(q) but this procedure, in our
point of view, would only complicate the calcula-
tions and obscure the interpretations. The correct
€(@) would, by the way, be the particle—test-charge
dielectric function, which in Singwi’s theory is
given by

€(@,0)=1 - 3@)x,(d, 0), (5.2)

where §(q) is given by Eq. (3.5). The form and
properties of this dielectric function are discussed
elsewhere.®

The problem of the already mentioned anomalous
enhancement of the positron annihilation rate for
a low-density electron gas may be due to the in-
applicability of the self-consistent approach for
such densities.

An anomalous result is also obtained by Sjolander
and Stott in the case of an attractive Coulomb in-
teraction between an infinitely heavy impurity and
the electron gas. Again a bound state or energy-
dependent effective potentials may be responsible
for the incorrect results.

VI. CONCLUSIONS

In this paper we studied a 6-function attractive
potential embedded in a Fermi gas. We compared
the exact results obtained from a Green’s-function
calculation with those obtained for a free particle
and for a Fermi gas in the SCA. The range of
validity of the SCA was analyzed, the conclusion
being that no bound-state contribution is included
in the SCA and that its validity is restricted to
a range where the effective potential is essentially
energy independent.

We conclude that, if our treatment may be ex-
tended for other potentials, the SCA is correct
whenever the system is far away from a bound
state and, better yet, for large and repulsive
potentials. We have shown, moreover, that it is
not permissible to add the SCA result and the bound
state one since for the region where both occur the
T matrix is energy dependent and the SCA fails.

APPENDIX A: DETERMINATION OF L,

For B>0, the integral given by Eq. (4.12) has
one pole corresponding to a negative real E. The
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energy at the pole, E,, is determined by the equa-
tion

_EN(E?F)
dePE*(E =5 (A1)

where

N(E7)=(1/4m%)|E;|V? (A2)

is the density of states for spinless particles.

Substituting N(E;) into Eq. (Al) the integral can
be evaluated straightforwardly leading to the fol-
lowing expression for E,:

E,=-167%/8 . (A3)

APPENDIX B: EXACT CALCULATION OF £(,E, )

We are interested in obtaining the solution of
the integral given by Eq. (4.15), for E=E,, which
is

N(E3)

76, )= [ aEs e ®

This equation can be rewritten in terms of p and
q as

1

f(zn &, -PIIE, (B2)

-(p+q)?]"

Performing the angular integration in Eq. (B2)
and noting that the integrand is an even function
of p, that equation reduces to the expression

|Ey|+(p ~q)?
[E,|+(p +q)?* °

J@ ) =15y f ‘#’(IE|+1>)

(B3)

We can obtain a considerable simplification if
we use the following equivalence:

[

n[1+(x - y)?]

-

which is easily verified by an integration by parts.
Then, using this relation, we write Eq. (B3) as

n[1+(x+y)?], (B4)

1@, E,) =(1/8m¢)I@, E,), (B5)
where
- N e
I(q’Eb)_J:wtip(lEb(+p2)ln[lEbl+(p Q)]-

(B6)

To compute this integral we firstly take the ¢
derivative I'(q, E,) of I(, E,) which we find to be

O. HIPOLITO AND R. LOBO 9

-2p(p -9
. (BT)
TE,pILIE, [+ (=]
The integral can be easily performed by residues,
by closing the contour on the upper half of the
complex plane encircling the poles i |E, |2 and

r@5)- [

q+i|E,|?. We obtain the result
e _ —417‘Ebl
I(q)Eb)‘4IEb|+q2- (BB)

To determine I(q, E,) we integrate Eq. (B8) with
1(0,E,)=0. We obtain

1q, E,) =2mtan" "2 |E,|Y?/q) - 1*. (B9)
Finally we write Eq. (B5) as

fann 2BL )
q

s oy L
fQ,E,) “ g 3 (B10)

APPENDIX C: DETERMINATION OF /,

We want to find ,, the E integral of 6G(J, E)
along the curves C, and C, shown in Fig. 3. [, is
given by

. (BFdE . _- - -
I=-i f "2 (56, B) - 66+, £, (1)

where 6G(d, E), for complex E, is given by
E3) 1

E~
fd PE - E’+zan EP*Q+”’D*Q

( de %)1 (c2)

and 6G*(q, E) is its complex conjugated.
Inserting Eq. (C2) into Eq. (C1) we obtain

. EFdEjEF )
[2——1,-[ 27 ) dEPZZ

xXIm N(EE)‘ 1
E —E; +ting E - -Es.: +zn;+;
1
C3
x 1/[3—P(E)-i11N(E)>’ (C3)
where
EN
P(E)= PdePE—:(E—(-%—), (c4)

P meaning the principal part of the integral. We
can verify that the solution of this last integral
goes to zero for £ >0.

Then, performing the E integral in Eq. (C3), we
obtain



9 LIQUID-IMPURITY CORRELATIONS FOR FERMI SYSTEMS 2791

1/8

Er 1 1/B
IZ‘P[) dEpN(ED)( -E;.; 1/8 +n°N*(E3)

N(E)

TEs.:-E; 1/ +rN%E3, )

p*a

R E;(E-E; .3

We now rewrite Eq. (C5) as

1 ) (C5)

) 1/8* +7°N*(E)

1 - R n(E?) n(E§+g
IZ_BP jo dEpN(EP) <(E* EEHT [1/32+172N2(E;)] +(E;+;—E [1/32 +112N2(Ep+q)]>
. N(E) 1 :
+ P f dE N ) f dE(E E‘)(E E;*; {1/32 +n’2N2(E)] (CG)

Next, we calculate the last E7 integral in Eq. (C6) using residue theory. Since the integrand is an analytic
function of E> except on the real axis the principal part of the integral goes to zero and Eq. (C6) can be

rewritten in the form

n(Ep)

n(EP»,q

L3P fode;N(E;)(

& - B7. 1/ s Ep)]

S TCEILF +n2N2(Ep+q)]> €D
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