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From measurements of the spin diffusion, thermal conductivity, and viscosity coefficients in dilute
solutions of 'He in superfluid 'He, we have phenomenologically determined the amphtude for 'He-'He
quasiparticle scattering. Two different parametrizations of the amplitude have been used; one form
depends only on the momentum transferred in the scattering event while the other depends on the
initial momenta of the quasiparticles as well. The amplitudes are fitted to measurements at temperatures
in both the degenerate Fermi-liquid regime (T & T„) and the classical regime (T g 2T„), whereas
most previously determined amplitudes are valid only in the low-temperature regime. Finally, the
possibility that the scattering amplitude is 'He-concentration dependent is investigated by fitting
measurements at each concentration independently. This procedure indicates that there is an
enhancement of the amplitude at small momentum transfer as the concentration increases.

I. INTRODUCTION

One method of determining the interaction be-
tween 'He quasiparticles in dilute solutions of
'He in 'He is by analyzing measurements of the
transport properties. The usual procedure" ls
to use a parametrized model for the quasiparticle
scattering amplitude and to adjust the parameters
so as to obtain the best fit of the calculated trans-
port coefficients to the measured ones. For com-
putational reasons this method is usually applied
in two distinct temperature regions: at tempera-
tures T«T~, the 'He Fermi temperature, where
the 'He behaves as a degenerate Fermi liquid;
and at T sufficiently large (T» 2T~) that the 'He
behaves as a Boltzmann (ciassicai) gas. In these
two temperature regions (but not at intermediate
T), simple analytic solutions of the Boltzmann
equation exist so that the interaction between 'He
quasiparticles may be easily related to the trans-
port properties.

The transport coefficients that are of interest
to us here are the spin diffusion D, the thermal
conductivity K, and the viscosity q. Until recent-
ly, the measurements available for analysis mere
of D at both low and high temperature' and of K
at low temperature. ' Now that the 'He viscosity
in the classical regime has also been deduced
from measurements, '6 an effort to determine a
scattering amplitude consistent with all transport
data in both the high- and low-temperature re-
gimes seems worthwhile. The purpose of the pre-
sent work is to find such an amplitude.

The remainder of this paper is organized as

follows: Sec. I is an introduction containing a
brief review of other attempts to determine the
interaction between 'He quasiparticles with em-
phasis on phenomenological studies based on mea-
sured transport properties. In Sec. II we give a
summary of the relevant transport theory with a
description of how the scattering amplitude is ex-
tracted from the experimental transport coeffi-
cients; Sec. III contains a discussion of the results.

In general, the amplitude for 'He-'He quasipar-
ticle scattering in dilute solutions of 'He in 4He

may be a function of the atomic fraction of 'He,
X, of the spin state of the quasiparticles, and of
the temperature, as wel. l as of the initial momenta
p and p' of the particles and the momentum transfer
q. For now, we shall assume that the concentration
and temperature dependence maybe ignored (the pos-
sibility of concentration dependence is introduced in
Sec. III) and that the only spin dependence is what
is required by the Fermi statistics of the 'He.
Then the amplitude for the scattering of parallel-
spin quasiparticies, A~t(p, p'; q}, may be written
in terms of the scattering amplitude for antiparal-
iei spin quasiparticies, Aii(p, p', q}:

&»(p, p'; q) = &ti(p, p'; q} -&»(p, p'; p' -p -q) .

Given these assumptions, the problem of finding
quasiparticle interaction is considerably simpli-
fied, since only A~~ need be determined. The most
direct approach for doing this is to expand the
amplitude in powers of inner products of the three
vector arguments, with coefficients in the expan-
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sion being found by comparing calculated values
of the transport coefficients with measurements.
Unfortunately, this method is not practical for
two reasons. First, in the classical regime,
typical momenta are -(mme T)' ', where m is the
'He effective mass (assuming a parabolic quasi-
particle energy-momentum dispersion relation)
and k~ is Boltzmann's constant. Such momenta
are sufficiently large that many terms must be
kept in the expansion to give an adequate repre-
sentation of A~~ for all p, p', and q of importance.
Second, the amount of information available from
experiment is not great enough to permit determi-
nation of these coefficients. In particular, in the
low-temperature (degenerate) regime, all quasi-
particle scattering is on the Fermi surface,

I p I
=

I
p'

I
=

I p+q I
=

I
p' - q I = ps~ wher~ p~ is the Fermi

momentum. Thus only a restricted domain of p, p',
and q is sampled, strongly limiting the amount of
information about A~~ that may be obtained from
these measurements. This point is brought out
by the fact that p q =p' q = —q'/2 for scattering
on the Fermi surface. Hence one cannot even dis-
tinguish between the inner products p. q, p' q, and
q' in the low-temperature regime. In view of the
foregoing, it is more sensible to assume some
relatively simple form for A~ ~(p, p'; q) than to
employ a general expansion. This form should
be both physically reasonable and computationally
convenient.

Before giving a description of some forms that
have been widely used for A~~ in the past, we wish
to discuss briefly the relationship between the ex-
perimental data and the scattering amplitude and
the conditions under which information about the
latter may be extracted from the measurements.
The coefficients of thermal conductivity, spin dif-
fusion, and viscosity involve, respectively, cur-
rents of heat, spin, and momentum. In any given
experiment these currents may in part be deter-
mined by excitations other than 'He quasipartieles,
such as phonons and rotons. In order to obtain
information about He-'He scattering, it must be
possible to extract from the data that part of the
current which is carried by the 'He, and it must
also be true that the dominant mechanism limiting
this current is the 'He-'He scattering. Depending
on the transport coefficient being measured, these
conditions can only be met in certain regimes of
temperature and 'He concentration. For example,
the 'He contribution to the heat current in a 1.3%
solution is found' to dominate the phonon contribu-
tion only for T & 0.015 K. Similarly„ the phonon
contribution to the momentum current makes it
difficult to extract the 'He contribution in the
classical regime. (This and other problems re-
lated to determining the component of the viscos-

& «(p, p'; q) -&(&)= I(»(e)/l',

where V is the volume of the system.

(2)

ity limited by 'He-'He scattering are discussed
in another paper. ') The case of spin diffusion is
relatively simple because there is no phonon con-
tribution to the spin current. Furthermore, scat-
tering of parallel-spin quasiparticles cannot alter
the spin current, so only A~~(p, p', q) enters the
computations independent of any assumptions con-
cerning the relation between A~~ and A~~. There-
fore measurements of D are particularly useful
in the present context.

Another important point deals with the question
of which measurements provide independent infor-
mation about the scattering amplitude. Basically,
any given measurement involves a certain average
over A~~ in momentum space, so the question is
how to obtain different averages. In the degener-
ate regime, because of restrictions imposed by
the Pauli exclusion principle, it turns out that
each measurement at a different 'He concentra-
tion X gives a distinct average, but that, at a
given X, changing T does not lead to anything
new so long as T«T~. Conversely, in the clas-
sical regime, measurements at different X are
redundant, but a change of temperature redistri-
butes the quasiparticles in momentum space and
so leads to a different average over the scattering
amplitude. Thus we are interested in measured
transport coefficients at different concentrations
in the degenerate regime and at different temper-
atures in the classical regime. Those experi-
ments which are available for our analysis include,
at T «T~, the spin diffusion' in 1.3@ and 5.(@
solutions and the thermal conductivity4 at the same
concentrations and, at T & 2T~, the spin diffusion'
and viscosity. "

A number of attempts"' "have been made at
phenomenologically determining the interaction
of the 'He quasiparticles in dilute 'He-'He solu-
tions. For a summary of these investigations, the
reader may consult Ref. 2; here we shall mainly
discuss the approach of Bardeen, Baym, and
Pines, from which the present treatment has
evolved.

The phenomenologieal BBP theory assumes a
weak effective interaction between two 'He quasi-
particles; this interaction depends only on the in-
terparticle distance and has a Fourier transform
V~»(q). It may be used to calculate static proper-
ties as well as transport properties of the solutions,
and was, in fact, determined from measurements
of the phase separation curve" and of the spin-
diffusion coefficient at low temperature. ' The
BBP effective interaction is equivalent to the scat-
ter ing amplitude
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It is not possible to determine the over-all sign
of the amplitude from transport measurements
because they depend only on its absolute value
squared. To overcome this difficulty, BBP made
use of the measured solubility of He in, 4He at
low T. This consideration plus the two low-tem-
perature measurements of D at 1=0.013 and 0.05
led them to the simple two-parameter function

V„(q) = - I(;„(0)cos(Pq/a)

with V»(0}= 0.0'I 5m, s'/v„and p = 3.16 A-'; ~
the 'He atomic mass while s and U~ are the first
sound velocity and volume per atom in pure 4He

at T=P=O (P is the pressure). It is convenient
to further define V, as

ppysvyp1. 73x10 37 erg cm' ~

In addition to empirically determining the quasi-
particle scattering, BBP discuss the physical ori-
gins of this scattering. By considering both (i) the
static shift in the energy of a 'He quasiparticle
produced by the introduction of a second one and
(ii) the contribution of single-phonon exchange to
the quasiparticle scattering, they find the theoret-
ical amplitude

Ajt(P, P';&1) =[-A.V. -A. (P i)(P' i)~.,/~, q'l/V,

(4)

where Ao = u' and A~ = (m, /m)'[I + o. + (m-m, )/mP
=1.72, m, is the 'He atomic mass, and o. is a
dimensionless number such that the volume per
atom in a solution of concentration X at T = 0 is
L„(1+ax} in the limit of small X. From molar
volume measurements one finds u' =0.081 at P =0.

In the degenerate regime, all scattering events
are such that p cj = —p' j= —q '/2, so Ail becomes
(- a' V. +A, q'u„/4m, )/V. For small q, V~„(q) is
also a parabola, so the forms of the phenomeno-
logical and theoretical amplitudes are consistent
in this limit. At large q, the amplitude is not ex-
pected"3 to be given correctly by Eg. (4).

Fol.lowing the work of BBP, Abel et al. ' mea-
sured the low-temperature thermal conductivity
of solutions at &=0.013 and 0.05; their results
turned out to be inconsistent with predictions
based on the BBP amplitude. Subsequent im-
provement of the theoretical expressions relating

and the Fermi liquid transport coefficients~"
removes part but not all of the discrepancy; fur-
thur attempts"0 have been made to modify gqr(q)
in such a way as to fit the measurements of both
D and E, but it does not appear to be possible to
obtain jess than a I(@discrepancy between all of
the calculated and measured coefficients. The
best fit has been achieved using a five-term power
series,

4

A&i(q) = —(V./V) P s.(q/q. }'",

where the a„are variable parameters. This ser-
ies is a convenient representation of A~~ because
it is a simple function and, if enough terms are
kept, it can accurately represent an arbitrary
function on a finite positive interval of q, 0& q& q,„
so long as q,„ is fairly small.

A quite different modification that has been
tried' is the "dipolar" amplitude of Eq. (4) with
A, and A„as variable parameters. Since this is
just equivalent to a parabola in the degenerate
regime, i.e., to the first two terms of the power
series, one should expect to be even less success-
ful in obtaining a good fit with the dipolar ampli-
tude. This turns out to be the case, the discrep-
ancy between calculated and measured transport
coefficients being as large as 25k. The result is
disappointing, since one would like to believe the
dipolar amplitude has some theoretical justifica-
tion.

Neither of the scattering amplitudes described
above is well-suited for analysis of the high-T
transport data; the reasons are, in the case of
the series, that a power series is difficult to con-
trol at large values of its argument and, in the
second case, that there is not enough flexibility
in the amplitude to make it work over the wide
range of momenta that are important. Previously,
an amplitude in the form of a sum of Gaussians
was used to analyze high-T data7; this turns out
to be quite adequate, but it has the drawback of
being different in functional form from the ampli-
tudes used to fit the low-T data.

In the present work we want to use a single am-
plitude to analyze all of the data and prefer a func-
tion that more nearly reduced to one of the com-
mon choices (power series or dipole. r) at small q.
To this end we have chosen to work with the follow-
ing two functions:

(i) Modified poorer-series amplitude. The pow-
er series is easier to control if it is multiplied
by some envelope which dominates the series at
large q. A simple choice is the Gaussian
exp[- B(q/q, )']; thus we have the modified power-
series amplitude,

Aj~(p, p'; i) -A(q) = —(V,/V)e +'~""P o-„(q/q, }2

where the a„and B are to be found from the fit.
Note that such a function is not more general than
a simple power series, at least if N is large; it
is, however, easier to control at large q and is
therefore more convenient for computations.

(ii) Modified dipolar amPlitude. Comparison of
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the dipolar amplitude [Eq. (4)] with the experi-
ments shows that it is too strong at large q; there-
fore one may obtain a better fit if it is multiplied
by a factor which approaches 1 at small q and
which decreases as q increases. A Gaussian also
has this property; we therefore have investigated
the modified dipolar amplitude,

A~~(p, p'; q) = —(1/V}[A,V, +A„(p q)

1 m d3 de dot -(r +s +t2) 5( . )
3th

q 2k'm'(k T)'~' J

x(r, s, +r, s, ) W(t+r+s, t+r-s; —2s)

x (p' q) U„/m, q '] e i'~4ol, xr, W~~(t+ r + s, t+ r-s; —2s), (8)

(6)

where A„A.„, and B are the free parameters.
%e turn next to the procedure by which the pa-

rameters in these two amplitudes are determined.

II. DETERMINATION OF THE SCATTERING

AMPLITUDE

A. Transport theory

In order to extract information about the quasi-
particle scattering amplitude from the measured
thermal conductivity, viscosity, and spin diffusion,
it is necessary to have solutions of the appropriate
transport equation, which in this case is the
Boltzmann equation. %'e are interested in solu-
tions in both the classical (T&2T„) regime, where
the 'He quasiparticles obey Boltzmann statistics,
and the degenerate (T«Tr) regime, where Fermi
statistics must be used. In fact, there are also
useful measurements at temperatures in the inter-
mediate regime, but no simple solutions of the
Boltzmann equation are available for this case.

Given a weakly interacting Fermi gas, which
the 3He quasiparticles are assumed to be in dilute
mixtures, there is no intrinsic difference between
the classical and degenerate regimes. Strictly as
a consequence of the change from classical to
Fermi statistics, however, the solutions of the
Boltzmann equation for the transport coefficients
have quite different forms in the two regimes,
and so we shall discuss them separately.

For temperatures large compared to the Fermi
temperature, we shall use the lowest-order term
in the Chapman-Enskog series, a solution that is
appropriate for a dilute classical gas." It must
be generalized slightly to take into account the
fact that the interaction between two 'He quasi-
particles need not be independent of the motion
of their center of mass. This independence is
generally assumed in a classical gas, but in the
present system the interaction is partly deter-
mined by the background superfluid 4He so that
there is no invariance under translation of the
'He. This generalization leads to the following
expressions for the transverse viscosity q and
for the spin difusion D:

Wt~(8, y) sin's 8(l-cosy} '
X 1cos&8

(10)

1 3m~ W(8, (p} sin'~8 )
KT 4''H(kr)k'Psr cos —,'8 /

1 45m'ks W(8, (p) sin'-,'8sin'y
qT' 16C(A. „)K'g cosz8

(12)

Here the probabilities W, are written as func-
tions of 6l, the angle between p and p', and cp, the
angle by which the plane containing the quasipar-
ticle momenta is rotated in the scattering pro-
cess. Such a representation is possible because

where +3 is the 'He quasiparticle number density
in the mixture and subscripts ~ and x denote
Cartesian components of a vector; also r, s,
and t are reduced momenta, the real momenta
being givenby (mksT)'~'r, etc. Finally, the
quantity W„(p, p'; q) is proportional to the prob-
ability that quasiparticles initially in states (po)
and (p'&') scatter into states (p+q, o) and (p'-q, o);
a and 0' are spin indices with W= &H'~~+ 4W~~. In
terms of the scattering amplitude A„(p, p', q),

W..(p, p'; q) = (2 /k) l V&..(p, p', q) I

' . (8}

In the absence of any explicit form for the scat-
tering amplitude, it is not possible to carry the
integration indicated in Eqs. (f) and (8) very far;
if one assumes that A„.depends only on the mag-
nitude of the momentum transfer q

-=l —2s l, then
the equations reduce to the usual expressions for
the viscosity and diffusion coefficient in a classi-
cal gas except that the scattering probability is
spin-dependent and should be symmetrized in
accordance with the requirements of the Pauli
princ iple.

In the degenerate regime, T«T~, the linearized
transport equation has been solved exactly" for
D, K, and q in a normal Fermi liquid. The results
are

1 3m'k~
DT' 16m C(XD)h ep~(l +F0)
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for T«T~, all quasiparticles which can partici-
pate in scattering events lie close to the Fermi
surface, so that to a very good approximation
Ipl= lp'I = Ip+ql= lp'-ql=P~ T.hus the only way
in which W', . can enter expressions for the trans-
port coefficients is through an average (' ) over
the Fermi surface; this average is defined by

(i(e, ~)) -=I —„J 2 f(~, s)

The functions C(&) and H(A) are given by

(13)

cp.) = 4n+3
4 ~ (n+ l)(2n+ l)[(n+ 1)(2n+ I)-X]

and

(14)

ff(~) =3 4++ 5
4 ~ (n + 1)(2n+ 3)[(I~ 1)(2n+ 3) —&]

while

{Wi ~(&, y) sin'-,'8 (1 —cosy)/cos2 &)

(W(8, y}/cos —,
' 8)

(18)

(W(8, y) cos&/cos~ 8}
(W(8, y)/cos& &)

{W(8, y) sin~&& sin'y/cos&8)
{W(8,y)/cos-,'8) (18)

Finally, 1+ED is the magnetic susceptibility en-
hancement factor in the Landau Fermi-liquid the-
ory 16

The high- and lom-temperature expressions for
the transport coefficients are not equivalent in the
sense that they are not equally accurate solutions
of the Boltzmann equation. The high-temperature
solution may be obtained from the usual variation-
al method" in which the entropy production is
maximized at a fixed value of the appropriate
current. Equations (7) and (8) result when the
trial function for the quasiparticle distribution is
taken to be

f.(p) -f'. +4'.(p)f'. (p)[i f'.0 )1 /I s~-,

with @ (p) pQ, for viscosity and @i~(p) +p, for
spin diffusion; f,(p) is the equilibrium Fermi dis-
tribution function (exP[[e,(P)-P ] /ks T)+ I}- exP
[[p —&,(p)]/AT] in the classical regime; e, (p)
is the quasiparticle energy and p, is the 'He chem-
ical potential.

If the same trial functions are used in the de-

generate regime, Eqs. (10) and (12) are the result
except that C(&) is replaced by 4. Similarly, if
4~(p) is taken to be p, [e,(p) —g], one finds Eq.
(11) with H(&) replaced by ~». In practice, the
variational solutions differ by no more than a fem

per cent from the exact expressions, at least for
those scattering amplitudes considered here.
Thus the variational calculation leads to a very
good approximate solution in the degenerate re-
gime and me expect that the same is true at high
temperatures, i.e., that Eqs. (7) and (8) are quite
adequate for our purposes.

8. Scattering amplitudes

In Sec. I, we have discussed the various consid-
erations that go into choosing A„.(p, p'; q). The
main point is that there is not enough information
available from experiments to uniquely determine
the amplitudes phenomenologically. For this rea-
son they are assumed to be independent of X and
T and are given simple functional forms contain-
ing several variable parameters. In addition, it
is assumed that there is no intrinsic dependence
of the scattering on the spin state of the quasi-
particles, so that A~~ is just a properly symmetrized
version of A. ~~, that is, parallel-spin quasiparticles
are indistinguishable mhereas anti-parallel-spin
quasiparticles are not, provided the interaction
cannot flip spins.

The functional forms of the two amplitudes that
we have investigated are given in Sec. I; they are
(i) modified power-series amplitude:

Aii(p, p'; q) -A(8) = —(V./V} p o.(8/8. )'"e "'"
and (ii) modified dipolar amplitude:

A) ((p, p', q) = —(1/V)[A, V, iA„(p q}

x(p' q)U /m q')e 'i'~'o&'-

In case (i) we have used %=4 so that there are
six variable parameters a„.. . , a„and B; in
case (ii) there are three parameters, A„A„
and B. The constant qo is taken to be such that
q, /5 =0.753 A ', it simply sets the scale of the
momentum.

There is no possibility of ascribing any physical.
significance to the parameters in amplitude (i) or
to its functional form; its over-all shape is all that
can be considered of importance. Amplitude (ii),
on the other hand, can be at least partially de-
rived theoretically as described in Sec. I; thus
both Ao and A~ have some physical content and me
mould expect the empirically determined values
to be close to the theoretical predictions of 0.081
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and 1.7, respectively. Similarly, there is reason
to expect that the dipolar amplitude is reduced by
screening effects for large q. McMillan'3 has dis-
cussed this, and he points out that the screening
would be represented by a factor such as 1 —&'(q)
where S(q) is the liquid-structure factor of ~He in
its ground state and is -q at small q. The Qaus-
sian cutoff we have used has this form for q not

-B{a/e )2too large, since e-'l"" = I - II(q/q. )'+ ~ ~ . .
Thus, we expect it to be a reasonable representa-
tion of the screening.

III. RESULTS

The parameters in the amplitude were deter-
mined by calculating the transport coefficients
from Eqs. (7), (8), and (10)-(12)and then mini-
mizing the function Q, [(T,'„~ —T' „)jT',„P. Here

p is the ith measured transport coefficient and
T,'~, is the corresponding calculated coefficient.
In the numerical work we have taken m and I"

0
from experiment; specifically, we use E,'=0.08

and m =2,46m, at X=0.05; F0=0.09 and m =2.37m,
at X =0.013 (Ref. 3}; and F0=0 and m =2.28m, in
the limit of X-O."

Note that all terms in the sum above are given
equal weight. Ne also tried weighing each term
according to the stated accuracy of the experiment
and find that this makes almost no difference in
the results.

A total of 23 distinct measurements has been
used. They are summarized in Table I along with
the calculated (fit) coefficients using amplitudes
(i) and (ii). Table II contains the values of the
parameters in the two amplitudes while Fig. 1
shows amplitude (i) (solid line) as a function of q.

For low-temperature calculations, only values
of q ~ 2k+(5@}=—0.636 A ' are important since 2k+
is the maximum momentum transfer. In fact, at
small values of q, the amplitude (i) which we have
determined is quantitatively quite similar to both
the BBP amplitude, also given in Fig. 1, and the
amplitude deduced by Ebner and Edwards. This
is shown in Fig. 1. For high-temperature calcu-

TABLE I. The transport coefficients used to find the scattering amplitudes. The experi-
mental coefficients and the results of the fits for both amplitudes are given. Here, T is in
units of degrees Kelvin, g is in units of micropoise, and K is in units of (ergs/cm sec K);
D is in units of (10 3 cm /sec} in part A of the table, and in units of (10 8 cm /sec) in part
B. The values of D in part A are appropriate for a 5' solution of 3He in 4He. 'Ikey may be
scaled as 1/X to obtain numbers appropriate for other concentrations.

Temp. g &(expt. )

A, High-temperature results

g ~(series) q ~(dipole) D (expt. } D (series) D (dipole)

0.04
0.06
0.08
0.10
0,15

0.20
0,25
0.30
0.40
0.50

0.60
0.70
0.80
0.90

9.0
12.5
16.0
19.0
27.0

35.0
33.0
29 ~ 0
24
21.6

20.2
19.0
18.2
17.5

9.34
13.3
17.4
21.3
29 ~ 1

32.9
33.3
31.7
26.9
23.0

20.7
19.4
18.9
18.8

10.2
13.8
17.0
19.6
23.3

23.7

22, 7

21.4
19.1
17.6

16.7
16.2
15.9
15.7

1.98

1.65
1.42
1.28
1.14

0.46
0.68
0.96
1.28
2.22

2.97
3.20
3.00
2.29
1.79

1.50
1.33
1.24
1.19

0.50
0.71
0.92
1.14
1.64

1.94
2.04
2.01
1.83
1.67

1.56
1.49
1.45
1.42

B. Love-temperature results

Expt. Series Dipole

KT (1.3%)
KT (5.07o)

DT'(1.3%)
DT (5.0%)

gT2 (1.3%)
qT2 (5.0%)

11.0
24.0

17.2
90.0

9.6
28.0

13.5
68.0

0.029
0.28

11,3
35.0

16.3
85.0

0.033
0.36
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TABLE II. The parameters contained in the two scat-
tering amplitudes. .I2

Series amplitude Dipolar amplitude .08

a() = 0.071
8 =1.52

a~ ——0.002 854
a~ = -0.5985
a~ = 0.6101
a4 = —0.2941

A() = 0.068
AL) =2.33
8 = 0.467

For both amplitudes: qo/A =0.753 A '

V =1.73' 10 erg cm3

LLj
Cl

.04

0CL I

26

lations, however, the previous forms of scatter-
ing amplitude are clearly unsatisfactory, since
they do not converge at large values of momentum
transfer. Qf course, this was one motivation for
introducing into the scattering amplitude the ex-
ponential factor which dominates it at large q.
The behavior of the modified-power-series am-
plitude at al1. q is shown in Fig. 2.

As discussed earlier, the theories of both BBP
and MeMillan predict values for the quantities A,
and A„of 0.081 and approximately 1.7, respectively.
The value of A„extracted in our fits cannot be com-
pared with this theoretical value, since we have used
a form of the scattering amplitude which contains
an exponential cutoff. The scattering amplitude
at q =0 can, however, be compared with the theory
for both amplitudes (i) and (ii); in both cases, the
phenomenological value falls about l4% below the
theoretical value of 0.081, indicating a less at-
tractive interaction than predicted for small. values
of q.

The agreement of the calculated low-tempera-
ture transport coefficients with experiment can be
seen in Table I. Here the fit to the thermal con-
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FIG. 2. Modified power-series scattering amplitude in
units of V /V vs q/A(A ).

ductivity and diffusion coefficient is better at 1.3/g
than at 5%. The discrepancies of the calculated
values from the measured values in the present
calculation, where both the high- and low-temper-
ature data have been fitted, are of about the same
magnitude as previous calculations which fit only
the low-temperature data.

The high-temperature viscosity is also listed in
Table I and plotted in Fig. 3. Here, both forms of
the scattering amplitude give agreement to the
general shape of the data, with the series ampli-
tude producing a better fit. Qf course, this was
expected since there are six parameters in the
series amplitude while there are only three in the
dipolar case. Although the dipolar amplitude does
not reproduce the Boltzmann viscosity data as
well, we nevertheless feel that this amplitude is
more physically meaningful.

For the high-temperature diffusion coefficient,
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FIG. 1. Small-momentum-transfer scattering ampli-
tudes in units of V~/V vs q/k in units of A: solid
line, modified power series; dashed line, V~~p(q)/V;
dot-dashed line, modified power series fitted to 5' low-
temperature data alone.

TEMPERATURE (K)

FIG. 3. High-temperature viscosity vs temperature.
The data are from Ref. 6 while the solid (dashed) line is
the viscosity calculated using the modified power-series
(dipolar) amplitude.
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once again both amplitudes reproduce the general
shape of the data with the series amplitude giving
the better agreement. The experimental values
of the diffusion coefficient which we used in the
fit were read off a smooth curve through the 5 j~

data of Anderson et al. ' Since there is only one
data point (at 0.8K) at a temperature above 0.48 K,
our interpolation may place too much emphasis on
this single high-temperature point. Also, no at-
tempt has been made to extract the portion of the
diffusion coefficient which is limited by 3He-3He

scattering as was done in the case of the viscosity
coefficient. At the relatively high temperature of
O. S K, for example, it is possible that rotons may
play a role in determining D. As a practical mat-
ter, however, the actual values of D used in our
fitting program do not have a marked effect on the
shape of the scattering amplitude. That is, even
if we are using values of D which may be some-
what in error, the net modification in the shape
and magnitude of the scattering amplitude would
be small.

In summary, we have found, first, that previous-
ly used forms of the scattering amplitude will not
fit the high-temperature spin-diffusion and viscos-
ity data unless a factor which limits the amplitudes
at large values of q is included. Second, we have
shown that these new forms of the scattering am-
plitude, in addition to fitting the high-temperature
data, also fit the low-temperature data as accu-
rately as previously determined scattering ampli-
tudes. One fact stands out in all this work, how-
ever —that a given scattering amplitude is not
really successful in fitting both low- and high-
cancentration data. This may imply quite strong
concentration dependence of the amplitude.

We investigated this possibility by fitting the
scattering amplitude to only the low-temperature
5/p transport-coefficient measurements. It became
immediately evident that for both forms of the
scattering amplitude, the best fit was produced
with a much deeper amplitude —that is, for a more
attractive interaction. Specifically, whereas the
results of fitting the high-temperature data and jor

TABLE III. The low-temperature transport coeffi-
cients at X=0.05. The experimental coefficients as
well as the results from fitting these data alone are
given. Here, KT is in units of (ergs/cmsec), DT2 is
in units of (10 cm K /sec), and gT2 is in units of
(10 6 poise K~).

Expt. Dipolar

nT2

90.0

0.28

23.0 23.0

86.0

0.29

the low-concentration data clearly gave a value of
a, or A, equal to 0.0V, the high-concentration fit
yielded a value of 0.093. These drastically differ-
ent values indicate a stronger dependence of the
amplitude on concentration than might have been
guessed.

The results of this high-concentration fit are
shown in Table III, and the corresponding series
amplitude is shown in Fig. I (dashed-dotted line).
Again, for this low-temperature calculation, only
values of p ~ 0.64 A ' are important. The depres-
sion in a.mplitude for small q is clear in Fig. 1
for values of q& 0.2 A . Furthermore, Table III
shows that this depressed amplitude produces a
significant improvement in fitting the 5 k transport
coefficients.

We can only speculate on the possible physical
origin of concentration dependence in the quasi-
particle scattering amplitude. One possibility is
the screening of the interaction between two 'He
quasiparticles by other quasiparticles. In the
simplest (linear) approximation, this would en-
hance the attractive interaction between two quasi-
particles at small q, and it is, of course, a con-
centration-dependent effect. This mechanism can
explain qualitatively our phenomenological findings,
although a detailed calculation would be necessary
to determine whether quantitative agreement is
possible.
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