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e discuss the phenomenon of a pretransitional enhancement in the optical rotatory power of the

isotropic phase of cholesteric liquid crystals. The effect is viewed theoretically as the modulation of
dielectric properties of the isotropic liquid by chiral orientational correlations which destroy local
inversion symmetry in a way that produces circular birefringence. De Gennes's theory of short-range

order is applied to derive a quantitative result. This is experimentally tested with a system of
"chiral-nematic" liquid crystals, achieving good rapport in the pretrsnsition region. The existence of
chiral orientational order in the isotropic phase is confirmed.

I. INTRODUCTION

In an earlier publication, ' we reported the ob-
servation of an enhancement in the optical rotatory
power of the isotropic phase of a cholesteric liquid
crystal near the isotropic-cholesteric phase tran-
sition. This effect was interpreted in the frame-
work of de Gennes's theory of orientational short-
range order in the isotropic phase' and constitutes
the first experimental confirmation for the exis-
tence of chiral orientational order in the isotropic
liquid. In this picture of the isotropic liquid,
fluctuations in the orientation of the long axes of
different molecules within a coherence distance
are coupled due to chiral interactions in a manner
which destroys local inversion symmetry. The
resulting structure preserves a local spiral con-
formation of molecular orientations reminiscent
of the long-range helical structure of the ordered
phase. Phenomenologically, orientational cou-
pling contributes to spatial variations in the inter-
nal local fields, as manifested by a wave-vector
dispel sion in the polarizability tensor charac-
terizing the dielectric properties of the medium.
The chiral aspects of the coupling append a skew
Hermitian component to the polarizability, causing
the medium to become circularly birefringent
and thus optically active. The strength of the
optical rotation increases in proportion to the ex-
tent of the local skew symmetry, which appears
to become divergent as the temperature approaches
a quasi-second-order transition temperature, T*,
but is curtailed by the occurrence of a first-order
transition at a slightly higher temperature, T, .
A preliminary discussion of this phenomenon was
offered in our earlier letter. ' %'e will now present
the detailed theoretical formulation and a dis-
cussion, of the experimental results.

Section II develops the theoretical framework by
casting the problem in the language of order-
disorder effects. The I.andau-de Gennes theory

II. PHENOMENOLOGY OF SHORT-RANGE ORDER
IN ISOTROPK PHASE

A. Order parameter

The state of alignment of a rigid rodlike mole-
cule can be described by the traceless symmetric
bilinear form

S&„&) =-', (v'„" vI" --,'5„),
where v"' is a unit vector defining the orientation
of a molecule located at x,. and subscripts refer
to axes in the laboratory coordinate system. The
molecular electric and magnetic susceptibilities
& ~i' and & ~

' in this coordinate system can be
written

E E 3 E
n"' = n 1+-',an& 8&"(v«&),

n &&) n t + 2~nOS&i)(v&i))
(2)

with n =—', (n,
&

+ 2 n„) and b, n' = n,
&

—n, where n,
&

is discussed with emphasis on its chiral aspects.
Parallels are drawn to elastic theories of the
ordered phase to elucidate the role of the chiral
coupling term. Section III formulates the dielec-
tric properties of a system of oriented optically
active molecules in the liquid state, incorporating
the presence of spatial orientational correlations
and molecular optical activity into the local fields.
It is shown that the medium is circularly bire-
fringent, and quantitative results are derived
using the de Gennes model of short-range order.
Section IV discusses the experimental considera-
tions and results, followed by the Conclusion, in
which rapport between theory and experiment is
established. It is emphasized that the dielectric
theory of anisotropic liquids is still an open ques-
tion. Many assumptions, particularly those in-
volving the form of the local field, remain in doubt
and are justifiable only on empirical grounds,
some of which are discussed in the text.
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and ~, are, respectively, the components parallel
and perpendicular to the molecular axis. Since
molecular orientations vary over space and time,
it is useful to adopt a continuum order parameter
to characterize the local orientation:

NQ„q(x, t) = g 8 "z(0"')&(x-x, (t)}

(N is the number of molecules per volume). For
a locally uniaxial liquid crystal with axis n(x), the
statistical average of Q s is

(Q q(x, t)) =-,'S[n (x}nq(x)--,'5„8],

where O~ S ~1 measures the extent of ordering.
For a cholesteric, n(x) traces out a spiral as x
proceeds in a direction perpendicular to n(x).

Order can also be defined via the anisotropy
in macroscopic tensor properties, e.g. , the elec-
tric susceptibility y:

Q n8 (Xas p 8n8 Tr)()/3n A

In general, the two definitions are not equivalent
unless the definitive macroscopic property does
not involve intermolecular interactions. The elec-
tric susceptibility entails effective field effects
which produce a nonlinear relationship between
macroscopic and microscopic susceptibilities, and
consequently (3}and (5) are not equivalent. For
our formulation. of dielectric behavior, it will be
essential that we define order via (3) and (2),
using the electric susceptibility & ~.

B. de Gennes theory of short-range order

Mesophase -isotropic liquid transitions display
latent heats diminutive compared to the heats of
fusion of crystalline solids, suggesting a more
continuous change of symmetry characteristic of
second-order phase transitions. A major conse-
quence of this fact is that the orientational order
of the mesophase and all related properties do not
change abruptly from order to disorder at the
transition. While the average order of the isotropic
phase is zero, characteristics of the ordered
phase appear locally long before the transition is
reached, giving rise to pretransitional phenomena
in the isotropic phase.

Using the Landau theory of order-disorder tran-
sition, '' de Gennes proposed a theory of short-
range order in the isotropic phase of mesophases. '
Details of this theory are well expounded in the
literature and will not be duplicated here. Sum-
marily, the orientational free-energy density is
expanded as a series in powers of the order param-
eter Q„s, as defined earlier. For a nematic liquid
we have

I I+ 2L&~a@s)~As y+ 2L2~aap~s@s g

The phenomenological coefficients A, 8, L„and
L, are each expanded as a series in powers of the
reduced temperature T„=(T—T*)/T', where T*
is the second-order transition temperature. To
the lowest-order approximation, A(T) = a'(T —T*),
and 8, L„and L, are constants. The appearance
of a cubic term in Q implies that the transition
is really of first order, albeit weakly so, asso-
ciated with the inequivalence of states or orienta-
tion characterized by Q and -Q. L, and L, may be
construed as elastic moduli governing the spatial
distortions of the local orientational order in the
isotropie phase. Since Q is a. symmetric, traceless
tensor of rank 2, it may be written as

It is easily seen that I'„, leaves the five indepen-
dent components of Q s uncoupled, indicative of
a lack of correlation between different components
of the order, in distinct contrast to the cholesteric
case, as we will see.

Cholesteric molecules lack a center of symmetry
and thus exhibit optical activity. If chiral orienta. —

tional order exists in the isotropic phase, the re-
quirement of macroscopic inversion symmetry
must be relaxed, at 1.east over the extent of the
coherence distance of the short-range order. This
allows additional pseudoscalar terms to be added
to I'„, , the lowest-order term couplin, g of the
order Q s to its spatial variations curl@:

+2qg'Q curlQ

nem + ~0 as y@ap~ g@s If
~

Since curl@ is an axial vector, q, is a pseudosca-
lar, changing sign under inversion, indicative of a
change in chirality from the right- to left-handed
helix. The collective constant (2q,I ') is a phe-
nomenological constant which needs to have no
physical meaning. However, we ean elucidate the
roles played by qo and I.' by rewriting (8) in a way
that similates the form of the Frank elastic ener-
gy:

E =ED+ ~K„(V n}'+ ~K,~(n curln+ t )~

+ —,'K»(n x curln)2+K, ~[Un: Vn —(V n)'], (9)

where n is the local orientation; f, =2v/p (p =pitch)
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is the torsion; K», K», and K» are the splay,
twist, and bend elastic constants, respectively;
and K„ is a surface elastic modulus. To affect
the similarity between (8) and (9), we calculate

(8) for a cholesteric material near the transition
(small S), which can be characterized as locally
uniaxial with the order parameter given by (4).
Thus E,„„has the form

E,„„=E,+ ', (L—, +-,'L, )S'(V n}'+—', L, S'(Q xcurln)' +', I.,—S'[n curln+ (L'/L, )q,]'+ ', L,—S'[Vn: VA —(v ~ n)'].

(10)

Comparison of (9) and (10) suggests these corre-
spondences:

(L'/L&) q0 —t 0&

L, S K»

"Correspondence" should not be construed as an
equivalence relation. Our purpose in this exercise
is to compare the role of q, to that of I;0 in the
ordered phase. By a judicious choice of L' =L„
we obtain from (11), that q, =f0 Thu. s q0' mea-
sures the extent of the short-range chiral ordering
in the same way that t, ' measures the pitch of the
long-range helical order. The correspondence
between t, and qo does indeed have further justifi-
cation. Experimental measurements of q, by
"Bragg scattering" in the isotropic phase of cho-
lesteric cholesteryl 2-(2-ethoxyethoxy}-ethyl-
carbonate (CEEEC),' for example, and of the
cholesteric pitch t, ' near T, show comparable
values, with the association of L' to Ly Fur-
ther support for this interpretation of q, will
emerge later in our work. Note that L, S' plays
the role of elastic constant K», which is known
to have an S' dependence from the Maier-Saupe
Theory. ' In the ordered phase, it is known that
K»t, =K, is not temperature dependent'; whether
or not this is also true of q,L ' will be tested ex-
perimentally.

Several thermodynamic relations can be inferred
from the de Gennes free energy. Using the order
parameter (4), with n(x) =(0, 0, 1) for the nematic
and n(x) =(cos8(z), sin8(z), 0) for cholesteric, the
free energies obtain the forms

E„, =E0+ 0a'(T —T )S0 —4BS'+ —,0
CS~+ ~ ~,

is questiopable, no quantitative rigor is implied
in (12), which does show qualitatively that the
proximity of approach to T* differs for choles-
terics and nematics by a factor associated with
their difference in twist elastic energy. Equation
(12) also shows that as the transition becomes
more second order, the values of 8, H, S, , and

T, —T~ become vanishingly small.

C. Correlation spectrum and implications of theory

From the Fourier spectrum of the free energy
(&), we can calculate the orientational correla-
tions via the equipartition theorem, and thence
derive the scattering intensity corresponding to a
fluctuation with wave vector q. The presence of
chiral coupling in cholesterics causes different
components of Q to be coupled in E(q), and its
decomposition into normal modes of fluctuations
is difficult to do for an arbitrary q. For q di-
rected along the laboratory z axis, de Gennes
calculated these nonzero averages:

2KT
»( ) 1+(qt)' '

& 14.„1'&=
& I

~lI'I'&

KT 1+ (q), }0

2~(T) [1+(q5,)']' —(~,q(, )' '

& 14,.1'& =
& 10„.1'&

KT 1+ (q],}'
2&(T) [1+(q(.)']' —(r.q5.)' '

&~"4„'„&= -&4,",I"&

KT r,q$,
2~(T) [1+(q5,) ]'-(Y,qh, )' '

&4.'.4„".& =-&4.".o,'.&

From these it is straightforward to calculate the
latent heat 0, the order parameter S~ at T, , and
the difference (T0 —T ): where

KT ~,qh,
4A(T) [1+(q(,)']' —(y,qE, )' '

0 = —a' T~SIt

S, = 2B/9C,

(T, —T*)„, =BS„/Ga',

(T» —T*),„„=BS,/6a' —9L,q'/a'.

Inasmuch as the validity of Landau theory at T,

Lj + 3L2 4L
~0 g(T) & ~l L q0~1 q0&1&

1

L, 2L' q, g', 2 F„
T)' ' L

1L, +~L2
X(T}
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(Q' and Q" are the real and imaginary parts of
the Fourier transform of Q).

For q oriented along an arbitrary direction with
respect to the laboratory (x, y, x) system, the
orientational averages can be derived from those
for q =q, by a coordinate transformation. If the

x and x' axes are defined by k, and q, respec-
tively, as shown in Fig. 1, then the (x', y', z')
system can be obtained from the (x, y, z) system
by a sequence of Euler rotations by angles (1), 8, g,
in that order, i.e.,

x' =R(Q, 8, g) x,

cosP cos& —cos8sinf sing cosP sinP+cos8cosf sing sing sin8

R = -sing cos(II) —cos8 sing cos$ -sing sing+ cos 8 cosset) cosp cosg sin8 (14)

sin8 sing -sin 8 cos P cos8

The averages in the primed coordinate system are
those given by (13). The tensor Q„B in the un-
primed system is related to those of the primed
system by a similarity transformation:

[q„,]-„=R.",[q„„]-„,R„.
It then follows that the correlations in the un-
primed system will be related to those of (13) by
tensor transformations of rank 4:

the isotropic liquid failed to emerge when T is
only 0.7'C above the transition. This underscores
the fact that the diminutive chiral coupling is very
quickly dominated by the nematic coupling in the
isotropic phase. Thus any meaningful probe of the
chiral short-range order must be able to obscure
the nematic nature of the correlations. The most
obvious property in which chirality alone emerges
is the optical rotatory power of the isotropic phase.

(Q „8Q &~ )-„=R „„.Re g ~ R
&y

i R g6 i (Q ~ t 8 ~ Q &
r g s )-„. . III. THEORY OF OPTICAL ROTATORY POPPER

IN ISOTROPIC PHASE OF CHOLESTERICS

By this method, the averages can be calculated
for any q; the details are straightforward but
cumbersome and will be omitted.

The cholesteric features of these correlations
emerge in three ways: Firstly, as predicted by
de Gennes' and measured by Yang, ' the scattering
intensity shows a. maxima for q = (y, —1P ~' or
q = (y, —1)'~' in the temperature regime where
2 & y„y, & 1. The broad peak is reminiscent of
Bragg scattering in the ordered phase, suggesting
a strong tendency to build up a spiral at these
temperatures. This effect was observed in a long-
pitch cholesteryl ester over a narrow range of
temperatures 0.68'K & T —T*& 0.11'K; at higher
temperatures, the average extent of fluctuations
become too small to yield an observable intensity.
Secondly, and more dramatically, coupling of
different components of Q 8 gives rise to a large
optical rotatory power. Thirdly, orientational
averages become singular when y„y, &2, or
2q, &

& 1, below which temperature the isotropic
phase becomes absolutely unstable against fluc-
tuations. This implies that the transition tempera-
ture T„ is to some extent limited by the torsion
q„which is unique to cholesterics.

Yang's measurement of the Rayleigh linewidth
was the only previous attempt to investigate the
chiral short-range ordering in cholesterics. Apart
from the Bragg peaks, the cholesteric features of

It is well known that the long-range spiral orien-
tational. order of cholesterics produces a large
optical rotatory power, ' aud that all cholesteric
molecules show natural optical activity in dilute
solutions. The long-range order dominates the
rotatory power of the ordered phase, and in its

FIG. 1. Definition of coordinate systems. The primed
system {z' axis defined by q) is related to unprimed lab-
oratory system (z axis defined by ko) via Euler rotations
by P, 0, g, in that order.
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absence only natural optical activity appears in the
isotropic liquid. The presence of persistent order
produces an enhancement in the rotatory power
of the isotropic liquid, the magnitude of which
gauges the degree of short-range chiral order.

Ne shall interpret this precursor effect by
showing that in a medium governed by short-range
chiral orientational correlations, the induced
polarization density P is related to the electric
field E in a way which results in circular bire-
fringence, or equivalently, the electric suscepti-
bility contains a skew Hermitian wave-vector-
dependent component.

A. Preliminary remarks

(n', -1)/(n', +2) = —;viV~,.

=—', mid[a+(n, —o.)S]. . (1'7)

This implies that the form of the effective field
F, =-,'(n2+2)E, differs for each component. The
Maier-Saupe predictions (17) were not experi-
mentally verified. Vuks, "in studying the crystals
of strongly anisotropic organic molecules, found
the components of the polarizability to satisfy
equations of the form

(n',. —1)/((n')+2)= —', wiVn, . (i =~~ or i),
(n') = s(n'„+2n', ). (18)

These relations imply that the effective field as-
sumes the same functional form F =-', ((n')+2) E
independent of direction. The Vuks relations were
experimentally verified by Chandrasekhar and

adhusudana" for nematic liquid crystals and
their mixtures.

%e now examine the implications of the Vuks
findings in the context of dielectric theory. The
effective field seen by a molecule at the center
of the Lorentz cavity is a sum of the external
field E„ the fields E» emanating from all dipoles
in the volume excluding the cavity, and Ec from
those in the cavity. As is well-known from the
extinction theorem, ' the fields Eo+ EDP combine
to extinguish the external field and generate fields
which propagate with the characteristic velocities
of the medium. Thus E+E»becomes a sum of
the macroscopic field E in the medium and a con-

The dielectric theory of an ordered anisotropic
fluid is still largely a matter of conjecture, and
local field effects are not completely understood.
The work of Maier and co-workers" on nematic
liquid crystals predicted that each component of
the polarizability e is related to the corresponding
index of refraction n by a Clabsius-Mossotti equa-
tion of the form

B. Dielectric formulation of effective susceptibility

in presence of chiral orientational correlations

Phenomenologically, an optically active medium
is characterized by a circular birefringence.
Microscopically, the phase of the electromagnetic
wave varies over the finite extent of the molecule
and gives rise to a wave-vector dispersion in the
dielectric permeability. Furthermore, the in-
trinsic chirality of the molecule requires that
this R-dispersion contains a skew Hermitian com-
ponent. Thus we can either expand the electro-
magnetic field in its spatial derivatives to account
for the variation of phase, deriving the induced
moments

(Ps) =nsE+PVxE+O(V'),

(p„)= o„H+ pV x H ~O(V')

or expand the permeability in wave vector k":
e „g (k) = eo

g + iPk „c~ „~ +O(k'),

p, «(%) = p', z + i pk~~~«+O(k')
(2O)

The usual theories of natural optical activity""
follow the former approach, deriving, e.g. , the
Rosenfeld relations:

tribution E, from the surface of the Lorentz
cavity. For molecules distributed with cubic sym-
metry or with a random disposition, it is known"
that Ec=o. Thus the effective field, in the case of
a uniform polarization, is given by E+E, and is
strongly dependent on the choice of cavity chosen.
An anisotropic cavity, e.g. , a rodlike one, leads
to an angle-dependent E which obtains its mini-
mum value in the long direction and maximum in
the short direction. This is in contradiction with
the Maier-Saupe predictions according to which
the long molecular axis should experience the
largest effective field ,'(n~—~+2)E. The Vuks-
Chandrasekhar results imply that E„and thus the
effective field, is independent of direction, i.e. ,
the cavity is spherical, corresponding to an effec-
tive field F =-,'((n')+2) E.

This conclusion is of course empirical, and
rigorous theoretical justification is difficult.
Moreover, fluctuations did not enter this dis-
cussion of the ordered phase, in which the mean
order parameter predominates over all higher-
order orientational averages. This is no longer
true in the isotropic phase, in which the mean
order parameter is zero and fluctuations become
the dominant effects, and must be incorporated
into the dielectric theory. Nevertheless, we ex-
pect that the Vuks-Chandrasekhar hypothesis to
remain valid and assume a spherical cavity.
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(D'}
}(-i4vPNk,

4.PNk, ",2~ (E)
p ) I)Hj

(21}

y =4pNk'P (22}

where e =n', and P=—1. The theories of natural
optical activity are well expounded in the litera-
ture. " "

The optical rotatory power of the isotropic
phase is a cooperative phenomenon arising from
chiral correlations in the molecular orientations.
While this means that the spatial variations of the
fields must be considered over a much larger ex-
panse, the essential features of optical activity
remain the same, and the fields D and 8 must
again be related to E and H in such a way that
circular birefringence results. Pursuant to the
foregoing remarks, we will incorporate the con-
tributions of orientational correlations into a de-
scription of the medium via the k-dispersive
permeabilities ~(fr) and i((k).

The temporal behavior of the liquid's response
will be neglected by allowing an implicit frequency
dispersion in the molecular polarizability a((()).
Intermolecular relaxation effects are unimportant
at optical frequencies in any case. The incident
field Eo(x)e ' ' propagates with wave vector fc,
along the z axis. It polarizes the molecules in the
isotropic phase, each having a polarizability ten-
sor a(x, 4'; ~) which depends on the orientation
4 of the molecular long axis (the set of Euler
angles defined in Fig. 1). The coordinates and
orientations of all the molecules specify a 6N-
dimensional configuration, , 0, the set of which
constitutes a statistical ensemble.

A molecule at x, sees an effective field F(x, , 0}
which contains the incident field plus the sum of
the radiated dipole fields of all other molecules
in a particular configuration, A. Its induced di-
pole moment is

( ),x, 4 )(=(r(», , &(, a&) ~ F(», , A),

which lead to circular birefringenee and the optical
rotation:

Gq „(x,x'; ko) = (sos„+k25„„)(e'~o"ift)

=G„,(R; k ),

where R =x -x' =R~. 0 is approximately a static
dipole field in the near zone and a spherical wave
in the radiation zone. Since coherence distances
in the isotropic phase are about 100 A in range,
the major contributions will come from a static
dipolar coupling.

To convert to a continuum description of polar-
ization, the induced dipoles are averaged over a
volume hV surrounding x which contains many
molecules but is macroscopically small:

(24)

p(x, 4) = Q 5(x-x, ) &(4 —4,. ) i),")(x, , 4, ).

Similarly we define a local polarizability o(x,4', +)
which must, however, be distinguished from the
macroscopic polarizability y that relates P and E.
Thus (23) becomes

p(x, @)= a(x, 4) ~ F(x, 0)

=u(R 0) E fd'*'G(x-x'0) p(x' k)}

(25)

According to Eqs. (2) and (3),

N(x)Q„.(x, @)= Z S„"„'(x,, @,)&(x-x,.}5(4-4,),
fee sv)

which allows us to relate a(x, 4) and Q(x, 4):

a„„(x,4; ~) = N(x) [«„„+-', a o'Q „„(x,4)] . (26)

To incorporate the presence of molecular optical
activity, we make the following modification of
(26) based on the Rosenfeld equations (19), in
which the effective field is expanded in its spatial
derivatives:

P,")(x, , 4, ) = (r(x, , @,) F(x, , Q)

+ pv ~ F(x, , n)+0(v').

Using the explicit spatial dependence of E, we have

i)(„"(x,, 0, ) =[o(,„(x, , 4, )+ in'(k, )„e„„]E,(x, , n)
—= n'~„(x, , 4', ) F,(x, , Q), (28)

N

F(x, , Q) =E,(x, )+g G(x(, x,. ; k, ) j")(x,, 4, ), .

(22)

with

n'„, (x, @)= (r„„(x,4')+ iN(x)np(k

)/ED�„„

-=n„, + iN(x) r„,. (29)

G(x, , x&, k, ) is the Green's function describing
the field generated at x, by a unit point dipole at
x~, which has the well-known form

Thus the integral equation (25) preserves its form
in the presence of natural optical activity if 0.'is
replaced by a'(x, 4).
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In solving (25) in conjunction with Eqs. (26) and

(29), iteration yields an expansion in orders of
Nn, which may not converge when the density
N is high. For nematic PAA, N =2 x 102'/cm',
a. =3.25&&10 "cm', giving He=0.07, which may
be sufficiently small. However, we can avert this
question by the decomposition:

p(x, 4) =P,(x)+&P(x, k).

Po is the solution in the absence of natural optical
activity and orientational correlations, i.e., p =0
and Q„„=O. 6P will be treated as a small correc-
tion since its contribution to the susceptibility X

is at least five orders of magnitude smaller than
that given by the Lorentz solution. The formal
relations governing 6P will be independent of the
validity of the solution P, of the Born-Rosenfeld
theory, "' thereby circumventing the convergence
question.

Both p(x, 4') and N(x) are governed by statistical
fluctuations. From (25), P, satisfies

9,( )=N( ) (E, (jj) ~, d*'0( —x'; 0,) P,(*')
~@{X)

{30)
I

(n 2-1)/(n'+2)= ', vN—n

The effective field is given by

(31)

F=E, +Na d'x'G(R; k, ) ~ (P,(x')}

4m
— (-2 )

Po+ ~ »o

=-', ( n ' + 2) E(x). (32)

The fields E and P will propagate a new wave
velocity 8%, as a result of the extinction theorem.

Next we look at the corrections 5P to p(x, 4)
due to orientational effects and optical activity.
From Eqs. (25), (30), and (32) it easily follows
that 6P satisfies

where U(x) is the I orentz cavity, which by previous
discussions does not contribute to the effective
field, and V is the total volume. The solution of
(30) is very well known from the work of Born and
Wolf" and Rosenfeld, "according to which Eq.
(30) separates into two equalities, one of which
expresses the Ewald-Oseen extinction theorem"
and the other gives the Clausius-Mossotti equa-
tion:

5P(x, 0) =5 n'(x, 4). Eo(x)+ d'x'G(x —x'; ko) [(P,&+5P(x', 4")]

=5 a' F(x}+ t d'x'G(x —x'; k, ) 5P(x', 4')
Jg

(33)

where

5 n' =N(x)[-3Aa Q(x, 4)+ iI'].

iteration of (33), and taking the ensemble averages defined by

&(A(, 4)&}, , = JtlI "' ' A(, +;[II])f([.f1[)
k

(f([Q]) is the ensemble's statistical distribution), we obtain

((5p» =((5 a'(x, 4)}}~ F(x)+ t d'x'((5 n'(x, 4') G(x -x'; k,)' 5 n'(x', k')&}' F(x')

y V
d'x' d'x" ((5 n' ~ G ~ 5 a' ~ 6 ~ 5 a')} F(x")+ ~ ~ ~ .

v(x) v(x )
(34)

Since ((Q(x, 4)}}=-0in the isotropic phase, the first term of (34} is

((»'„,» = (N(x) ii'„„&= i NI„„. '

The second term, using F{x)-e'""o'", is

V

d'x'((5 a'(x, g) G(x —x') ~ 5 a'(x', q ')},}~e'""o'" "'
~ F(x)

y(x)

which, with the help of conditional probabilities, becomes



PRE TRANSITIONAL OPTICAL ROTATION IN THE ISOTROPIC. . .

J
V

d'x'(t)t(x}N(x')} G(x-x') ([-',dot'Q(x, 4)+ ii'][-',na'Q(x', 0')+ ii']}v)„e'" o''" " ' F(x)
v{x)

& v{x)
d'x' t)t'G(» -x') [(-'So'P(Q(x 4)Q(x', 4')}—I' ~ I'] e'" "O'" " ' F(x). (36)

[The conditional probability f()1(~X) is the probability of a given relative orientation given that the mole-
cules are separated by R =x —x'. ] The term in I'2 is of order (Pko)'-(10 ~K)2 and is negligible compared
to the first term of (N}, which is of order 10 o. Thus the natural optical activity is uncoupled from the
contribution from short-range order up to this order of approximation.

The third- and higher-order terms, which involve correlations between three or more molecules, are
of the form

~V V
d'x' d'x"(i)t(x)t)t(x')X(V)}G(x —x')e'""O'" " 'G(x' —x")e'""0''"' " '

"v(x) v{x )

~ F(x) ~ (-ir'+ i I'(-', n c(')'[(Q(x) Q(x') }+(Q(x) Q(x")}+(Q(x'}Q(x")}]

+(-', t) n')'(Q(x, 4) Q(x', 4') Q(x", q'"))j.

To the extent that terms of order Q' or higher are neglected in the second-order Landau expansion, corre-
lations between three or more molecules can be neglected as long as we are not too close to T, . The term
in I" (-', na')' which couples the short-range order and optical activity, is of order pk, (10 'a) -10 "n' and is
also negligible, as is the I'3 term. Thus the third order, and in like fashion all higher-order terms, can
be discarded.

In summary, the polarization density is

p(x) = (P,(x)}+&P(x)
V

t(tal+ i'+ d'ftÃ'G(R; k )e'""0' (-', no')'(Q(0, 4) Q(R, +')) F(x)+
v{0)

-=g „. (n%,} E(x). (

(We have invoked translational invariance above. } By expressing the integral in terms of Fourier com-
ponents of various quantities, X „.(Ik ) can be written

n2+2
x „( )',)= (le ')'J, G(iili, i) &()'(q):()(i))~ ()( ( ~ ')()')

n2+2—= A+ (t)te(l+ iM ) (38)

y „summarizes the effects of optical activity and
short-range orientational order, which produce
a. k dispersion in the electric susceptibility [Eq.
(38)] characterizing the spatial dispez sion of
electromagnetic fields in the medium. Before ex-
ploring the symmetries of X „, a few comments
on, this derivation are needed.

In the course of this development, we have had
occasions to invoke the assumption that molecules
uithin the Lorentz cavity ()(x) do not contribute to
the local field, which arises entirely from regions
outside a judiciously chosen cavity where micro-
scopic variations can be overlooked as it assumes
its mean value (5,}. We have also tacitly accepted
the assumption of a spherical cavity. Further-
more, the de Gennes free energy is really ad-
dressed to slow (long-wavelength) elastic distor-
tions of the orientational order. %hen the coher-
ence distance g approaches molecular dimensions,

or when R-O, this characterization of the local
molecular environment invites doubt. As dis-
cussed at length earlier in this section, the ulti-
mate justification for these assumptions rests with
empirical results, which strongly suggest that the
loca1. fine structure of the molecular distribution
has negligible importance in the local field, either
in the ordered or isotropic phase; thus contribu-
tions from U(x) can be neglected.

y„,«has some important symmetry properties.
It is obvious from the definitions [Eqs. (29) and
(38)] that (&j „)„„is Hermitian, i.e. , [X„„]
so that the medium is nonabsorbing. More im-
portantly, we have

x'ft = -P'" =[ye" ] * u g ~ v,

i.e., the off-diagonal components of X„„arepurely
imaginary. Putting it in other words, g„",' has a
skew Hermitian component. To prove this, it is
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only necessary to show that the chiral term in the
free energy (6) couples only reaL and imaginary
parts of different components of Q„„(q), for it
would then follow that (if zy& P)

G„,&~.„~„,&= ~„,[&~;,~;,&- &4;,4.,&]

and since G„„(q) is real, it follows from defini-
tion (38) that the off-diagonal terms are skew
symmetric. [That F„„is skew-symmetric is
obvious from definition (29).] To prove the above
claim, we recognize that

of natural optical activity which must be included
as in the Rosenthal theory:

. 4zNp I2 2

3

. n'+2 I'~,
~f&fs =9 "a8+ &

3
— ~f

Equations (38) and (42) provide a complete materi-
al description of the medium.

2q I 'Q:curl@ d'x

pe ~f Q' x 2q lq'k (~

(40)

C. Modes of propagation and optical rotatory power

The modes of propagation are found from Max-
well's equations and the constitutive relations (38)
and (42)

d'q e'~' "E,~~ (q),

Es ~ (q) =2zqoL E~ ygs~~qygs~.

k, ~ D =0, nk, x E =Lz,B,

ng, xH=-Lz, D
(43)

Since e &8 =0 if any pair of indices is equal,
E, h„(q) cannot involve products of different com-
ponents of Q„„(q}. Secondly, for every choice
of y, there are two choices for (n, P), and E,~„
becomes

2zL qoyq( eey @sap@ ps+ s sAyes@ np)

=»L'qeqy[Qa„@s„—(Q~„Qs „)'1e~ys

=4L'qoqyensy(QapQs p -Qn„Qs„)~ (4l)

so that E~„couples only the real and imaginary parts
of different components of Q„„. Since 5„', contains
only terms of the form ~Q»~'=(Q'„„)'+(Q„"„)', it is
obvious that the total free energy E,„„couples
only real and imaginary parts of different Q„„'s,
so that all correlations of the form &Q' „Qs „& and

&Q'„'„Qs„& are zero, proving our contention.
The last claim is also reasonable from a physi-

cal standpoint. For optical activity to occur, it is
essential that different components of the induced
electric moment sees the field with a different
phase. Since Q„„(q)corresponds to an induced
polarization wave propagating along q, due to
chirality it must be coupled to the ozzt-of Ptzase
component of a different component of Q(q). This
means that chiral short-range order involves the
coupling of in-phase and out-of-phase components,
or real and imaginary parts of different compo-
nents of Q.

To complete the optical characterization of the
active medium, we need to supplement (38) with
a description of the magnetic properties. For-
tunately n„-10 '~E, so that the effects of orien-
tational order are six orders of magnitude smaller
than those in the electric case and hence will be
neglected. There is, however, the contribution

(n is the index of the medium). D and B are trans-
verse to jets, so that D, =8, =0 allow us to express
E, and H, in terms of the transverse components,
thereby reducing to a two-dimensional problem:

Dj. —& z ' E~, 8j. = /J z ' H&,

(Lzi)as =4ns zznupgs/zzgg~ (44)

where

a8 ~a8 + 4~xa8

.—n2+25„i™~ I„A (45}

more explicitly, e'„'8 and p, „8 are given by

eff
8 = -i(q+A„",)

-iA g

i (q+A„„)

a+A„'„

-iA„"

ZA„"

tg/e 0

-zg/e P 0

0 0

(4V)

nH =D„,

nH„= -D

nE„=8

which can be solved in conjunction with (44),
yielding the secular equation for the index n, with
roots

with g=N[(n'+2)/3]4zzntz, P, e =n~ [We hav. e also
invoked the symmetries of A s in (46).] Maxwell's
equations yield
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n', = P (e +A,'„)+ (2g+A„",)+O(g', A'}

= (n'+A„', ) *(2g+A„"„).

This can be written in the more interesting form

n2, —1 rs' —1 A,', *(2g+A,",)
+

Pl + 2 Pl + 2 Pl + 2

by each molecule has the same form F, =-3(n'+2)E„
which follows from (49) by comparing

—2

4m

where

A,', s (2g+A ",)= —, moot +
Pl +8

4-=—gee3 (49)

(where e, =n', }.
The medium thus exhibits circular birefringence

and possesses an optical rotatory power:

k,
y = -,'k, (n, n) = -'(2g—+A,",)

(-', A n')'Ar " d'q

x [Re(Q,*„Q„„}

aim�(Q„*„Q

„)]. (50)

4 gNk~op + 2 gko
n'+ 2 rz'+ 2

x (-', Ãn. n')' Im[ G, S (Q
*

Q „)]—„&

Since the average index n' now satisfies n"
=-, (n', +n') =n'+A, „=I', Eq. (49) approximates
the Vuks form of the Clausius-Mosotti equations
(18) for a system with two principal indices n,
and n, corresponding to circularly polarized
modes of propagation E, and E, respectively:

(~i[I+0(A„",)]j
(51)

For an electric field in either mode propagating
through the medium, the effective field experienced

0+ (52)

(I8 stands for the convolution). This is the princi-
pal result of the theory, and states that the rota-
tory power of the isotropic phase is a sum of the
molecular contribution P, and a term (Ip), related
to chiral orientational correlations in the isotropic
phase. (II), is, of course, the Rosenfeld result
(24) for natural optical activity. Note that the
effect (It, depends quadratically on the anisotropy
in the molecular polarizability.

Apart from the definitions (2) and (8) in which the
effect of orientation is manifested by a linear

CEEEC Temperature ('C)
58 59 40 41 42 45 44 45 46 47

+4'/crn
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—-2.6
0
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—-&0 ~4o
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I
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I I [ ] I I
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p&G. 2. Temperature dependence of optical rotatory power for two typical cholesteryl esters: right-handed CEEEC
and left-handed COC.



JULIAN C HENG AND ROBERT B. ME YER

modulation of the average local electric polar-
izability, the result (52) has not relied upon any
specific model of orientational correlation. We
will now use de Gennes's model to give (52) a
quantitative result. The correlations (fI},*~(q)
&&@ „,(q)) can be calculated in accordance with
procedures described in Sec. IIC. The transform
G„„ofthe dipole propagator (24) is easily found
to be

(52)

The integration J (f'q over all fluctuations cannot
be perpetrated in closed form. As an approxi-
mation, we recognize that the factor ( =nk, E, is
of the order of 0.1 at T, and much smaller at higher
temperatures. Expanding the integral in powers
of &, it is found that successive terms decrease
by a factor, &'&0.01. The details are given in the
Appendix, with the result

Thus the predicted temperature dependence is due
mainly to q, $, . If I, and q, are assumed not to
depend on temperature, then the dependence is of
the form (T —T*) '~'. There is, however, no
a P~iori reason for these assumptions, which mill
be tested experimentaHy.

IV. EXPERIMENT AND ANALYSIS

A. Experimental considerations

The choice of an appropriate system to study
the effect discussed in previous sections turns
out to be a crucial one. For a preliminary probe
of this phenomenon, we carried out a series of crude
experiments using a standard Perkin-Elmer-241
polarimeter and a variety of cholesteryl esters
as samples. %'ithout belaboring the crude experi-
mental details, we discuss some of the qualitative
observations.

Figure 2 presents some representative results.
An effect is indeed observed in each case, albeit
a small one amidst an overwhelming background of
natural optical activity P, . If this (II), is removed,
the residual optical rotation. has an intrinsic sense
of chirality which varies from ester to ester, being
negative for aliphatic cholesteryl esters such as
cholesteryl oleyl carbonate (COC}, and positive
for cholesteryl chloride and CEEEC. Further-
more, the sense of the rotation reverses in some
esters but not others as it enters the ordered
phase. Vfe know that the rotatory power of the
ordered phase is influenced by two factors: (i) the

sign of t „ i.e. , the sense of the helix, and (ii)
whether the ratio of wavelength to optical pitch
&' =&o/nP is ~&1. This is summarized by'0

(I) „,= (const)
(

(55)

The ratio A.
' can either be measured or estimated

for each sample. From the signs of (1 —A") and
of the rotation, the sign of t, can be determined
and compared with the sign of the pretransitional
rotatory pomer of the isotropic phase. Such an
analysis showed complete correspondence, sup-
porting the suggestion that the same intermolec-
ular interactions are responsible for the chiral
structure in both phases.

Heuristically, these observations suggest the
following.

(i) The order of magnitude of P, is rather small
for cholesteryl esters, which, with the presence
of a large P„makes quantitative accuracy diffi-
cult. Since our theoretical result is proportional
to (6&')', it seems aPropos to measure the effect
with molecules of greater anisotropy, perhaps
more nematogenic molecules.

(ii) Since the rotatory powers of both phases are
rooted in a common origin, it is natural to ques-
tion to what extent does P, also depend on the
"periodicity" of the short-range helical structure.
It is pertinent to find a way of varying the "effec-
tive pitch" while leaving other physical param-
eters intact to monitor this dependence.

The dilution of cholesteric materials with nema-
togenic dopants will increase 4e' at the expense
of decreasing the strength of the chiral inter-
action as gauged by f, =2v/P, and incurring the
risk of introducing mixed states due to incomplete
miscibility. It is therefore better to implement
the chirality on the molecular level by preparing
nematogens with an optically active end group,
e.g. , compounds of the form

R-O(O ~C ( )
in which the radical R' contains an active amyl
group (-cs,~ „~os~ '}. Such a molecule lacksCH

a center of symmetry and is optically active. The
Schiff's base structure endows it with properties
comparable to those of nematics. In particular,
(no')' is hundreds of times larger than those of
cholesteryl esters, so all effects related to the
modulation of the dielectric tensor by orientational
fluctuations will be correspondingly increased by
two to three orders of magnitude. The strength
of the chirality compares with that of esters, both
showing a pitch in the 200 nm range in the ordered
phase.
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These "chiral nematic" compounds can be pre-
pared in dextro-rotatory or racemic (50$-
dextro-50')D -laevo mixture) forms. They form,
respectively, a one-component cholesteric and
nematic compound. As a result of their chemical
equivalence, both forms have identical physical
and thermodynamic parameters (except for those
depending on chirality). Furthermore, they are
completely miscible, and their mixtures consist
of uncompensated dextro and laevo molecules of
the same constitution, which consequently differ
from the pure dextro-compound only in chirality.
The pitch of mixtures can be varied by adding
varying concentrations C of "dextro" molecules
to the racemic solvent, according to a linen.
dependence of t, on C. A11. these properties are
documented in a previous publication. " Thus we
can produce cholesterics of arbitrary pitch, all
of which are otherwise identical.

B. Experimental details and results

The compound we studied is the "chiral nematic"
system: p-ethoxybenzal-p'-(P-methylbutyl)
aniline, abbreviated EBMBA, chosen because it
is a room-temperature cholesteric with the lowest
clearing temperature (60'C). The compounds
were prepared by D. Dolphin and F. Muljiani.
Their purification is of a rather meticulous nature
Schiff's bases are sensitive to moisture and gas-
eous pollutants, which must be expelled and the
samples must be sealed to ensure a constant T„,
throughout the duration of the experiment. There
are three steps in the purification: (i) large par-

ticulate matter is filtered by mil. lipores and some
gases adsorbed by charcoal, (ii) chemical im-
purities are removed by several low-temperature
recrystallization cycles from appropriate sol-
vents, (iii) remaining solvents and gases are
removed under high vacuum (10 ' Torr). Details
of the procedure are given in (Ref. 22). Samples
are sealed in cells 5 cm long and saturated by an

argon environment which prevents further ex-
posure to gases. Samples so prepared showed
negligible degradation over periods of months.

The experimental setup is shown in Fig. 3.
The polarimetry is based on synchronous detec-
tion of a modulated optical signal with a PAR model
No. 124 lock-in amplifier. Temperature control
of the samples is critical and is achieved by two
independent regulating systems. A primary heater
maintains the ambient environment at a few de-
grees below the operating temperature, which
is regulated by a second heating system that con-
trols the sample temperature. This control sys-
tem utilizes the principle thai thermal exchange
between two reservoirs is smallest when their
temperature difference is small. The tempera-
ture is stabilized to within &.001'C for durations
far exceeding the time required for measurements.

%'e studied the optical rotatory power of two
samples: (I) pure dextro-rotatory EBMBA, with

a pitch of 218 nm, and (II) a 30.15%-dextro-
69.85 j(;-racemic mixture, with a pitch of 728 nm.
These correspond to A' = Ao/Sp of 1.80 and 0.54,
respectively, so that for Xo =6328 A the signs of
their optical rotatory power in the ordered phase

CI C2
SC

Dl D2

Pil(/If!Elf!

~I/JJJJl/ld.saba a a az y

FIG. 3. Experimental arrangement for the measurement of optical rotatory power: I, helium-neon laser; P, polar-
izer; M, light chopper; F, filter; A, analyzer; 01 and 02, diaphrams; V, oven-cell assembly; PMT, photomultiplier;
C1 and C2, proportional temperature controllers; PAR, lock-in amplifier; PP, photometric preamp; PA, preamp, SC
oscilloscope; HG, reference signal generator.
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differ in accordance with (62). The signs of P,
in the isotropic phase, however, shoul, d be the
same since both depend only on the chirality of
ff) Q. A 1I mixtures are homogeneous and thermo—
tropic, with differential scanning calorimetry
showing no phase separation or mixed phase for-
mation.

Measurements are made on cooling from tem-
peratures far into the isotropic phase, and inter-
vals of 1 h were allowed at each temperature for
the sample to thermally equilibrate prior to mea-
surement. The clearing temperature T, , as its
name suggests, is determined by monitoring the
transmitted light intensity. At temperatures below

T, the medium is opaque to the light beam, so that
T, is the temperature at which nontransmission
occurs. The change is rather easily detected since
the transition is first order and discontinuous.
This method shows a hysteresis of 0.03'C in T,
as determined on heating and cooling, possibly due
to a slight supercooling of the sample. Results
mere reproducible, and T~ is 60.5V'C and 60.46'C
for samples I and II, respectively. The small
difference may reflect the difference in chiral
energy of the samples, but is more likely to have
resulted from slight differences in purity.

To account for the natural optical activity of
molecules, dilute solutions of EBMBA in various
solvents were prepared in known concentrations,
and their optical activity were measured at several
frequencies as a function of concentration. The
results showed little temperature dependence. The
measured activity was extrapolated to 100% con-
centration in each case, and the results showed
little variation with concentration. Concentrations
ranged from 2%%uo to 10%, and solvents included
benzene and carbon tetrachloride. The value of

P, was 1.03'/cm in benzene and 0.98'/cm in CC1
at ~Q =6328 A. In view of the much larger magni-
tude of P, expected, the approximation $, =1.00 /
cm should entail negligible error.

The measured optical rotatory power of the
isotropic phase is shown in Fig. 4. Ne have scaled
the rotatory power of the mixture by its concentra-
tion in active EBMBA (i.e. , P,/0. 3015) and shifted
its temperature scale by the difference in T* of
samples I and II (as determined by procedures to
be discussed). The adjusted data plot of sample II
then overlaps the data of pure (100/o dextro) active
EBMBA, each rising more than a decade as the
transition is approached and subtending a range of
temperatures broader than 55'C in which signifi-

40
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FIG. 4. Open circles: optical rotation of sample I; closed circles: sample II, as a function of temperature in the
isotropic phase. Rotations of II have been divided by 0.3015 and its temperature shifted by 0.25'K. Insert gives mag-
nified vievr of pretransition region (Q =6328 A).
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cant temperature dependence is exhibited.
To fit these results to the theoretical prediction

(54), we assume that I., and L, are rather stable
with temperature, so that the major temperature
dependence is embodied by the factor q, f,, (T) This
assumption is supported by the work of Stinson
and Litster" on N-(p-methoxybenzylidene)-p'-
butylaniline (MBBA) (nematic} and that of Yang' on
CEEEC (cholesteric). There is no a Priori reason
for overlooking the temperature dependence of

q, . In fact, the dependence of pitch on temperature
in the ordered phase very much indicates the
dependence of q, on the nature and extent of the
orientational ordering. " If we do, however, as-
sume that q p 18 equal to a constant, then the rota-
tory power is of the form

P = P, + const x (T —T') ~KT

If indeed the fitted data deviates from this de-
pendence in some temperature regime, it may
serve to denote the temperature dependence of

q p as sum ing our theory is valid . Fitting the data
to (56) involves the adjustable parameters @„
T, and y. With the result $, =1.00'/cm mea-
sured, we can vary T* to obtain the best linear fit
to a ln(P —P,)-vs-ln(T —T*) plot, the slope of
which yields -y. It turns out that no linear slope
can be obtained over the entire 55'C range mea-
sured. Since the pretransitional region is the
range of interest, we insist that the best fit be
one which obtains near T, . %'ith this criterion,
we obtained a fit with T*=60.15'C, which gives
a linear fit over a 6'C range above T~ with a slope
of -0.495 for sample I. For sample II, T*
= 59.90'C and slope = -0.498. The fit is presented
for sample I in Fig. 5. The fit appears to be quite
good near T, , but fails at higher temperatures.
%'e will discuss the implications of these results
and account for the deviations in Sec. IVC.

order. (iv) The signs of t, and q, agree, which
supports the notion that the rotatory power of the
two phases share a common origin.

To account for the deviation of the data fit from
the form (56), we propose these explanations.

(i) The assumption of a temperature independent

q, is unjustified. The parameter q, is not a molec-
ular property, but relates to the chiral inter-
actions between molecules, which must depend
on the positional and orientational distribution of
the surrounding molecules, quantities which are
expectably dependent on temperature. This is
certainly true of t p, for instance, near a choles-
teric -smectic transition. " The deviation from
(56) thus expresses a decrease in chiral coupling
in a more highly randomized molecular environ-
ment. The chiral interactions derive from higher-
order multipolar coupling between molecules"
than the dipole dispersion coupling which gives
rise to nematic order, and accordingly must be
shorter in range. In the ordered phase, the
molecular ordering is sufficiently strong to main-
tain its structure against the disruptive effects
of thermal fluctuations; consequently t p changes
little with temperature (except near a smectic
phase). In the isotropic phase, the breakdown of
long-range order gives thermal fluctuations greater
importance in altering the molecular environment,
so that the chiral coupling is decreased at higher
temperature, as does q, .

(ii) Each coefficient in the Landau expansion is
itself expanded as a series in powers of the re-
duced temperature T, =(T —T*)/T*. When T, is
small it is adequate to approximate the coeffi-
cients by the lowest order in T„. Thus we obtain
/t(T) =a'(T —T*), and 8, C, I.„ I „qo are con-
stants for small T„. For large T„, these approxi-
mations become doubtful. %Wile the Landau ex-
pansion remains valid as an expansion in the order

C. Analysis and discussions

From the overlapping of the curves for samples
I and II in Fig. 5, the following can be inferred:
(i) The temperature dependence of the rotatory
power is independent of the magnitude of the
parameter qp or the "effective pitch" of the iso-
tropic phase. (ii} The magnitude of P, is linearly
proportional to the concentration of active EBMBA
in the mixture, which in turn is proportional to the
torsion qp,

" in agreement with theoretical pre-
dictions. (iii) The sense of the rotatory power
depends only on the chirality of the intermolecular
interactions, i.e., on the sign of q, but not its
magnitude nor the ratio A' =q, /k in Omarked con-
trast to the case of the ordered phase, in which
the dispersion (62) is a result of the long-range

|:
O

o

.6 8 LP 2 4 6 8 iO 20 30405060
(T - T'I Relative terr}perature ('C )

FIG. 5. ln($- IIIII)) as a function of ln(T —1'*), showing
a slope of —0.50 in the pretransition region. The sample
is pure dextro-rotatory EBMBA, and Q =6328 A.
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parameter, it becomes suspect as an expansion
in T„. Indeed the approach may break down at
sufficiently large T„, and the dependence of q, on
temperature is a particular exemplification of this
point.

(iii) Conceptually, the de Gennes free energy is
a product of symmetry considerations and as such
may be viewed abstractly. As a physical descrip-
tion of the isotropic phase, it resembles the Frank
energy in that it describes continuous long-wave-
length distorsions of the order parameter from
its equilibrium structure. As such it must depend
on the existence of gradual deformations as well
as a mell-defined structure. When g decreases
to the dimension of a few molecules, variations in
the orientational structure are probably more
abrupt than the elastic description, warrants, and
the simple approximate form of the chiral energy
may become inadequate at higher temperatures.
This question runs in the same vein as those
raised regarding the form of the local field when
the coherence distance is diminished to molecular
dimensions, for which speculations can only be
spurious and a deeper analysis is required of the
structure of the molecular environment in these
circumstances.

(iv) Finally, we emphasize that EBMBA exhibits
a first-order transition at T, , with T, —T =0.42 C
and a latent heat of 0.41 cal/g. Since the transi-
tion is not of second order, it may be necessary
to include the BQ' terms in the theory. This is
probably not too important unless T is near T, .

To lend some credibility to the theoretical re-
sult, we calculate f, using some estimated param-
eters as follows:

(a) For f,„ewborrow Stinson's value of 0.734
x 10 ' dyn for MBBA."

(b) From measurements of the induced magnetic
birefringence of EBMBA" by the authors, for both
active and racemic samples, we have the Cotton-
Mouton coefficient

(5't)

The measured slope of a' ' vs T —T is 0.734

x 10" erg/cm' K, and the mean index n =1.559 at
T, , so that a' can be determined from (57) if
Ay' and b, ~' are known.

(c) For the magnetic anisotropy b)t' we again
borrow the values for MBBA,"which is justified
since it is known that the aliphatic tails of the
compounds to not contribute to 4X significantly.
The measured value of b, y at T~ is 0.802&10 ',
so that from the Maier-Saupe theory by' =bx (T,)/
S, , where S, is the order parameter at T, , a
rather controversial quantity varying from sample
to sample, and is 0.42 for the Maier-Saupe theory.

(d) bc. can be obtained in terms of beo via the
Vuks-Chandraseknar relations (18), which give
be'/(n'+2) = ', ttNb—o'. be' itself is derived from
measurements of the ordinary and extraordinary
indices of the racemic EBMBA sample via the
relation

be(T) =c,(T) —e.(T) =2(n, +n, )bn(T).

From the Maier-Saupe theory we have

b~'=b~(T)/S(T) =b~, /S, .

In particular, we can let T = T, , at which 4~„
=0.329. Again, the result for d e' depends on the
value used for S„.

(e) q, is approximated by the value t, =2v/p for
the ordered phase near T, , i.e. , t, =2.90~10' cm '.
There is no reason to expect p= 2m/t, to equal
p' =2v/q„ i.e., that the torsion t, changes con-
tinuously at the transition. There is one bit of
evidence which suggests that this may be the case.
%e know that Bragg scattering occurs in the iso-
tropic phase when the condition —,

' &2q, ), &1 is
satisfied. From the measured Bragg angle 6)~,

the pitch P' can be calculated:

X, =np' sin~ 0~.

For CEEEC sample near T, , Yang' measured
L9~ = 33' for X, =6328 A, from which ~p' =2.23 p. m.
This is in good agreement with our measurements
of the pitch of the same samples in the ordered
phase by Bragg scattering techniques.

(f) Estimates of I., are not available, although

TABLE I. Estimates of the optical rotatory power (T =T*+1.17 K}.

(erg/'K cm~}
p, I-2=0} e. (L,=L,)

(deg/cm)

0.30
0.33
0.36
0.39
0.42
0.45

1.097
0.997
0.914
0.844
0.783
0.731

2.67x10 '
2.43x 10 7

2.23x 10 7

2.06x 10 7

1.91x 10 7

1.78x 10 ~

1.53x10 '
1.27x10 '
1.06x 10 ~

9.07x]0 5

7.82x 10 ~

6.81x 10 5

12.61
11.46
10.51
9.70
9.01
8.40

8.51
7.73
7.09
6.54
6.08
5.67
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Stinson" showed that I.,&1.101, for MBBA.
Thus, with kn appropriate choice of S~ we can

estimate all of the parameters as outlined above.
Measul ed vaEQes of Sp CBIl vary anywhere fr om
0.31 to 0.45. Instead of trying to guess the value
of S„, Table I presents a sampling of results
obtained with different values of S, at a tempera-
ture 1.17 K above T*, at which the measured
value of &,=20.75'/cm. The results can be seen
to be within a factor of 2 of the measured value,
which is quite good considering that some of the
parameters are either unknown or questionable.

According to de Gennes's theory, the isotropic
phase becomes absolutely unstable against fluctua-
tions if 2q, E, exceeds 1. This imposes an upper
limit on the coherence range of the isotropic phase.
Strictly speaking, the effect we have observed is
nonsingular, an unimportant distinction since T~
is never reached. The condition 2qoF„&1 implies
that (, &1'72 A. In the absence of measurements
of I.„we cannot determine how this restricts
T —T*. An estimate with I., from MBBA yields
(T —T*)&0.32'K. The measured value of T, —T*
is 0.43'C for sample I and 0.56'C for sample II.
Using the same value of I.„we obtain E„(T,)
= 151 A and 2q, g, (T,) =0.87 for sample I, and

$, (T,) =131 A and 2q, t, =0.23 for sample II. These
estimates show that at T~+6 C, (, =42 A, the
range in which a temperature-dependence starts
to appear in q, (a typical molecule is 25x 5 A).

Finally, we can obtain estimates for the param-
eters 8, C, and I., using (13) and our measure-
ments of T~ —T*, the latent heat H, and an esti-
mate of S, . The last two relations of (12) imply
that the proximity to T~ at T, for samples I and II
differ as a result of the difference in chiral ener-
gies, which differ because of their difference in
the net dextro-rotatory molecule concentration C.
Thus

(T„—T*)„-(T, —T*), = (9I,,I ',/a')(I —C')

=0 ~ 14'K,

using C =0.3015, t, =2.9&10' cm ', and g'
= 7.82x 10' erg/'K cm' (for S, =0.42), and we ob-
tain I., =1.55&10 ' dyn, which is quite reasonable
compared to the values of K» -—K» =1.84 x10 '
measured~ for MBBA near T, . 8 and C are then
estimated to be

8 = 0.64 x 10' ergs/c m',

C =2II/QS, =—0.34x10' ergs/cm'.

One must not infer too much rigor from these
estimates, since the relations (12) were derived
assuming that higher-order terms in order param-
eter Q are negligible in the Landau expansion,
which may be questionable at T„.

CONCLUSIONS
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APPENDIX

According to (52) and (53), P, is given by

4+k~ ft +2 2

3 3 „(2vP
k,' „„—(nk, + j)„(nk, +q},

(Al)

By the procedure outlined in Sec. IIC, and using
the symmetries of the correlations discussed in
Sec. III 8, it is simple to show that Im(Q,*„Q„,),
for any q, consists of a sum of the cross-corre-
lation averages given by (14), i.e. ,

f, (&, y)(4.'„I'").f, (&, 4)(4„'.4„",),
where 6}, P are the Euler angles defined in Fig. 1.
G„„(R%o+q} has a locus of singularities at 0 = 8,(q)
defined by

(1 —n ') k', —q' —2nk, q cos 8,( q) = 0. (A2)

This is a sphere in q space with radius k, and
center at nk, . Clearly, G„„can only be singular
if (n —1}ko-//q//-(n 1)k+, with e, (q} given by (A2).

A theory has been proposed for the enhancement
of optical rotatory power in the isotropic phase of
cholesteric liquid crystals in the pretransition
region. The effect is associated with the modula-
tion of dielectric properties of the medium by
short-range correlations of the orientational order.
The theory predicts that the effect depends on

q, g„which has a (T —T~) '~' temperature depen-
dence if the "effective pitch" 2v/q, of the isotropic
phase is independent of temperature. Experiments
verified this for temperatures in the pretrans=-
tion region. Deviation from the (T —T~) '~' be-
havior at higher temperatures is interpreted as
a temperature dependence of the chiral coupling

q, between mo1.ecules in the isotropic phase. Thus
the theory provides a plausible explanation of this
pretransitional effect. Further work on this sub-
ject might utilize samples with longer coherence
lengths or a more nea.rly second-order transi-
tion. In conclusion, our work confirms the exis-
tence of chiral short-range order in the isotropic
liquid and supports the de Gennes interpretation
of the isotropic phase in. cholesterics.
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Let us examine the function

H p)=
1 1

q" +2n&q'p+(, I' —I)(' 2n&q' p —p, (q, ') '

where g = cos 8, q' = q] „g = nk, g „and where p, (q')
=cos8,(q') makes H(p) singular. H(p) is nonsingu-
lar in regions I and III, in which q' ~ (n+1)f and
q'~(n —1)f, respectively, and is singular in region
II, where (n —1)k, -«~~q~~- (8+ 1)k, I.n region II,
where H(p) is singular at p, ,(q'), the integration
of (Al) over p (or 8) nevertheless converges, and
the subsequent integration over q' in the range
[(n —1)k„(n+I)k,] yields a term of order g'F10 '.
The nonsingular region III yields a contribution of
the same order. The contribution of region I is of
order &, so that the other terms are negligible.

In region I, where x=i/q'- I«/(n+1)&1, we can
expand G„„(f+q'), which is now nonsingular, in
orders of x, yielding a series of the form

(AS)

The justification of this procedure requires that
each term in (AS) contributes to a convergent
integral, and that the integrated series itself con-
verges. It is easy to show that the integrals con-
verge. To show that the approximation converges,
we note that f (8, P) has alternating odd and even
parity in 6, so that successive terms are smaller
by a factor, &'&10 ', and the series converges
rapidly.

The lowest-order contribution to P, is thus

8p KT 2—

3 2 I
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