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A line-integral representation for a transform of the free-particle Green's function is derived. This
representation gives rise to a line-integral equation for the Yukaea-potential scattering amplitude. The
second term in the Born series is recovered by iterating the equation once. Generalization to
superpositions of Yukawa potentials and angular&ependent potentials is discussed.

I. INTRODUCTION

A transform is introduced with which the scat-
tering amplitude for a central Yukawa potential
may be expressed as the solution of an inhomoge-
neous line-integral equation. The only integral
occurring in this equation is a line integral over
the scattering amplitude in the space of the trans-
form variables. The second term in the Born
series, for which an analytic expression is avail-
able, ' is recovered by iterating the solution in the
usual Born fashion. Generalizations to central
potentials expressible as superpositions of Yukawa
potentials are described in Sec. IV. Further gener-
alizations to angular-dependent potentials are also
indicated in this section. Expressing the scatter-
ing amplitude in this fashion seems ideally suited
to numerical study as only a one-dimensional in-
tegral must be approximated. Similarly, to cal-
culate higher-order terms in the Born series only
a one-dimensional integral has to be iterated.
Finally, as a consequence of this study a new rep-
resentation of a transform of the free-particle
Green's function is obtained which may prove
useful in other applications.

II. DESCRIPTION OF THE PROBLEM

All of the experimentally verifiable information
concerning potential scattering is contained in the
asymptotic form of the wave function,

P, (r), -„e'kp''+f, (Q)e"o"/r

g, (r) solves the Lippmann-Schwinger equation,

1
y, (r}=e'kp' ' +lim . V(r}g+ (r),

0

with V(r) the potential of interaction, 3Cp =4 p', the
free-particle Hamiltonian, and F =~k'„ the inci-
dent energy. ' Vector k, is the incident wave vec-
tor. The coordinate form of Eq. (2) will be par-
ticularly useful for our purposes:

& Ck0lr -r 'I

g+(r)=e p -2 (~ ~,
~

V(r )$~(r )dr

(2')

As Eq. (1) reveals, all we need is an integral of
(, (r), —(1/2w) fe '"I' V(r) g+(r)dr. Multiplying
Eq. (2') by e 'k~'' V(r), we get the equation

&«V(r') q, (r') drdr' .

We now specialize to a central Yukawa potential
with screening parameter s„ i.e., V(r) =e 'p'/r.
Regarding s now as a variable, consider the in-
tegral

r g -ar
e-'k~'' y, (r)dr,

which may be rewritten

with
~
f„(Q)~' =de/dQ, the differential cross sec-

tion. f, (Q) satisfies

1f, (Q) = —— e 'kf ' ' V(r)g, {r)dr,

where g, (r) is a solution of the Schrhdinger equa-
tion Xg, =-,'k'0')„regular at the origin and having
the above asymptotic form. The vector Q is in
the direction Q, and [k ~

= ~k, ~
=Op. Such a function

I'g, s) = l e "f'" g, (r)dr,

with k&, a unit vector in the direction k and
[Note that -(1/2w)E(k„s, ) is the desired

scattering amplitude. ] Let us also define

e kkplK

6 (0, s, r') = ——e 'kf "',d r .
2w r ~r r'-

Then I'g, s) satisfies the equation
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80)'

r(s, s) r, (s, s)+ f G (), sr), t (r')sr',r'
satisfies the well-known identity

+-,'(tt'2+k', )G, (r, r') =5(r —r').

(k s) e-kf tk etk ()tdr
0

In the next section we derive a line-integral rep-
resentation for G (k, s, r') with which we may carry
out the integration over r' in the last term.

Multiplying both sides by e ' ~' ' e ~ and inte-
grating, we have

e ' f' "e "-'(P' '+k')G (r r')dr =e "t'-'"e

III. EQUATION FOR THE TRANSFORM,

G(k, s, r), AND ITS SOLUTION

The free-particle Green's function

Using Green's theorem, and provided that Re(s) &0,
so that no surface term arises, we have

y &4AOlr-I'I

2tt ir-r'(

A A A

trs2 e-tkf' tke-sr p (pe
- t'kfteksr) y, ( ik k. Sr) e-tkf ('ke -sr

so that

A

=[(ikfk+si')' —2s/r]e '"f'"e ~=[s'-k'+2isk(kf r/r) —2s/rje "f'ke ~,

tks

—'( (+t)k ) 2ef'"e ~=-'(s'-k'+k')e e ' f'"+[isk(k r/r) —s/r]e "f'"e "
A

a e-fAf rA e-8)
=,' (s' -k'+k') ——s —sk-' is k

If we let

g(s, k, r') = e tkf'"G, (r, r')dr,

then G (s, k, r') satisfies the first-order partial
differential equation

8 2

—,'(s'-k'+k') —+sG+sk —= e'kf"'e-'"'. (5)' ~s ek

g (s, k, r') is a transform of the free-particle
Green's function which is very similar in form to
a transform suggested for bound-state perturba-
tion problems involving the hydrogen-atom Hamil-
tonian as 0,. The only difference is that the 2 has
been replaced by k&, which is not regarded as
fixed in space but rather as a variable parameter. '

Before discussing the solution of Eq. (5), one
point should be made. As with all first-order
equations the solution will involve some sort of
integral over the inhomogeneity. As far as this
integration is concerned however, r' will not be
involved: r' occurs simply as a parameter label-
ing the inhomogeneity of Eq. (5); i.esr r' does not:

occur in the operator

—, (s —k +k ) —+s+ks —.8
0 Bs ak

Since this is the case, we may carry out the inte-
gration r' in Eq. (4) a.nd express the result direct-
ly in terms of E; this is possible because the com-
bination

J
8(P'

e '"'e "f'"' q, (r')dr' =E(k', s, +s') .

We now obtain an explicit solution of Eq. (5).
The equation is linear and first order, so the
method of characteristics is applicable. Dividing
through by ks, we must then solve

Bk es 1 s'+ko —k'
Bv' 2 ks

This pair has the solution k =7', s'=ax' -7'-ko.
That is, 7 =k, o = (s'+k'+k', )/k are the two charac-
teristic functions. (r =constant and (t =constant
define the two sets of characteristic lines in the
k, s plane. ) In terms of the variables r and (t, Eq.
(5) becomes

e ~8{V) GP 'l'age l T

sr 7 rs(r o)

where s (7', a') is some branch of s' = a7 -v' -k', .
This gives for G
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A ~)r e -s(r, a) r' e %-%~ r'r
S ), , ') = -— +d )r, '))

T 0 s T rt7

the desired line-integral representation. di (o', r')
is an as yet undertermined function of e and r'
which arises as a constant (as far as the variable
7 is concerned) of integration in the solution of
(6')

There are three major difficulties associated
with this representation for G which must be re-
solved before it may be used in Eq. (4). First
there is the ambiguity of A. (o, r'). The only value

k for which

1 e "- e'ko'r rI
G (s, k, r') = -—

2%% y fr —r'f

may be easily evaluated is k =0. %hen k =0, how-
ever, o=~, so that setting k =0(=y) in (6) gives
4 (o, r') =0 at the single point o =~, which is not
sufficient; we need A (o,r'} for all o. This is re

lated to the fact that the line k =0 cuts all of the
characteristic lines o' = constant in the single point
s ko Furthermore at th is point, and for T

close enough to 0, s must be pure imaginary, and
Eq. (5) was derived assuming that s had a positive
real part (so that no surface term arose from the
application of Green's theorem} F.inally, there
remains another sort of ambiguity in Eq. (6): for
ss(r, o) & 0, which branch should be chosen for
s(r, o): positive pure imaginary or negative?

In order to resolve these difficulties, we present
here an alternate derivation of Eq. (6). Consider
the quantity

e- f e (}r-r'l

1 k e-s'r'e-sky r'T
+- d7'

0 S

with s' a definite but as yet unspecified branch of
s"=)rr r-s„k-sadno = (s'+k'+k', )/k, as before.
Then

dd-s)r) - ik ~ r ) v' k I ~I
(& +k, }—,dy =-

% (s -y +k ) ——,+iys' —e ' " e sy' rdT1 I2 p 2 S, ) kp r 1 ) )' k 8 k 0 r) rl ~1

k g ~e-.s')" e-)Ify r'T 88 18 -7 +k e'"e y
d7 sincek, a~ 2 Ts r

so that D(r') satisfies

s (~"+ks}D (r') = 0.
Writing

s(")= J e'""'d(%)d%,

we see that

d(x) =6(fxf -k,)g(x)/k'„

where g(x) is an undetermined function of unit vec-
tor x. Then D(r') = Je'%' '"g(2)dQ;. We fix g(x}
by looking at the asymptotic form of D (r') for large
r'. For large r',

e"o' '"=. , [e o' 6(Q„-.—Q;)ikg'

for g(y') and one for g(-y') as e'so" and e %'a"'

are linearly independent.
%e first need the asymptotic form of

e -sr e ik()lt-r)]
-sky'rk

2e~ko"'

y' ss+ks+kss+2kkP& y' y'%

-2e'k&' 1 1
kr' o +2k'~ ' y-' r"

The asymptotic form of the second term of (7} is
also required; its value depends on which branch
is chosen for

s' =i (y'+k' —(rr)'~'
0

Thus for large r',

—e "o" 5(Q„-.+Q„-}]+O(I/y'*). =i [(y - -'o)% —-'o'+ k', ]' ~'

=i (y ,'&r p}'~'(y ----,'-o+p)'~',

D(r'} = (2v/ikg')[e "o" g(y')

-e-'"" g (~')1+0 (I/y") . (6)

Comparing this with the asymptotic form of Eq.
(7}, we obtain directly an equation for the unknown

function g(y'). We actually get two equations, one

with p' = —,'v' -ko. The two branch points of s' are
therefore at v =—,'o+p, v =~o -p. We clearly desire
s' positive real for v'=k. As —,'o -p&k&-,'o+p,
there are thus only two possibilities for choosing
the branches (see Fig. l): Choice I makes s'/i
positive on 0 &7 &-,'%% -p; choice II makes s'/i
negative on 0 &v &-,'o -p.
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Let us first investigate the consequences of
choosing the branch as in I. The integral over 7

must be broken up into two pieces:
A A

k -s)r) -$k ~ r't ~ a/2-p -s'r' -sky'r)r8 f 8
+ d7' =+- d7

k 0
S' s

+

A

8 -s'r '8 - Eke» r ' v'

d7 '
s

For 0-v ~~a-p and the branch of s' in I,

s' =i(v —(o/2+p)l' '
(v —o/2+p}' '

=i (o/2+p v)')'(o/2 -p v)')'

=i (v' —m k', )')'

Thus the first term on the right becomes

a/g-p 8 -f{r - ax+kg r' -4k@» r'r8
i(v'-m+k, ')'~'

0

Letting u =5& f",x=(v' —m+ko)')'+sv, and inte-
grating by parts, this term goes like

sr N(a/2-p) + 0
FIG. 1. Branches of s'(v).

As for the second term on the right-hand side of
(~),

k
A

s r Ikey»I8 d7'
s

2 y/2r k 8-{ar-r -kQ -fk~»r)78
k ~".„, (or -v'-kv)'"

Setting u =kz v"', x = (o'v v' —k', )' —'+iuv, and inte-
grating by parts again, we get only a contribution
from the lower end point for large r',

Direct comparison with Eq. (8) shows that

gv. )- ik 1
vk o+2kP

ik 1

sk o-2k@

Thus a single functiong(v"") exists which satisfies
the two independent equations implicit in (8).
Furthermore

gx =-—sik 1

vk o+2k~ 5)

shows that

which just cancels the first term of (10). Thus for
large r',

k 8-s'r'8 -Sky'r'r'&
dY

0 s

%'e have therefore,

Dl~ )= J 8"" "gÃ)d&;

is in fact a function of the form A (o, r')/k as Eq.
(8) implies it must be.

Without going through the same details, it can
be shown that the second choice of branch for s',
as in II, gives an even simpler result, glg) =-0,

x.e.,
A

8-sre-fk~»rk elk»lr-r)1
dr

A «).k 8-s'r' -kk~» r—dv' ~ (I l)
k go s'

Inserting this form for Q (s, k, r') into (4), we see
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k e S T ikyel T

F(k,s) =F,A, s) --„
0 S

we must solve

1 " ' F{r,s(r, o)+s')

x, )}),(r')d r'd~r' x v(s )dT ds (12')

1 ~ F(r, s +s')
S

dT .
0

(12)

The absence of any additional term D (r') thus gives
rise to an inhomogeneous integral equation for the
Yukawa-potential scattering amplitude with one
important distinguishing feature. The amplitude
must be integrated over only a line in k-s space;
i.e., an ordinary one-dimensional integration
must be performed. Thus (12) is ideally suited to
either iteration or direct numerical attack. '

IV. COMPARISON WITH THE BORN SERIES
AND GENERALIZATIONS TO OTHER

POTENTIALS

Perhaps the most obvious way to solve Eq. (12)
is to iterate it. Writing

F (k s) Fn-|(r) s +so)d
0 S

generates the series for F(k, s),

F (k, s) = P F„(k,s) .
n=0

is required, where

x T„,(k, k, )dk

To calculate T„, one must have the I'p —1)th iterate
for all values of the vector k, carry out a difficult
volume integration, and then let & —0.

Generalization to central potentials which may
be expressed as a superposition of Yukawa-type
potentials follows the usual pattern. Writing

v(s')ds',

It is clear that the evaluation of the nth iterate
depends on a knowledge of the ('s —1)th, F„,(x, y },
but only along the line in the x-y plane
x=r, y =s(r, &r)+s„0~r (k.

This is to be contrasted with the ordinary way of
calculating the terms in the Born Series in which
the integral

)' gk, )=)un f„T,,g, ic), ,

with

f, )o)=-—) {))s') )s')d

and

F(»s}= e &)" -f)g '( )dr
as before.

Again the most obvious way to solve (12') is to
iterate. At each state, one has the extra integral
over v(s') to do, but of course this is also the case
with the iterative scheme for the T„'s discussed
above. Thus a calculation based on (12'} is sim-
pler for the same reason that the case v(s'}
=5(s' —s,) is simpler.

Before illustrating this point in Sec. V, where
the second term in the Born series for V(r) =e "/r
is recovered, some remarks concerning generali-
zations to angle-dependent potentials might be
included here.

The derivation of Eq. (12) depended upon the
representation

e -sr „ ikolr -r'I
e ) )»»i( dr

k &-sl', v', a)g'e-i' r'T

s(r, o)
dT .

Replacing kk& by kkz + nz, we have then

j e -sr „„+ikolt -r 'I
ar.S, dr

2v r ~r -r'i
k e-s{v', Z)r'e-in'r'r

s(r, Z)

where

K= (k'+n'+kak z)')'

n = (kk&+ez)/K,

Z = (s +K +ko)/K.

Differentiation on the left with respect to u eval-
uated at e =0 will bring down as many factors of
(r cos8) as desired. This makes possible the eval-
uation of scattering amplitudes due to superposi-
tions of potentials of the type [e '0"/r] (r cos8)" as
follows: Letting



2'l8 C. M. ROSENTHAL

e -Sr
E(k, s;k )= e «4~" (r cos8)"i), (r)drr

Sl
e '"~'" (yCOS6} "e"~'Idr —— e "y'" r COS(9", , — 'COSH')np, r' drdr'r lr-r'l

j I n gn
=E,(k, s; ki) ——

2m g

s» ~ ~ e fkQII I ', e -sQ»
e "y "e''"",

, (r'cos8')" (},(r')drdr'

& e-s(», Z)»' „e-sQr'
=Eo(k, s; kf) + --. „,= e '"'", (r' cos8'}"«)), (r')dr'dr

( ' 8" ( E(v; (, Z) ~ s,;«) dv),
i so." ' SC, s(7, Z)

where the dependence of E on the vector n has been
explicitly indicated here. This equation may also
be treated by iteration as before.

V. SECOND BORN TERM FOR THE YUKA%A

POTENTf. AL

As a check on the procedure outlined above, Eq.
(12) was iterated once, with V(r} =e "/r This.
must generate the second Born term for which an
analytic expression is available.

The first iterate of E«l. (12) gives

1 Fo(r, s'+1)
E, (k s) =-—111 k s( 01

«) 67
[(s'+1)'+ (k, -k~r)'] s'

with the branch for s' chosen as in Sec. IV. We
are of course interested in only F, (k„1), corre-
sponding to elastic scattering off e "/r. Dividing
the v. integral up into the two regions:

0-7-o/2 —p and e/2 —p-7. -k,
with

o = (1 + 2k', )/k„p = (a'/4 —k')'( '

with

E (k, s)= e ' «" e' «'dr =Ie gI
s +(k«—

so on dividing each E„by -1/2)7, we have

67
[(s' ~ ))' ~ ll«, -«~r)']s') '

In the first of these integrals, I„ the branch of
s' has been chosen such that

s' =-ilr —(o/2-p}l'i'lr —(e/2+p)I'i'=-i(o/2-p-r)" (o/2+p -~)"
Setting 7 =o/2-pcosh8, 8, =cosh '(&r/2p) (and&0),

s = -i[p(cosh8 1)] [p(cosh8 +1)] = -«p slnh8,

we have

2 d8
ik, «) [( ip sinh8 -+1}'+k',-2k, l«z(o/2 -p cosh8) + o'/4- pc cosh8 +p' cosh'8]

0 d8
ik, «)

p' —2ip sinh8+k', +o'/4 —2k costi(cr/2-pcosh8) -pocosh8

2~ d6)

00 ~
O' -Ai sinh8 —8 cosh8

0

with

O' =P'+I +~a +I,, -A, Qcosg,
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p, I3 =pe —2pao cosx

Q( ' k~ = ko cosX,

I =
4i dx

k (C'+8} x'+ 2iA/(8+C') + (8 —C')/(C'+8) x, = 2k (o+ 2p)]

QX
4s

ko(C2+8), [x+iA/(C +8)]'- Q /(C +8)

[x, +iA/(C'+ a) + q/(C'+8)][iA/(C'+8) - Q/(C'+8)
k,Q [x +iA/(C'+8) —Q/(C'+8}j[iA/(C'+8)+Q/(C'+8) (14)

The second term of (13), I„may be worked out in a similar fashion. Setting & =-, v-p cose, the appropri-
ate branch for s' is s' =p sin8. Qmitting further algebraic detail, we have

2i [x, +A/(C'+8)+Q/(C'+8)][A/(C +8) -iQ/(C +8)]
k,Q [x, +A/(C'+8) ig/-(C'+8)][A/(C'+8) + Q/(C +8)]

with x, =2k'(1 +2k,p), and everything else as before. Clearly the imaginary part of the scattering ampli-
tude comes entirely from I„both I, and I, contribute to the real part. Reference 1 shows that I, +I,
must reduce to2, ko sin(e/2) i S+ 2k', sin(8/2)

k,S sin(o/2) S 2 S —2k', sin(o/2)

S' =1+4k', +4k', sin'(e/2), k, kq =cose .

This is demonstrated in the Appendix,

UI. CONCLUSIONS

A transform of the free-particle Green's func-
tion has been examined which has a particularly
simple line-integral representation. Using this
representation the Yukawa-potential scattering
amplitude emerges as the solution of an inhomog-
eneous line-integral equation. Compared with the
usual inhomogeneous integral equation for the
scattering amplitude, this equation should be far
simpler to handle, either by direct numerical
attack or by iteration, as only a one-dimensional
integration must be performed. Generalizations
to general central potentials and angle-dependent
potentials were also considered. Finally, an ex-
ample, the second Born approximation for the
Yukawa potential, was recovered by iterating the
equation once.

APPENDIX

First let us extract the imaginary part of I„ this
comes from the real part of the logarithm. Thus

1m', (k„1)

2 1 [x, + g/(C' 8)+]'+A'/(C' 8)+'

k,q 2 [x, —q/(C'+8)]'+A'/(C'+8)'

ln terms of sin(8/2),

p' = 1 +1/4k'„C'+ 2p'+ (2 + 4k', ) sin'(8/2),

8 p/k, +4pk, sin'(8/2), A =2p,

so that

Q' = C' -A' —8' = sin'(8/2) [4+16k', + 16k', sin'(8/2)],

g = 2 sin(e/2) S,

where S is given in (16). Then one has

lmF, (k„1)
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1 x,'(C'+8)'+2x, (C'+8)@+q'+A'
koQ xo (C +8) —2xo(C +8)Q+Q'+A'

1 x (C +8)+2x Q+C -8
k,Q x, (C +8) —2xoQ+C 8—

1 C'+2x, q/(x, '+1) +8(x,' —1)/(x,'+1)
k,q -C' -2x,q/(x, '+1}+8(x,' -1)/(x, '+1)
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But

2x, 24, x,' - I 2p

1 C'+ 2k'/cr —2pB/a
k,q C' —2k,q/o —2pB/o

1 [2p'+ (2 + 4k', ) sin'(8/2)] (1 + 2ko) + 2k~op —2p~[1 + 4ko sin'(8/2)]
k,q [2p'+ (2+4k', ) sin'(8/2)](1+2k, ') -2k', q —2p'[1+4k,'sin'(8/2)]

1 sin'(8/2) [(1+2k',)(2+4k', ) -2(1+4k,')]+4p'k', +2k', q
k,q s;n'(8/2) [(1 +2k', ){2+4k',) -2(1 +4k', )]+4p'k', -2k', q

6 sin'(8 /2) k,'+ 1 + 4k', +2k,'q
koQ 6 sin (8/2) ko+1 +4ko —2ko~g

Q'/[4 sin'(8/2)] + 4k', sin'(8/2) + 2k,'q
k,Q Q'/[4 sin'(8/2)]+4k, 'sin'(8/2) —2k,'q

Q'+ 6k,' sin'(8 /2) Q + 16k', sin'(8/2)
koQ Q —6kosin'(8/2) @+16k' sin4(8/2)

2 / +4k', sin'(8/2) 1 S+ 2k', sin(8 /2)
k,Q Q —4k', sin'(8/2) k,Ssin(8/2) S —2k', sin(8/2)

This checks with the imaginary part of (16).
Combining I, and I, [Eqs. (14) and (15)] for the calculation of ReE, (k„1),

E, (k„ 1)

k q ' (C'+B) ' (C'+B) (C'+B) I
' (C'+B) (C'+B) ' (C'+B) (C'+B) j(e--~)

We are now only interested in ReE, jjb„1):

ReE, (k„1)= —(2/k, Q) Im in',

where z is the argument of 1n above, i.e.,

xox, (C +B)+Qx, 4+x o+(Afx+Qxo+C -B)
(e- -e)

Noting first that

O' -B = [p/k, + (2k,p —1)sin'(8/2)] (2pk, —1),

replacing Q by 2 sin(8/2) S of the previous section, and multiplying z by

{o+2p)(1+2k p)
(o+2p)(1 +2k,p) '

one obtains
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4k20(C'+8) +4k, P(1+2koP)+4ko sin(8/2) (v+RP)s
(S- -S)

i[4k,p(cr+Rp)+4k, sin(8/2) S(1 +2k,p) + (C' -B)(s+Rp)(1+2k,p}]
(S- —S)

4k2$2p' + (2 + 4k', ) sin'(8/2) +p/k, + 4pk, sin'(8/2) J
(S- -S)

4k,p(1 +2k,p}+4k,sin(8/2}s(v+Rp)+4k',
(S- -S)

i{4k,p(o+Rp)+4k, sin(8/2) S(1+2k,p}+4k', (cr+Rp)[p/k, + (2k,p —1)sin'(8/2)]}
(S- -S)

Bpko[1 + 2k', sin'(8 j2) + csin(8/2)] + 4+ 16k', + sin2 (8/2) (Bk', + 16ko) +[ 4+ Bk', sin(8/2)] S
(S- -S)

i{p[6+ 16k', + Bk'„sin(8 j2) 5+ 16k', sin'(8/2)] + (1/k, )[16k', + 4 + 4k', sin(8 j2) S+6 sin'(8/2)k, ']}
(S- —S)

Bpk 0{1+ sin(8/2) [Rk20 sin(8/2) + S]}+ 4[S+2k', sin(8/2}][s+ sin(8/2)]
(S- -S)

i(4p{1+S[S+2k', sin(8/2)]}+ (4/k, )[s+2k', sin(8/2)][s -k', sin(8/2)])
(S- —S)

[S+2k', sin(8/2)][s+ s in(8/2) + 2pk, ] + 2pk,
(S —S)

i{[s+2k',sin(8/2)][s/k, —k, sin(8/2)+Sp] +p}
(S- -S)

Writing z =z,/z„

Re z =, ({[S+2k', sin(8/2)][S + sin(8/2) + Rpk, sin(8/2)] + 2pk, }z2'

x {[S-Rkz sin(8 j2}][S—sin(8/2) —2pk, sin(8/2)] +2pk, }

+{[S+2k',sin(8/2)][Sp + S/k, —k, sin(8/2)] +p}

x {[S 2k', sin(8/2)][sp +S/k, +k, sin(8/2)] +p})

1m z =—,({[S+2k', sin(8/2)][s+ sin(8/2) + Rpk, sin(8/2)] + 2pk, }
2

x ([S—2k', sin(8/2)][Sp + S/k, + k, sin(8/2)] +p}

-{[S—2k', sin(8 /2)][S —sin(8/2) —2pk, sin(8/2}] + 2pko}

x ([S+2k', sin(8/2)][sp + S/k, -k, sin(8/2}J +p});
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omitting further algebraic detail, so

Res =, [S' —kso sin'(8/2)]ss'

1 2 sin(8/2)

Imz 2Sko sin(8/2)
Res S' —k,' sin'(8/2) '

So that

2 „2Sk,sin(0/2)
'

in(8/2)S S -k si

2 „,k, sin(8/2)

x [2 (1 + 4k', ) (1 +k', ) +pk, (4 + 12k', )j, which agrees with Eq. (16).
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It has been suggested that Eq. (12) is related to the
method of A. Martin fNuovo Cimento ~14 403 (1959)j,
outlined by B. G. Newton [Scattering Theory of 8"aves
hand Particles (McGraw-Hill, New York, 1966), p. 423].
There are several distinctions between the two ap-
proaches however; the most important is that Martin' s
method is tied to a partial-wave analysis, whereas
Eq. (12) is not. The connection between the two may

be seen as follows:

E(0,s) = 'l e "4 (r) dr

e"S" y, (r) r-'
P, (cosg) ' singdgdg

in Martin's notation. If we assume expansion (14.18)
for f (k, r), then E(0,s) =1/(s ik) f+d-a (sks)/( sa+ik). -
When we letk -0 in Eq. (12) and insert this form for
E(0,s), it is readily seen that s(a, k) satisfies Eq. (14.19)
of Newton's summary. One way of expressing this re-
sult is to observe that Martin's approach provides an
infinite series expansion of the k =0 limit cf Eq. (12).


