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Very short optical pulses, traveling in sharp-line resonant absorbers without change of shape, are
investigated with a new approximation technique. Instead of employing the long-pulse or slowly varying
envelope assumption, we have developed a method of approximation based on a series expansion in
powers of a small parameter which is related to the electric field strength. The principal advantages of
the method are its ability to treat very short pulses, and the simplicity with which it can be extended,
both from lower to higher levels of approximation, and from one type of steady-state pulse to another.
In this paper we use the approximation method to study very short pulses which require retention of
the second-derivative terms in the Maxwell envelope and phase equations. Corrections to the
well-known McCall-Hahn results are easily found to first order in the small parameter. As expected,
the corrections begin to be important only for picosecond and shorter pulses.

1. INTRODUCTION

In the seven years since McCall and Hahn'! first
advanced their theory of self-induced transparency
(i.e., of lossless optical pulse propagation in a
resonant absorbing medium), a number of experi-
mental confirmations of the theory have been
reported.?~* It is clear from this experimental
work that the theory gives an excellent description
of a highly nonlinear phenomenon, at least when
the optical pulse length 7 is five to six orders of
magnitude longer than an optical period 27/w, and
also 10-100 times longer than T, the resonant
absorber’s inhomogeneous lifetime.!

However, pulses which are much shorter than
those available in 1965 are commonly used in
experimental work now, and Gibbs and Slusher
have reported® results obtained in a “sharp-
line” experiment, in which 7~ 7). Thus it
seems desirable to investigate the modifications
to the McCall-Hahn results which very short pulses
may require. We report such an investigation in
this paper.®

Since the McCall-Hahn theory of optical pulses
is not exact, but is based on the “slowly varying
envelope” assumptions,!'” it will almost certainly
fail for pulses as short as a few optical cycles.
What is more interesting is that there is some
reason to suspect that modifications may be ap-
propriate even for pulses as long as many thou-
sands of optical cycles, if the pulses are shorter
than a certain coherence or “cooperation” time®*?
which we denote by 7.

|©

The issue of pulses shorter than 7, but longer
than 27/w is not entirely academic; 7. is actually
fairly “long” by present standards, being in the
neighborhood of 0.1 nsec for a wide variety of
resonant absorbers, and within the limits of pres-
ent experimental capabilities in several cases.

Thus, in this paper we will have in mind “sharp-
line” ® pulses, those which satisfy 2n/w<7<T}
< T,, and we will pay particular attention to those
pulses which are shorter than 7,. Just how much
shorter than 7, and longer than w~! will depend
on the individual circumstance. We will occa-
sionally refer to the time domains sketched in
Fig. 1. With regard to the six regions or time
domains shown there, pulses with lengths falling
into regions I-V may propagate coherently with
small energy loss. Pulses with pulse length
greater than T, (pulses in region VI) will be dis-
rupted by homogeneous damping effects. Note
that pulses in region I can be too short to be well
described within a slowly varying envelope ap-
proximation.

This paper is organized as follows. In Sec. II
we describe the approximations with which we will
work. In Sec. III we begin to analyze the basic
quantum optical-pulse equations. Our analysis
differs from previous studies because we retain
all of the second-derivative terms in the Maxwell
wave equation. For this reason we have adopted
the term “second order” to distinguish our work
from the “first-order” investigations of earlier
workers,” who commonly used a slowly varying
envelope approximation to justify the neglect of
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FIG. 1. Six possible steady-state pulse regimes are
shown. They are defined by the various time scales
which govern pulse propagation, namely, T4, T3, 7,
and 27/w. For example, regions I, II, III embrace pulses
whose length 7 is shorter than T;‘, “sharp-line” pulses.
The T, line is not vertical because in certain absorbers
it can be adjusted more or less at will within a range of
values (see Gibbs and Slusher, Ref. 5, for an example
of such an adjustment). Regions IV, V, VI are those of
‘“broad-line” pulses. Most experimental work to date
on self-induced transparency has been done in region V.
Pulses in region VI are longer than T and experience
rapid incoherent decay. In this paper we treat pulses
in regions I, II, III. Typical values for T3, 7., and
100w™! for resonant optical absorbers are given along
the bottom axis.

all second derivatives in the equations of motion.

A first integral of the second order in-phase
Maxwell equation derived in Sec. III suggests our
new approximation scheme. It is based on the fact
that the Rabi frequency of the pulse is typically
much smaller than the atomic transition frequency.
We denote the ratio of these two frequencies by p,
and expand every variable in a series of powers of
this small parameter. In Sec. IV we derive an
equation for p itself, and in Sec. V we derive rela-
tions between the pulse length and the velocity, the
chirp, and the dispersion of pulses in regions I-III
of Fig. 1. Graphs are given of these relations for
a medium like Rb vapor. The relations between
our expressions and those of other treatments of
steady-state pulses are pointed out. As antici-
pated, the corrections to the familiar McCall-
Hahn results are small. We find that the “coher-
ence time” 7, of the resonant medium serves as a
kind of threshold for the onset of these small cor-
rections.

Section VI is devoted to a brief summary of our
results. Finally, in Appendices A and B, we show
qualitatively the physical origin of 7, in a sharp-
line medium; and explain some details of the ap-
proximation method introduced here.

II. APPROXIMATIONS

It will be helpful to distinguish two kinds of
approximation that are embodied in current opti-
cal-pulse theory.” The first kind of approximation

might be called experiment oriented; the simplest
and most ideal experimental environment is in-
voked. For example, it is frequently assumed’
that the atoms have only one possible transition,
that incoherent scattering from impurities, back
scattering, and nonresonant losses are absent,
that multimode and diffractive effects can be ig-
nored, etc. The total effect of all of the approxi-
mations of this first kind is a theory reduced to
its resonant nonlinear core, the Maxwell wave
equation for the electric field coupled to the Schro-
dinger equation for the individual two-level atoms.

The second kind of approximation is made when-
ever the resonant nonlinear coupled equations
themselves are reduced in complexity. The most
common approximations of this second kind are
made after the electric field and the polarization
density have both been written as the product of
an envelope function and a sinusoidal carrier wave.
It is then usually assumed’ that: (i) the in-phase
and out-of-phase components of the polarization,
the field envelope, and the field phase all vary
so slowly that all of their second derivatives, with
respect to both space and time, may be ignored;
and (ii) frequency modulation, i.e., “chirping,”
does not occur,!o:!!

Corrections to several of the experiment-ori-
ented approximations of the first kind have been
reported already. For example, McCall and
Hahn!2(?) have considered the effects due to the
presence of a transverse mode of the radiation
field within the absorber volume; Slusher and
Gibbs®* have been able to allow for the presence
of a nonresonant transition in their computer
studies. Some workers have explored the effects
of atomic-level degeneracy,!**2®) and others have
considered the presence of a second species of
resonant atom with a different value of dipole-
moment matrix element.?(®)

It has also been suggested!2‘?’ that the Lorentz
field 47 P can make significant changes in the
predictions of the theory; recent work on a neo-
classical theory of pulse propagation!?‘®’ con-
siders the effect of new dispersive terms added
tothe usual atomic equations; and anapproximate
theory of Stark effects in sharp-line self-induced
transparency has been given.?(!) While such
corrections may be very important, and even
necessary for agreement with careful experimental
work (cf. Ref. 4), they probably do not modify
one’s qualitative understanding of loss-free non-
linear pulse propagation.

On the other hand, to the best of our knowledge
no systematic study exists of corrections to the
second kind of approximation in absorbers [see
Armstrong and Courtens, Ref. 11, for an exact
amplifier solution]. There is no system of ap-
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proximations which has been exploited to provide
successively finer corrections to the basic cou-
pled Maxwell-Bloch theory developed by McCall
and Hahn,! and Lamb.” The main purpose of this
paper is to develop the framework for such a
hierarchy, and apply it to find the lowest-order
corrections.

III. SECOND -ORDER STEADY -STATE PULSE
EQUATIONS AND CONSERVATION LAWS

Without assuming them to be slowly varying, we
first introduce steady-state envelope functions for
the electric field £ and the polarization density P:

E(t,2)=6(t -2/V){i}, (1)
B(t,2)=Mdu(t —z/V){I}+v(t-2/V){3}], (2
where the rotating orthogonal unit vectors,
{i}=%coslwt -Kz + p(t -2/V)]
+ysinfwt -Kz + ¢(t-2/V)],
{8} = % sin[wt =Kz + ¢p(t = 2/V))
+ Ycoslwt =Kz + p(t —2z/V)],

contain the field phase ¢ explicitly. Here the
magnitude of the carrier wave vector K is general-
ly not equal to the magnitude of the vacuum wave
vector k=w/c, V is the magnitude of the steady-
state pulse velocity, R is the volume density of
resonant atoms, and d is their common dipole
matrix element.

Equations of motion for the field envelope &
and phase ¢ follow from the substitution of (1)
and (2) into the second-order vector Maxwell wave
equation:
2

82 1 3%\ . ar 8%
(53 & ) B 20+ F B,

By taking its components along {i} and {2} sepa-

rately the vector wave equation becomes two
second-order coupled scalar equations:

1 1)\ 5 K k\:
(7"_?)6_[ 2_k2)+2<7__c—)¢
1 1Y) -
*('{/—z—?> (ba]g

21k
02

lii = (w + §)u

- v -2(w+)0],

3)
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27k
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Here (') means d( )/df, where { =t -2/V is the
local time coordinate, and k=2d/k. If the phase
variation ¢ vanishes identically, and if # and
are discarded by comparison with w?: and w?v,
then these two equations reduce to a set studied
before.® If, in addition to setting ¢ =0, one also
eliminates all but the lowest-derivative term on
each side of (3) and (4), one obtains the usual SIT
(self-induced transparency) equations for a sharp-
line absorber.

The atomic Schrédinger equation, allowing for
possible field phase variations, and assuming no
effective broadening of the on-resonance line,
takes the form!°:

w=¢v, )
0 =—du+kéw, (6)
w=—-k8v. (")

The product k§, which recurs frequently, has the
dimensions of inverse time, and may be called
the instantaneous Rabi frequency for the pulse.
The conservation of probability

w? +vt+w?=1 8)

is a consequence of Eqgs. (5)-(7) for arbitrary <1>
The interpretation of # and v, in the rotating
frame, as the dispersive and absorptive compo-
nents of a typical atom’s dimensionless dipole-
moment expectation value is standard, as is the
interpretation of w as the single-atom inversion
or the dimensionless energy expectation value.'””

The two second-order Maxwell equations, given
in (3) and (4), are both nonlinear and probably not
explicitly solvable by known methods. Their com-
plexity can be reduced somewhat by using the
optical Bloch equations (5)-(7) to eliminate all of
the derivatives of atomic variables. This step is
merely algebraic. The reduced equations may be
written somewhat more simply than (3) and (4)
if we introduce our definition of the sharp-line-
medium coherence time 7,

1 2

= =3TNAWK?, 9)

c

and the following abbreviations for the dimension-
less ratio R,

R =%w<€— - %) 22, (10)
and two auxiliary frequencies P and @:

P?=(K?-k?)/(V™% - c™?) (11)
and

=8/ [(c/V) -1]"". (12)

We find, then, for the two Maxwell equations:
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é- [Pz-Qzqu% (R—w)¢.>+<i>2} 8=- %2:’ “,
(13)

. . 2 . 2 8&\2

¢8+[2¢+§;(R—w)} E=- Qz:) [1+<-';—>:|v.
(14)

The phase equation (14) is a first-order linear
differential equation for ¢. Its integrating factor

is &, and it has the simple first integral

w&pe=L [—%R (K82 + WP (1 ) + (k& Yaw

2w

-
|

_ jgw(g')xg'd(«g')J. (15)

This relation may be regarded as a conservation
law of the pulse. Its importance is that it shows
that if the functional relation between the atomic
dimensionless energy and the pulse amplitude is
known, i.e., if the energy-conservation law w
=w(8) can be found, then ¢ is also a known func-
tional of pulse amplitude, ¢$(8).

Furthermore, if both w(8) and ¢(8) are known,
then one may determine, at least formally by using
(5) and (7), the functional relation u =u(8). But
this last relation is all that is needed, then, to turn
the amplitude equation (13) into a nonlinear second-
order equation for § alone. Thus the system may
be reduced to quadratures, at least in principle,
if only w =w (&) is known.

Finally, one notices that once all of the variables
have been expressed as functionals of the basic
functional w(§), then the conservation-of-proba-
bility relation (8) can be used, again at least in
principle, to determine self consistently that same
basic functional w(8).

IV. POWER - SERIES APPROXIMATION METHOD

In order to carry out a program of self-consis-
tent integration of Eqs. (5)-(7), (13), and (15),
one merely needs to adopt a sufficiently general
form for the relation w(§). We assume only that
w has a power-series expansion about the origin:

w(8)=5:w,(1<8/w)2’, (16)
=0

where the choice of the dimensionless ratio «§/w
as the expansion parameter, and the restriction
to even powers of the parameter, are both sug-
gested by the first-order McCall-Hahn theory.!
All of the coefficients are to be determined self
consistently except w, which must equal -1 in
order that the atoms of the absorber have their
ground-state energy when §=0.

The convergence of the series (16) is a fairly
subtle mathematical question (because the coeffi-
cients w, depend in complicated ways on the maxi-
mum value taken by &) that cannot be answered
at this time. However, there are good physical
grounds for expecting rapid convergence. In the
first place, the relation between inversion w and
field energy &2 should be nonsingular. Moreover,
there is a simple argument that shows that the
expansion parameter x§/w must be smaller than
unity: the eigenenergies of the atom are of the
order of Zw, and the perturbing atom-field inter-
action energy is d-E ~d8§ ~%«8. Thus one is forced
to assume k8 < w if the interaction energy is to be
significantly weaker than the unperturbed energy.
If it were not so, if d+ES#w, it would indicate
that the atom’s energy levels were poorly defined
and transitions between them relatively meaning-
less. This is a nonmathematical argument, but it
offers strong support for the rapid convergence
of series of powers of k§/w such as (16).

Obviously, given w(8) in (16), the desired ex-
pression for $(&) is found immediately from (15)
by evaluating the definite integral. We choose to
write ¢(&) without a constant term so that there is
no frequency shift where there is no pulse. [Both
Courtens and Lee!°®’ obtain a constant frequency
shift for times and distances asymptotically far
from the field-atom interaction region. This
comes from a different definition of the phase in
their case.] The evaluation of the integral in (15)
leads to the condition:

2w,=1+R, a7

as well as to a power-series expression for ¢'>,
. 2 =
5(8)= 3 ay(ws /wpi, 18)
@5

where the coefficients a, are related to the coeffi-
cients w, by

21+3
a,=<m>w,+l+w,+2. (19)
It is then straightforward to check that u(8),

determined by the first and last of the Bloch equa-
tions, is given by

.
w(8) == oz 2 by (K8 /", (20)
n=0
where
2]
b,,:Z—Z—n—:iw,a,,_,. (21)

1=0
The Maxwell equation (13) for the field amplitude
can now be written solely in terms of &, powers
of &%, and the to-be-determined coefficients a,
and w,, and then integrated.
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Rather than continue in the most general way, will be a hyperbolic secant at this level of approxi-
let us restrict our analysis here to the level of mation,®®’ but leaves open the question of area.
approximation in which the basic atomic-energy Another independent equation for p can be ob-
expansion is carried through the fourth power of tained from (14) merely by solving it for v in terms
the small parameter «8/w.%(3> We denote the of p, p, and the only still-undetermined coeffi-
dimensionless expansion parameter by p: cient, w,. Then relation (8) allows v to be elimi-

nated, leaving
p=kE/w,
s s N2 — w? 2 [L 2 2 1 : 4
and truncate the series in (16): Y L ke +6w (1 +R> wz} pt. (26)
w==-1+z(1+R)p*+w,p*. (22) We identify the coefficient of p? in (25) and (26)
Here we have used the requirement that w - -1 as the square of the small-signal growth rate of
as p—~0, and Eq. (17), to specify w, and w,. p, and denote it by 1/72:

From the form of (15) it can be deduced that, to

2 2 _+=2 _ (2 -1

the same level of approximation, only the first PE4@f=1t =W 1+ R) @D
term in (18) suffices for the instantaneous fre- Note that this physical definition of 7 is indepen-
quency shift: dent of the question of the shape or duration or

. @ even the existence of a well-defined pulse. Also,

® =<—2;->[%(1 +R)+ w,]p?; (23) it is clear that the coefficient of —p* is just (p,7)72,

where p, is the peak value of p if p has a definite
and u is adequately given by peak value:
2 2
u= %(%)[%(1+R)+w2]p3. (24) Q%11 +R)]§1 - %[%(ua)mz]}

Note that, at this level of approximation, u van-
ishes and there is no chirp if w, = —§(1 +R).

Now we integrate (13), the first Maxwell equa-
tion, by multiplying by p after using (22)-(24)
for w, ¢, and u. All of the terms in (13) except
¢? make some contribution at this level. The
result of the integration is

2
=(poT) 2 =5w? +6w? (1 1R> w,. (28)

These complicated algebraic relations can be
unravelled in a straightforward way. Note that
Eqgs. (10)-(12) provide an implicit solution for R
in terms of P? and Q2:

p? = (P?+Q)p? -1Q*(1 +R) 14R(—e = 16P2>- 2_ (w2.P?)=0. (29)
(wr,)?  Q*R? Q%R :
2
X (1 - §22 [2a+R)+ w2]> p*, (25) However, Eq. (27) provides for the elimination of
both P2 and R (say) from (29), leaving a single
which already implies that the envelope function solution for Q? in terms of w, 7, and 7_:

J

1+ (w7 =8(1/7 P+ {_ll +(wT)? - i'l(T/T,:)"’]2 +16(T/T,_.)2[2 +R +R2(w‘rc)'2]} /2

2 =
@7) 2 +R +R?*(wt)"? ’ (30)
where R = (w7)? -1 is understood from (27). Equation (28) can be solved easily within these
If we restrict our interest to pulses longer than same limits:
about 0.1 psec, we have both w, =~ WT (T /7 ), (32)
Wt > (1/71,)3,
(r)2>(1/7,) po? = (Gwr). (33)

since 7,~0.1 nsec for many optically resonant

. It is the last of these which establishes the link
media, and

between the basic approximation method of this
(wr)2>1, paper and the neglect of higher powers of (w7)™2
in (31)-(33). It would have been inconsistent to
have kept higher powers of (w7)"2 than the first,
because we have kept only the lowest power of
p3 in writing the two forms of Maxwell’s equa-
tions, (25) and (26) (cf. Appendix B).

These inequalities allow (30) to be simplified
drastically!3:

Q7P = Ty +OU@T) ™) +0(@r,) ). (1)
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Basically the chirped-pulse problem is now
solved to the lowest level of approximation. By
substitution of (31)-(33) into (11), (12), (23), and
(27) we can easily determine the most important
pulse characteristics. We do that in Sec. V.

V. CONNECTION WITH EXPERIMENTAL QUANTITIES

A nonlinear transmission threshold, anomalously
slow velocities, quantized pulse “area,” and non-
linear dispersion have come to be associated with
modern work on optical resonant pulse propaga-
tion in absorbers. Intrinsic chirping!' might also
be included in this list of novel pulse features.

The question of a threshold can be dispensed
with trivially. Equations (25) and (26) both show
that if the field strength is low enough so that only
the first term on the right need be retained, then
exponential growth or decay follows as a matter
of course. As the field strength gets higher so
that the second term must also be retained, the
exponential behavior saturates and gives way to
true pulses. The threshold value is obviously
determined by p, in (28). Furthermore, (33)
fixes p, to be 2/wT, which is equivalent to fixing
the envelope area at 27, the same “quantized”
value of unchirped theories.

In order to display the existence of the other
nonlinear characteristics listed above we have
graphed our solutions for pulse velocity, maxi-
mum chirp, and nonlinear dispersion as a function
of pulse length. Experimental points are included
which come from the Slusher-Gibbs data on Rb
vapor.*

We should note that strict comparisons with
present experimental data are not possible. This
is because the data was obtained in a situation
where T] effects may have been critical. In any
event T < T was not satisfied for the experimental
pulses, but our theory has assumed 7 <<TJ from
the beginning.!*

Several features of the curves in Figs. 2-4
should be pointed out. First of all, we see in
Fig. 2 that very short pulses are associated with
high velocities. [This is the basic assumption of
the Courtens and Lee treatments.'*®’] Pulses
shorter than 7 satisfy V =c¢ to within a factor of
2 or so. While our sharp-line theory does predict
very low velocities when 7>7_, these low veloc-
ities must be compared with the broad-line mea-
surements of Slusher and Gibbs only with great
caution. Only within the sharp-line regions of
Fig. 1 do we expect our predictions to be com-
pletely reliable.

The high velocity of second-order pulses is the
first feature qualitatively different from the usual
picture of self-induced transparency pulses. It is
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FIG. 2. Velocity ratio V/c vs the pulse length 7 for
different media. The crossing bars depict experimental
data obtained by Slusher and Gibbs (Ref. 4) on Rb vapor.

not an unexpected feature however. As a pulse
with a given envelope area is made shorter its
energy density grows larger. Eventually, a short
enough 27 pulse has too great an energy density
to share a very large fraction of that energy with
the atoms it overlaps. (As we show in Appendix
A, in sharp-line situations this inability to share
all the pulse energy sets in at 7~7_..) But it is
understood that just this process of energy sharing
is the cause of the slow SIT velocities.'® Thus

V ~c is a natural expectation for second order
pulses.

We may also note that our assumption of zero
backscattering is a good assumption which gets
better as the pulse velocity approaches ¢. The
approximation which neglects backscattering is
thus better for our second-order pulses than for
the usual first-order pulses.!®

The new nonlinear feature of our steady-state
pulses is their chirp. In Sec. IV we showed how
an expression for pulse chirp can be obtained from
the theory. In Fig. 3 we illustrate the nature of the
chirp.!” We have plotted the maximum value taken
by ¢, its value at pulse center,

Pmax = $(£ =0)= &5,

as a function of pulse length 7. For simplicity we
plot only the lowest-level approximate results,
obtained from Egs. (23), (31), and (32) of Sec. IV.

Figure 3 suggests that, in the case of Rb vapor
at least, ¢ is very small in the sense that ¢/w
<1 (since w~10% sec™!). The sign of the intrinsic
chirp changes from positive to negative in going
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FIG. 3. Maximum frequency shift due to chirping vs
the pulse length, for Rb vapor at a pressure typical of
the Slusher-Gibbs experiments (Ref. 4). The pulse
length for which the chirp is identically zero is
T=7,~0.1 nsec. However, within the range of 7 shown,
all predicted chirps are too small to measure (see Fig.
4).

from ultrashort pulses to those longer than 7,
the point of exactly zero chirp occurring at 7 =7,.'%
We show in Fig. 4 the same result for Rb, as well
as chirping curves for three other optical ab-
sorbers, plotted over a wider range of pulse
lengths. All show the same features, differing

as 7, differs among the four absorbers. The most
interesting of the chirping features is the very
rapid increase of ¢, as 7~100w™!, For Rb we
predict J)o~1 GHz for a picosecond pulse, so that
during a propagation time of approximately 1 nsec
a phase shift of approximately 7 would accumu-
late, leading to an effect which might be detect-
able using interferometric techniques.

Finally, in Fig. 5, we show the effect on reso-
nant spatial dispersion of the nonlinear interac-
tion. In effect, we are showing the dispersion
relation K =K (w, 7) by plotting the normalized
relative dispersion K/k -1 as a function of pulse
length 7, for three possible values of 7,. For
second-order pulses in sharp-line absorbers we
show below that measurable phase shifts cannot
arise from the difference between K and k.

Having presented the results of our theory of
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index of refraction, vs pulse length, for three values of
the cooperation time 7,. In most optically resonant
media studied to date, a typical value is 7,~0.1 nsec.
Dashed portions of the curves indicate negative values,
while solid lines correspond to positive values.
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second-order pulses graphically, we can also
give simple analytic expressions in the lowest
level of approximation for the graphed curves.
These expressions should be reliable for steady-
state pulses whose pulse lengths lie in the “sharp-
line” domains of Fig. 1, regions II and III, and
possibly also region I if the two-level atom model
remains valid.

For the velocity, one has

¢ T\? _ 4rqwd® ,

£ -1= 2<7c> - 2B e (34)
the envelope area A,

A=2m (35)

maximum frequency shift due to intrinsic chirp,!?

bo= 5z [1-(£) | (36)

and maximum wave-vector shift due to nonlinear
dispersion,'?

oK — k)= =% [1 -(—T—>2]. 37)

2
wTY Te

The restriction to the lowest level of approxi-
mation, which gave us (33), guarantees that wt
>1, which is sufficient, using (36), to ensure
that q'>0 <« 1/71. Thus the spectral bandwidth of the
pulse, very roughly given by

Ay ~ AV

1 .
~7+¢0

+AV

pulse envelope phase

is due mostly to 1/7 and very little to ¢.>0. That
is, merely to measure the pulse spectral width
will not be adequate to reveal any intrinsic chirp
present.

As we pointed out above, the chirp can in some
cases, nevertheless, be large enough to lead to
phase shifts which might be detected interfero-
metrically. We can now see that the other pos-
sible contributor to a phase shift, the nonlinear
wave-vector shift, is much less important since
appreciable phase shifts develop only if 1< 7,
in which case (36) and (37) show that 430 > c(K - k).

VI. SUMMARY AND CONCLUSIONS

To summarize briefly, we have applied our
power-series approximation method to the prob-
lem of chirped steady-state sharp-line optical
pulses. We have given the explicit solution to this
problem analytically and graphically in the lowest
level of approximation.

We have found that the unusual and special fea-
tures of the “preferred” pulse solution® have a
natural explanation. That is, the present paper

shows that as a general rule all steady-state pulses
are chirped and that the sign of the chirp is positive
for very short pulses and negative for long pulses.
The value of the pulse length for which the sign of
the chirp changes from positive to negative is
exactly 7 =7,, corresponding to a pulse velocity
V =3¢, exactly the characteristics of the “pre-
ferred” pulse of Davidovich and Eberly.® This
finding, that the only sharp-line unchirped pulse
is the pulse that travels with velocity V =3c, was
also obtained by Courtens and by Lee.!o(®

What is most interesting, of course, is the col-
lection of findings concerning those pulses which
are chirped. We have established, for example,
that intrinsic chirping is a very small effect, even
for subpicosecond pulses. Not only is it true that
$<w, as expected, but one also has ¢ <1/7.
Thus intrinsic chirping makes no contribution to
pulse bandwidth and must be detected interfero-
metrically if at all. The McCall-Hahn assumption
that chirping is entirely absent is, to this degree,
now justified theoretically as well as experimen-
tally.

Our conclusions regarding the significance of
7. for pulses in the sharp-line regions II and III
of Fig. 1 follow from Eqgs. (34)-(37). As they
show, all of the principal pulse characteristics
except envelope area change in some way near
7=7,. This is due to the importance of the sec-
ond-derivative terms in the Maxwell equations
for 7<7,. That the second-derivative terms should
make any contribution at all to pulses as long as
T, (wr,~10* or more) is unexpected.
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APPENDIX A: ROLE OF 7,, THE COOPERATION TIME

Self-induced transparency is well known to be
characterized by an ‘“anomalously” low pulse
velocity.!** Such a slow pulse is actually a natural
result of the very strong atom-field interaction,
and of the ability of the atoms to share large frac-
tions of the pulse energy.'® In order for maximal
sharing to occur, the pulse-energy density must
be of the order of, or smaller than, the maximum
energy density which can be stored in the atoms:
82Iiw. For a steady-state single pulse, for
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which § ~1/«7, and which is propagating in a
“sharp-line” medium, the implication is that

?12- INRwWKE. (A1)

In other words, recalling the definition of 7, in
(9), slow SIT-type pulses necessarily are longer
than 7,. Since in this paper we study pulses which
satisfy the opposite of the inequality of (A1), we
cannot expect our steady-state pulses to share
every SIT pulse characteristic.

APPENDIX B: SYSTEMATIC APPROXIMATION
OF THE ENVELOPE EQUATIONS

The field-envelope equations (25) and (26) are
of the form

0% =(p/TPl1 = Ap? - Bp* = Cp® —+ -], (B1)

The solution depends, of course, on the number
of terms kept on the right-hand side. Recall the
definition of p—the ratio of the pulse Rabi fre-
quency to the optical carrier frequency. Thus p
is usually very small in practice, and we expect
the retention of very many terms will not be re-
quired. An iterative approximation scheme sug-
gests itself, in which more terms in the series
(B1), are kept to obtain finer approximations.

Let us refer to Fig. 6 in which p? is plotted as
a function of p?. Each of the several curves drawn
corresponds to a different number of terms kept
on the right-hand side of Eq. (B1). That is, the
curve labeled 1 is obtained from (B1) by keeping
only one term on the right-hand side; curve 2
is obtained by keeping two terms on the right-hand
side of (B1); and so on. Note that the curves in
Fig. 6 are qualitatively dissimilar until curve 3

#y

2

,\M\ )

FIG. 6. Several levels of approximation to Eq. (B1)
are sketched. The curves correspond to Eq. (B1l) when
one, two, and three terms are retained on the right-
hand side.
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is reached. In other words, keeping the next
higher power of p? in Eq. (B1) makes a big dif-
ference, not a small one, until the p® term has
been reached. For this reason, the term Bp® is
the first one which can properly be expected to
give only a small correction to the terms pre-
ceding it. Therefore, we will regard the p* and
p* terms as both belonging to the lowest level of
approximation.

We now show that a satisfactory approximation
scheme can be developed by emphasizing the exis-
tence of a pulse. In order for there to be a pulse,
p must have a maximum value at some finite value
of ¢, and p must go to zero at infinite values of ¢.
Consequently p =0 both in the pulse wings and at
the pulse peak. These conditions are all met by
rewriting (B1) as

0% = (p/peToP(P3 - P?)[1 - a(p - p?)
_b(pg_pz)z_...]’
(B2)

where p, denotes the maximum value of p. In
order that (B2) be consistent with (B1) we must
have

Apg+Bps+Cpg++ =1, (B3)
1\ 1 2 4

<p Tg) = 5 (A+2Bp}+3Cps++ ), (B4)
[J]

_ B+3Cpie---

4 TA+2Bp2+--+]’ (B5)

and so on.

In effect the change from (B1) and (B2) shifts the
emphasis of the power series from the wings of
the pulse, where p?=~0, to the body of the pulse
itself, where p?~pZ. Clearly, p, sets the time
scale on which the pulse rises and falls about its
maximum, whereas 7 does the same for the pulse
wings. The interpretation of (B3) is straight-
forward also; it is the relation that determines
the value of p,, the pulse maximum, in any given
level of approximation.

Note that the error arising from truncating (B2)
at some finite level is easily estimated. More
importantly, at the pulse peak the error is iden-
tically zero in (B2), in contrast to (B1) where the
maximum error due to truncation occurs at the
pulse peak.

If we apply the procedure sketched here to the
case provided by Eqs. (25) and (26) of the text,
we easily determine that

1

Q2=sz Pz=0 (BG)

and

A=p3?=} (TP, (B7)
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Note that (B7) connects pulse amplitude and pulse
length in just the way that requires the pulse, in
this lowest level of approximation, to be a 27
pulse. Also, at this level 7,=7, so the pulse

amplitude changes at the same rate in the wings as
at its peak. Itisthese expressions which we used in
Sec. IV in the text in deriving the lowest-level
approximation to the steady-state pulse equations.
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