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The sixth frequency Inoment of the spectral functions of both the longitudinal and transverse
current correlations along vrith their self-parts has been derived for a system of particles
interacting through a turbo-body potential. The first tv' frequency moments of the spectral
function of the energy-density fluctuation, and the first four frequency moments of the spec-
tral function of the kinetic-energy-density fluctuation-correlation functions have also been
derived. Numerical estimates for the fourth and sixth frequency moments of the spectral
function of the longitudinal current correlations have been made for liquid argon. From this
some information about the behavior of the contributions of triplet and quadruplet correla-
tion functions to the frequency moments of liquid argon have been obtained. Numerical esti-
mates have also been made for the first four frequency moments of the kinetic-energy-den-
sity fluctuation-correlation function in the long-wavelength limit for liquid argon.

I. INTRODUCTION

In the study of atomic and molecular processes
in liquids, the ca.lculation of the space- and time-
dependent correlation functions of the dynamical
variables which describe the decay of fluctuations
in an equilibrium system, is the fundamental prob-
lem. Many phenomena in liquids including trans-
port coefficients and scattering processes can be
described in terms of these correlation functions.
For example, in the hydrodynamic region, the
longitudinal viscosity and diffusion coefficient of a
fluid are related to the appropriate limits of the
coherent- and incoherent-scattering law, respec-
tively. ' The difficulty, of course, is that there is
no first-principles theory except the machine
solution of Newton's equations for calculating these
correlation functions for a classical fluid. There
are, however, a number of useful calculable prop-
erties, which can be obtained from the knowledge
of only the static correlation functions and the
interparticle potential. Among these are the mo-
ment sum rules —the coefficients in the short-time
expansion of the correlation functions. These
relations are exact and can serve to check the
internal consistency of any experiment or theory
which calculates the space-time-dependent corre-
l.atio n functions.

In the past, the frequency-moment sum rules
have played a significant role in analyzing the
results for the correlation functions obtained from
both the molecular-dynamics calculations and from
the neutron inelastic-scattering experiments. ' '
In view of this important application of the fre-
quency-moment sum rules, in this paper we have
extended the existing sum-rule calculations. The
first four frequency moments of the spectral func-

tions of both the longitudinal and transverse cur-
rent correlations are known. "We have derived
the results for the sixth frequency moment of both
the longitudinal and transverse current correla-
tions. The self-pa, rt of the sixth frequency mo-
ment of the current correlations (both longitudinal
and transverse) have also been obtained. The
fourth and sixth frequency moments of the longi-
tudinal current-correlation function have been
estimated for liquid argon at 76'K in the range of

0
momentum transfer 0.5-3.3 A ' using the molec-
ular-dynamics results of Rahman. " The contribu-
tions to the fourth and sixth frequency moments
arising due to the static pair correlation function
have been calculated numerically using the molec-
ular-dynamics data of Verlet. " From the above
calculations we have estimated the contributions
of the triplet and quadruplet correlation functions
to the frequency moments.

Recently Rahman" has calculated from the
molecular-dynamics experiments the kinetic-
energy-density (KED) correlation function for a
liquid-sodium-like system. KED is a. part of the
energy density which occurs in the study of hydro-
dynamic phenomena where one is concerned with
the space- and time-dependent fluctuations of the
number and the energy density in the system.
Rahman" has used the memory-function approach"
and the first two frequency moments of the KED
correlation function to analyze his molecular-
dynamics data for liquid sodium. The KED is not
a conserved variable whereas the energy density
is, and thus the correlation function of energy
density is physically a more important quantity
than KED. We have, therefore, calculated its
first two frequency moments. These involve static
correlations up to three and four particles. It
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seems that the fourth frequency moment of the
energy-density correlation function will involve
still higher correlations (up to five or even more
particles). However, the first four frequency
moments of the correlation function of the KED
fluctuations involve correlations up to three par-
ticles. Explicit expressions for these have also
been obtained.

In See. II, we describe our method of calcula-
tion and the results for the various frequency mo-
ments of the current correlations and energy-
density correlations. The fourth and sixth fre-
quency moments of the spectral function of the
longitudinal current correlation function have been
estimated for liquid argon in Sec. III. The first
four frequency moments of the kinetic-energy-
density fluctuation-correlation function have also
been estimated in the long-wavelength limit for
liquid argon in Sec. III. Concluding remarks are
given in Sec. IV.

II. METHOD OF CALCULATION OF FREQUENCY

MOMENT SUM RULES

t' t4
f(q, t) =f. f, 2) +f-, 4,

— (2)

where the angular brackets denote an equilibrium
ensemble average. f„-f„f, denote the time
derivatives of f (q, t} at t =0 of the zeroth, second
and fourth order. Since we are concerned with
the isotropic systems, we will write f (q, t) and
various other quantities as a function of q = ~q~. We
define the Fourier transform of f (q, t} as

The time-correlation function of any dynamical
variable D(q, t}, which is defined as

f (q, t) = (D(q, t)D*(q, o)),

is a real and even function of time with the short-
time expansion (i.e., Taylor's expansion} given by

A. Current correlations

For a classical system of N particles, we define
the longitudinal- and transverse-current-density-
fluctuation operators as

J)(q, t) =t)t ' 'g v„(t)e"*("'

and

Z, (q, t) =t)t ' 'P v„(t)e"*("' (5b)

C, (q, (v) =(O'S(q, (v)/q'.

It can be easily seen that

c,(q, t=o)=c, (q, t=o) =t,T/M

In the derivation of the frequency moments of the
spectral functions of the time-correlation func-
tions, we use the following well-known results:
(i) For a system in equilibrium the time-correla-
tion functions depend only on the time difference,
so that they satisfy

(x(0)x' "(t))=(-1) (x "(0)x "(t)), (8)

where x (t) denotes the mth time derivative of
x(t} (ii} The .Yvon theorem, i.e. ,

F ' =k~T

respectively. Ne have taken the wave vector q
along the x axis; v„(t) and x, (t) are the x compo-
nents of the velocity and position of the ith particle
at any time t. If C, (q, t) and C, (q, t) represent
the correlations of the longitudinal and transverse
current density, respectively, then the Fourier
transform of the density correlation function
S(q, ~), which is observed in coherent inelastic
neutron-scattering experiments, is related to the
spectral function of the longitudinal current corre-
lation function as

Then the nth frequency moment of f (q, (()} is given
by the relation

where r and p represent the position and momen-
tum, respectively; E(r} is any regular function of
the positions of the particles; and 0 is the Hamil-
tonian of the system given by

( ")=f & "f(q, ) f(q, )=o). (4a)
H= ' +br. (10)

which using (2) becomes

(q, t =0), (4b)

4(r) is the total interaction potential and we as-
sume it to be the sum of pairwise interactions,
so that

C(r)= —Q q (~r, —r~)= —Q q(r„)
where n =0, 2, 4, 6, . . . , etc. For a classical sys-
tem odd moments vanish. %e shall now calculate
the frequency moments of the correlation functions
of various dynamical variables of interest.

Starting from Eqs. (1) and (4) and making use of
Eqs. (5a) and (5b), it is straightforward to derive
the expressions for the low-order frequency mo-
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ments (up to n = 4) of the spectral functions of the
current correlations. " But the results for the
sixth frequency moments of the longitudinal and
transverse current correlations are not known as
yet. The calculation of these frequency moments

is straightforward but tedious. Therefore, we
state here few relevant steps. The sixth fre-
quency moment of the spectral function of the
longitudinal current density correlation function
can be written as

((()))=
k T Q ((q up~ u)„+36q uq„v)„vq~v)~ -6q v)~ u)~ —Bq vq~ v)~v)~ + 9q v~„v)

8

+16q v,„u,, u~ u)„+24q v~„2u) v')„—12q2 u~„~ v,„v)„+' v'~„'v) }cosq(x —x )

+6qvg v~~ +Sqvt v~ 5)„)sinq(x~ —x~)), (12)

, ae(r)
Bxf

(13b)

a'4 (r) . a4(r)
(13c)

Here k, /, . . . run from 1 to N; &, P, . . . denote the Cartesian components x, y, z, and summations over
doubly occurring indices are implied. We then calculate each term on the right-hand side of Eq. (12) using
Eq. (13). Calculations are further simplified because of the facts that the position and velocity, velocity
and acceleration, and position and rate of change of acceleration are not correlated in classical systems.
We thus obtain the expression for the sixth frequency moment of the longitudinal current correlation func-
tion [i.e., eighth frequency moment of S(q, (u)] which on introducing the notation, U„(r) =aq)(r}/ar„
V„s(r) =a'q)(r)/ar ar(), . . . , etc. , can be written concisely as

( ', )=(oi ' ",fdi(;()( 0(q, 2(T) rr)„('r) ~ ()'()cosqx —2()(qa T)'U„„(r)

+ 35(1 + cosqx)(q'k T)sU,', (r) + N(q'ksT) U„'(r) +72(qksT) sinqx U„„(r)V„„„(r)

+4(1 —cosqx) V., (r) V,„(r)V„(r)+12(k,T )(1 cosqx) U'„„—, (r)]
n2+, (frdr'g, (r, r')[7(q'ksT)[5U„(r)U„„(r')+4U, (r)U„(r')] 6(q+k T)s

x [6 sinqx+sinqx' —sinq(x -x')] U„,„(r)U, (r'} + 3(ksT) [cosq(x -x') —2 cosqx+1] U„„()(r) U„„s(r')

+4[1+cosq(x -x') -cosqx' —cosqx]U„()(r) U, ~(r) U„()(r')+2(1 —cosqx}U,„(r)U„B(r}U„S(r')

+ (2 cosqx —1)U,„(r)U, () (r') U z (r —r') —cosqx V „z(r)V, (r') ,U(r()—r') j
n3

+ ~3 drdr' dr" g, r, r', r" 1 + cosq x -x' —2 cosqx U, r U, 8
~' U 8

+[2cosqx' —cosqx —cosq(x' -x')] U () (r) U„„(r')V„() (r" —r)],
(14)

where g, (r},g, (r, r'), and g, (r, r', r") are the static pair, triplet, and quadruplet correlation functions.
The four-particle distribution functi}on is defined as

(15)n' (rg, r', r") = Q (5(r-r, +r, )0(r' —r, +r)6(r" -r, r+,)).
f &) &A&l

The sixth frequency moment of the self-part of the spectral function of the longitudinal-current-correla-
tion function (i.e., eighth frequency moment of the incoherent-scattering law) can be obtained by con-
sidering only the self-part of Eq. (12) and thus we obtain
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(~(),)=105 +210 di+28 8+C+7 s, drg, (r)[5U,'„(r)—3kBTU„,„,(r)]

.gg '' ",)jd.-dr g, (r, ")u„(r-)u„(r), (16)

where -A, I3, and -C are the second, third, and fourth coefficients in the short-time expansion of the
normalized velocity autocorrelation function. The first two coefficients A and 8 are known. " We state
here the result for the third coefficient,

C = '*, =, ) drg2(r)[U, &(r)U„„(r)U„(()r) +3k TsU'„„(Br)] +, „drdr'g, (r, i')B xof M3

x (3ksTU„~(r) U„„8(r')+U„„(r)[4U„B(r)U, 8 (r')+2U„8(r) U, 8(r') —U„B(r') U„8(r —r')]]

+, dr dr'dr" g4 r, r', r" U„„r U„~ r' U„& r" . (17)

It may be noted that the result given by Eq. (17) represents the sixth frequency moment of the spectral
function of the velocity autocorrelation function.

In a similar way, we obtain for the sixth frequency moment of the spectral function of the transverse-
current-correlation function, the expression

(~', }=15 +, drg, (r)(60(q'ksT)'U„„(r)+3(qksT}'(13cosqx —10)U„„„„(r)+32(q'ksT)U',„(r)
M M

+5(q'ksT)(1 +cosqx) [3U,„(r)U,„(r)+4U,'„(r)]+4(qksT) sinqx [13U„„(r)U, (r}
+5U,„„(r)U„„(r)]+4(l —cosqx) U„8(r) U„(r)U„s(r)+12(ksT)(1 —cosqx) U', 8(r)}

+, dr dr'g, r, r' q'k~T 15U„, r U„r' + 20U„r U„r' + 16U,~ r U„~ r'
M

+2(qksT) [3sinqx'+13 sinqx —3 sinq(x -x')] U„, (r) U,„(r')—2(qksT) sinqx U„„(r)U, „(r')
+3(ksT) [cosq(x -x') —2 cosqx+1] U, „8(r)U,„s(r')+4[1+cosq(x -x') —cosqx' —cosqx]

x U ()(r) U,„(r)U,8(r')+2(1 —cosqx) U, (r) U, B(r)U„()(r')+(2cosqx -1)
3

x ( U) rr(rU')„(U—r') —oo, rdrU r(r)U„, (r )U„r( — ''i) ~, JJdrd 'd "g(r, ', r")
M

x([1+cosq(x -x') —2cosqx] U,„(r)U,8(r') U ()(r")

+ [2 cosqx" —cosqx —cosq(x' -x")]U () (r) U„(r') U„8 (r" —r) ). (18)

Its self-part is given by

'kT3 2P T 2 2k T 'k T

&& [3U„,(r) U„„(r)+ 4U„(r}—6kd)TU„„„(r)]+5 dr dr' g (r, Ur')
M

x [3U„„(r)U,„(r')+4U„, (r) U„(r')] .

To our knowledge the results for various frequency moments obtained in this subsection have not been
obtained previously. "" In Sec. III we present the numerical estimates of the sixth and eighth frequency
moments of the dynamical structure factor.

B. Energy-density correlations

So far we have been concerned with the calculation of the frequency-moment sum rules of the spectral
functions of the current correlations. In this subsection, we calculate the frequency-moment sum rules
for the correlation functions of the energy-density and KED fluctuations. We define the energy-density
fluctuation operator (per particle) as
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&(q, t)=
~& g 2

' +gq)(r, ,) —e exp[iqx, (t)],
n&N ), 2

where e is the mean energy per particle and is given by

(20)

e=-', k~r+-,'n drg, r (It) r . (21)

Let E(q, t) represent the correlation of the energy-density fluctuation operator and let E„-E„.. . denote
the time derivatives of E(q, t) at t =0 [which are directly related to the moments of the spectral function
of the energy-density-fluctuation-correlation function, E(q, (d)]; then we obtain for E, the expression

N

M'v, 'v, '+Q 2Mv, 'gp(rg )+gp(r, „)Q (p(r g) cosq(x, -x, )
/=1 j&1

1

~ —, Q s -Mq, ' —Q u(u„)) cosq(s, -s, )) .
n j&1

(22)

The first average in (22) arises due to the energy density, whereas the second one is the consequence of
fluctuation in energy density. 8, can further be expressed in terms of the static correlation functions and
the interparticle potential by extracting from (22) the contributions arising due to the self-term (l =1) and
the distinct term (le1). Thus Eq. (22) reduces to

E,=, e [6+ 9S(q)]+ —S (q) —— " +, dr g, (r)(1 +cosqx) (p(r) [(p(r) +6ksT —4e]k,r' 4e e 3k~7 n

2+, drdr'g, r, r' y r 2cosqx' cp r' +Skier —2e +y r' 1+cosq x-x'

3+,
t

drdr'dr" g,(r, r', r")gp(r) gp(ir' —r"i)cosqx" (23)

where S(q) is the static structure factor. Note that this expression for E„ the zeroth frequency moment
of the spectral function of the energy-density-fluctuation-correlation function, involves the static quadrup-
let correlation function which is not yet known. Thus it seems difficult to obtain any further information
about the short-time expansion of the energy-density correlation function. But it is interesting to note
that the expression for the second frequency moment of the spectral function of the energy-density-fluc-
tuation-correlation function contains correlations only up to three particles, and it can be written as

M (v 'a )(vg'ag)+q M U Ug„v vg +q Mu „Ug vg Q gp(r g)+q U Ug„g Q (p(r g)('p(rg )
j& J. tnsef

.SM(u s)Q p ~ 'u("'").Q g Q ~ c 'u'"" 'q("')coW( -s)
k m~l

' arka k, n j~ 1 e~l
' "'

parka 8mB

— 4qM'U„v, '(v, ag)+4qMU„(vg a, )g (p(r»)+2qMu„vg'g p u,„™
j&l m&l ka

Squ„g Q Q u„q(uu) '" sioq(s, —s,} )
sq(r, )

k j&1 ytt&l ~rkn

P q*.„.„s-sqq, —Pu(u„)}coco(s, -s, )
L=1

+qv, „2M v, a, +~ ~v ~ sinq x, -x,
parka

(24)

where a =Cv/dt denotes the acceleration. Here also, the quantity in the second pair of angular brackets
represents the contribution of the fluctuation part and in the first pair is the contribution of the energy
density. Separating (24) into self- and distinct parts and performing the averages, we obtain the following
result for the second frequency moment of the spectral function of the energy-density-fluctuation-correla-
tion function,
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M~ k~T
4n' M

35 +120'(0) —40 +, + ~ dr g, (r)I{q'q)(r) [q)(r)+10&s T —4e]

n2—2(1 ~ cosqs)(qq(r)P —2sinqr(q qq( ))[q(r) ~ nk 2 —2s]j~, Jdrdr'd(r, r')

x [q)(r')[q'q)(r) —2sinqx(q Vq)(r))] —(Vq)(r)) ~ (Vq)(r'))[4+3cosqx —cosq(x -x')]), (25)

where

0'(q) = — dr g, (r) cosqx U„„(r). (28)

As one expects the expression (25) should contain correlations up to four and five particles. But it has
been found that the terms which involve four and five particles are zero within the assumption of pair
potential. Further, as is clear from the definition of the energy-density fluctuation, one can obtain the
frequency moments of the energy-density correlation function by substituting e =0 in the expressions for
E, and E,. We have found that the expression for the fourth frequency moment of the spectral function of
the energy-density-fluctuation-correlation function is difficult to handle, and it seems that it will contain
correlations up to five particles. Therefore, it is difficult to obtain any further information about the
short-time behavior of the energy-density-fluctuation-correlation function.

However, one can obtain much more information about the short-time behavior of another quantity called
the KED fluctuation-correlation function. We have calculated here the first four frequency moments of the
spectral function of the KED fluctuation-correlation function. We define the KED fluctuation operator (per
particle) as

r(q, 1)=
4
—Q ' —r) a p[ q*, (z)],

n
(27)

where T, =-,'k~T is the kinetic energy per particle. KED fluctuation can also be obtained from the energy-
density fluctuation by neglecting the potential-energy term in the energy-density fluctuation and e. Let
I(q, t) represent the correlation function of T(q, I) and 1st I„I„I„..-. , etc. denote the time derivatives
of the KED fluctuation at I =0; then using (1) and (f), we obtain for I„ the expression

Io a
—v1 To —vr To cosg xi —x

&

i=1
(28)

The summation in (28) can be divided into the self- and distinct parts so as to express I, in terms of the
static structure factor. We thus obtain

4n g M (29)

which on substituting for the mean KE per particle, reduces to give us

I, =-,'(k, T/n}'. (30)

Thus the particle interactions do not enter in the zeroth frequency moment of the spectral function
of the KED fluctuation-correlation function. However, the expression for the second frequency moment
includes the effect of particle interactions. This can be written as

N

1,=, +{[4(,2)(, a) q' „„,*,']cosq(*, —.*,) —4q „,*(, a, )s'nq(*, —,)j)
2=1

~ -4 P [ „ „(r -M ,')c sq(*,,— , )- 2qM „(2, a )sinq(*, — ,)j). (31)

In the above expression only the self-part contributes whereas the distinct part is zero. Thus it reduces
to

(32)
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which on substituting for T, simplifies to give us

M~
4n2I = — 12Q'(0)+14 I M (33)

Note that this result is a consequence of the self-part of Eq. (31) and the result for I, contains only the
kinetic contribution. Therefore, the first two frequency moments of both the self- and distinct parts of
the KED fluctuation-correlation function will be equal. The collective effects enter through the fourth
frequency moment of the kinetic -energy-density fluctuation-correlation function. Its calculation is straight-
forward but lengthy. Ne therefore state here only the result:

I,=, 189q' + Sq' [610'(0)—SA'(q)] + 488 + —tf r g, (r)
M 4 k~T ~ k~T ' k~r ' k~T 'n
4n2 I

x [4V'(V'q&(r)}(1+cosqx) + 12(g ~ V) V'q (r) sinqx + 12(ksT) '(cosqx —1)( V Vy(r)}']

4Tn 4 ~B~ '
~T 7~ST

+ " 3q' ~ — + — drg, (r)[(j V)'y(r)[(1 —cosqx) T,/M

—(11 —3cosqx)(ksT/M)] —2(ksT/M) sinqx (q V) V~y(r)].
l

which in the long-wavelength limit reduces to

(34)

lim, I, =488 ~ + dr g (z)[r'y'"(r)+4rqu' (r)],
4n 0 T 32nn k T

where B has been aexineu earlier in Sec. IIA and
y'" (r) =s'y(r)/sr', etc.

In Eq. (34), the second part arising due to the
fluctuation in KED is zero in the long-wavelength
limit. Thus the long-wavelength limits of the
fourth frequency moments of both the KED and KED
fluctuation-correlation functions will be equal.
Further, all the first four frequency moments of
the spectral function of the KED correlation func-
tion can be obtained by substituting T, =0 in Eqs.
(29), (32}, and (34). The first two frequency mo-
ments of the KED correlation function agree with
those obtained by Rahman. "

The results for the various frequency moments
derived here in this section are also believed to
have not appeared before. The zeroth and second
frequency moments of the spectral function of the
energy-density -fluctuation-correlation function
involve correlations up to four particles which
are not known as yet. Therefore„ it is difficult
to estimate these moments exactly. But the first
four frequency moments of the spectral function of
the KED fluctuation correlation function can be
estimated, and numerical estimates for these in
the long-wavelength limit have been obtained in the
next section.

III. NUMERICAL ESTIMATES

In Sec. II we have been concerned with the ex-
plicit calculation of the frequency-moment sum
rules of various time-correlation functions. Ne
now estimate some of them numerically for liquid

argon. Obviously, the expression. s for the various
frequency moments of the spectral functions of the
correlation functions are quite complicated. Since
no information about the static four-particle dis-
tribution function is available as yet from the
computer experiments, we cannot estimate the
various frequency moments involving the quadru-
plet correlation function directly from their ex-
pressions.

However, we have estimated the sixth and eighth
frequency moments of the dynamical structure
factor for liquid argon at 76'K using the results
for the spectral function of the longitudinal-current
correlations obtained by Rahman" from the molec-
ular-dynamics calculations. Since we have Rah-
man's data available only in the range of rnomen-
tum transfer 0 5 3 3 A-i we have calculated the
fourth and sixth frequency moments of the longitu-
dinal current correlation function in this range.
From these numbers we obtain information about
the contributions of the triplet and quadruplet
correlation functions to the above fourth and sixth
frequency moments using the following definitions:

&~', )/&~,') =M„(q)+G,(q).

&~$&/(&,') =M. /(q)+ G,.(q).

(36)

Here (&u,') =q'keT/M represents the second fre-
quency moment of the dynamic structure factor.
M„(q) and M«(q) represent the kinetic and static
pair-correlation-function contributions to the above
fourth and sixth frequency moments, respectively.
G, (q) represents the contribution of the triplet
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correlation function to the fourth frequency mo-
ment, and G~(q) represents the combined con-
tribution of the triplet and quadruplet correlation
functions to the sixth frequency moment. %e have
calculated M„(q) and M„(q) for liquid argon at
76'K using the Lennard-Jones (6-12) potential
and the resents for the static-pair-correlation
function obtained by Verlet" (at about the same
temperature and dens@y) from the molecular-
dynamics calculations. Having calculated the
fourth and sixth frequency moments M„(q) and

M„(q), we estimate G,(q) and G„(q) from Egs.
(36) and (3'I).

In Fig. 1 we have plotted (~', )/(re~2), M„(q), and

G, (q) versus q, and in Fig. 2 we have plotted
(~', )/(~', }, M„(q), and G~(q) versus q. As is
clear from the figures, both the fourth and sixth
frequency moments show a minimem at about q
=2 A ', which obviously is a reflection of the
maximum value of the static structure factor.
G,(q) and G„(q) have been shown by dashed curves
in Figs. 1 and 2, respectively. G„(q) is always
negative, whereas G,(q) is positive as well as
negative. Further in Fig. 1, the solid triangle
corresponds to the value of lim, ,(~', )/(~,') for
liquid argon obtained by Forster et aI.' (at about
the same temperature and density) using the super-
position approximation for the static triplet corre-

lation function. Since we do not have molecular-
dynamics results for the spectral function of the
longitudinal current correlation function in the
hydrodynamic region (q&0.5 A '), it is difficult
to point out where our curve for (~', )/((u', ) will cut
the y axis at q =0. But the shape of the curve in
the hydrodynamic region clearly indicates that it
will lie below the solid triangle. Perhaps this is
suggestive that the superposition approximation
overestimates the magnitude of the triplet corre-
lation contributians. This is in agreement with
the conclusion of Dolling and Sears. "

There may be some uncertainty in our estimates
of the fourth and sixth frequency moments. This
is partly due to the uncertainty in the molecular-
dynamics data, the detailed analysis of which has
been done by Ailawadi, ' and partly because com-
puter data for different q are available only up to
some finite frequency. %'e have estimated these
frequency moments from the theory of Pathak and
Singwi (PS),' and we find that these compare rea-
sonably well with what we obtain using the comput-
er data. For example, "PS theory gives

(~2) =11.24&10" sec ' for q =1 A '

=1.68&&10" sec ' for q =3 A '

whereas from the molecular-dynamics data we
find the corresponding numbers to be 8.56@10"
and 1.3~10" sec '. PS theory gives
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FIG. 1. Fourth frequency moment of the longitudinal
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FK. 2. Sixth frequency moment of the longitudinal
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butions and the combined contribution of g3(r, r'} and
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(~l)
( ~R)

=30.38x10" sec ' for q =1 A '

=4.93x10" sec ' for q =3 A '

and molecular-dynamics data give 19.78&10"and
3.32&&10" sec 4. Since the PS model has given
quantitatively good results for q &0.5 A ' and for
all frequencies, we feel that our results for the
fourth and sixth frequency moments, obtained
using the molecular-dynamics data, are at least
order-of-magnitude estimates, if not better.

Vfe have also estimated, in the 1ong-wavelength
limit, the first four frequency moments of the
spectral function of the KED fluctuation-correla-
tion function for liquid argon at 86.1'K using the
molecular-dynamics data of Verlet. " For B, the
second frequency moment of the velocity autocor-
relatio n function, we have used the result estimated
by Nijboer and Rahman" {at 85.5'K) through com-
puter experiments. The estimated results for the
various frequency moments of the KED fluctua-
tion-correlation function are

4rPM 'I, =18.9397&10"cm'sec ',
lxm4n~M 2I, =22.1642&10~' em~sec 6,
q~ 0

lim4n'M 'I4 = 1.1765 & 10'0 cm' sec '.
@~0

Of course, the estimates of the first two frequency
moments are trivial, we have quoted them only
for the sake of completeness.

IV. CONCLUDING REMARKS

In this paper we have extended the existing fre-
quency moment calculations of the various time-
correlation functions in classical liquids. Although
we have not used our results for calculating any
physical property of the liquids, it is tempting
to speculate on some future applications of these
results. For example, it is known that the dynami-
cal structure factor, in the hydrodynamic limit,
involves the ratio of two specific heats (i.e.,
C~/C„) for which it has become possible to obtain
the molecular expression" involving the static
quadruplet correlation function in addition to the
interatomic potential and the low-order static-
correlation functions. A successful theory for the
dynamical structure factor must reduce to the
hydrodynamic theory in that limit. Therefore it
may be expected that a correct theory of the dy-
namical structure factor may involve its moments
up to eight. Already the first six frequency mo-
ments have been built in some recent models"
and have given better results. It appears to us a,

straightforward matter to extend the formalism
of Nelkin and co-workers' to build into their model
the moments of the dynamical structure factor

up to eight. On the other hand, if one has a reliable
theory of the dynamical structure factor, one can
get information about the three- a.nd four-particle
correlation functions from the moment relations.

The various frequency-moment relations we have
obtained contain the static-correlation functions
only up to four particles. It seems to us that it
is not yet possible to estimate the magnitude of
the contributions of the quadruplet correlation
functions to the respective moments directly from
their expressions. However, due to the advent
of high-speed computers, this may not be impos-
sible in the net. r future. We have estimated the
contributions of the three- and four-particle cor-
relation functions to the respective moments in a
rather indirect way using the molecular-dynamics
data of Rahman. " Since we do not have the molec-
ular-dynamics data for the spectral function of the
transverse current correlation function, we have
not been able to estimate its frequency moments.

Recently, Rahman" has reported the results of
the molecular-dynamics calculations for the KED
correlation function for liquid sodium, and he has
analyzed his data using the memory-function ap-
proach and the first two frequency moments of the
KED correlation function. We understand that he
is in the process of calculating the KED fluctuation
and energy-density-fluctuation-correlation func-
tions through the computer experiments. Thus
the various frequency-moment sum rules of the
KED fluctuation and the energy-density-fluctua-
tion-correlation functions might be helpful in
analyzing the molecular-dynamics data. We are
also in the process of analyzing the molecular-
dynamics data of Rahman for liquid sodium using
the effective mean-field approach. %'e have esti-
mated in the long-wavelength limit the first four
frequency moments of the KED correlation func-
tion for liquid argon. It has not become possible
for us to estimate the frequency moments of the
energy -density-fluctuation-co r relation function.

W'e conclude with the remark that the frequency-
moment sum rules play a.n important role in under-
standing the dynamics of atomic motions in liquids.
Therefore, it is hoped that the various results
obtained here will prove to be useful in both the
experimental and theoretical investigations of the
atomic correlations in classical liquids.

ACKNOW( LEDGMENTS

We are grateful to Professor K. S. Singwi for his
interest in this work. One of us (K.N. P. ) wishes to
thank Professor N. H. March for some discussion
regarding the eighth frequency moment of the dy-
namical structure factor. Also we are thankful
to Dr. A. Rahman for sending us a copy of his
paper prior to publication.



2782 H. BANSAL AND K. N. PATHAK

~%'ork supported in part by the U. S. National Science
Foundation under the grant No. GF-36470 and the
Council of Scientific and Industrial Research, New

Delhi, India.
'L. P. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24,

419 (1963).
~C. H. Chung and S. Yip, Phys. Rev. 182, 323 (1969).
3K. N. Pathak and K. S. Singwi, Phys. Rev. A 2, 2427

(1970). See also K. N. Pathak, K. S. Singwi, G. Cubiot-
ti, and M. P. Tosi, Nuovo Cimento 8 13, 185 (1973).

4N. K. Ailawadi, A. Rahman, and R. Zwanzig, Phys.
Rev. A 4, 1616 {1971). See also N. K. Ailawadi, Ph. D.
thesis (University of Maryland, 1969) (unpublished).

5K. Kim and M. Nelkin, Phys. Rev. A 4, 2065 (1971),
See also K. Kim, Ph.D, thesis (Cornell University,
1971) (unpublished); P. Ortoleva and M. Nelkin, Phys.
Rev. A 2, 187 (1970).

M. I. Barker and T. Gaskell, J. Phys. C 5, 3279 (1972).
~K. N. Pathak and R. Bansal, J. Phys. C 6, 1989 (1973).
G. Placzek, Phys. Rev. 86, 377 (1952); P. G. de Gennes,
Physica 25, 825 (1959).

~D. Forster, P. C. Martin, and S. Yip, Phys. Rev. 170,
155 (1968).

' A. Rahman (private communication); also in Neutron
Inelastic Scattering (International Atomic Energy
Agency, Vienna, 1968), Vol. I, p. $61; Phys. Rev.
Lett. 19, 420 (1967).

~~L. Verlet, Phys. Rev. 165, 201 (1968); L. Verlet,
Phys. Rev. 159, 98 {1967).
A. Rahman, in $tatistical Mechanics, edited by S. A.

Rice, K. F. Freed, and J. C. Light (University of
Chicago Press, Chicago, 1972), p. 177.

'3H. Mori, Progr. Theor. Phys. 33, 423 (1965). See also
R. Zwanzig, in Lectures in Theoretical, Physics, edited
by W. E. Britten, B. W. Downs, and J. Downs (Inter-
science, New York, 1961).

~48. R. A. Nijboer and A. Rahman, Physica 32, 415
(1966).

~5V. F. Sears, Phys. Rev. A 5, 452 (1972). In this paper
the sum rules for the self-part of the spectral function
of the longitudinal current correlation function have
also been discussed, rather formally. But these have
not been calculated explicitly beyond the fourth moment,
i.e., the sixth moment ef the self-cerrelation function.

~6%hen we were in the process of calculating the fre-
quency-moment sum rules, we saw a paper by P. Peta-
las [Helv. Physica Acta 44, 943 (1971)l where he seems
to have stated the result for the eighth frequency mo-
ment of the dynamical structure factor. The expres-
sion given by him is valid only for a one-dimensional
sytem and even that contains several ex'Tors. This has
been confirmed to us in a pgivate communication by
Dr. Petalas. We are thankful to Dr. Petalas for this
correspondence.

~YG. Dolling and V. F. Sears, SolÃ State Commun. 8,
2091 (1970).

~SR. Bansal md K. N. Pathak, reported in the Nuclear
Physics and Solid State Physics Symposium, Bangalore,
India, 1973.

~N. H. March (private communication).


