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Hydrodynamic instabilities of nematic liquid crystals with a negative dielectric anisotropy
in ac electric fields are theoretically studied. The instabilities considered are due to the
development of bend modes coupled with flow fields of equal periodicity (Carr, Helfrich).
A simple numerical procedure is developed which allows a convenient and exact calculation
of threshold curves and instability regions which depend essentially only on two parameters,
the reduced cutoff frequency and the reduced decay time of the bend-shear mode. Results
of numerical calculations are presented in stability charts using reduced field and frequency
coordinates. Characteristic features of threshold curves are discussed and a general sur-
vey is given on the position and the extent of instability regions.

I. INTRODUCTION

When a nematic liquid crystal is subjected to an
external electric field, a hydrodynamic instability
may be induced. In dc field normal isotropic liq-
uids show similar instabilities as nematic liquid
crystals. The dc instability is assumed to be due
to unipolar charge injection at the electrodes. ' '
The ac field instability has no corresponding effect
in normal liquids. At a certain threshoM voltage
and below a cutoff frequency, cellular flow patterns
are observed which are known as Williams do-
mains. 4 At higher frequencies and higher voltages,
another instability is observed with a different
texture. ' As suggested by Carr, ' the anisotropy of
conductivity is important for this ac instability.
The first theoretical treatment of hydrodynamic
instabilities on this basis was done by Helfrich. '
The treatment was extended to include time-de-
pendent solutions by Dubois-Violette, de Gennes,
and Parodi. ' They also present a comprehensive
discussion of the types, conduction and dielectric
regime, and general ranges of the instabilities
based on approximate solutions. For the transi-
tion range where the approximations become un-
reliable, exact numerical calculations have been
made for a 50-p, m thick nematic film of methoxy-
benzalbutyloxyaniline (MBBA).' The boundaries
in this calculation are taken into account approxi-
mately by setting an upper limit to the wavelength
of the permitted bend-shear modes.

In this paper we reproduce the earlier results
using a simple numerical procedure which allows
a convenient calculation of bend-shear-mode in-
stabilities and make additional calculations. The
stability curves depend essentially only on the two
parameters td, T, and T,/T~, where &o, denotes the
cutoff frequency for the "conduction regime", ~,
is the longitudinal dielectric relaxation time, and

&~ is the relaxation time for the bend mode. While
(d, and &, are solely determined by material prop-
erties the (effective) w, can be modified by experi-
mental conditions, e.g., by application of a mag-
netic field. The instability ranges are calculated
for a number of selected sets of parameter values
and the results presented in stability charts that
give a general survey on the influence of the pa-
rameters.

The conduction regime has an upper voltage
boundary at which the system returns to stability;
we discuss the condition under which this return to
stability may be experimentally observed. We
also test in a particular example the first-order
approximation for the conduction regime which is
usually implied in experimental determinations
of the cutoff frequency. It is found that this ap-
proximation may not be appropriate for this pur-
pose in thin films ((50 pm for MBBA).

II. ASSUMPTIONS AND BASIC DIFFERENTIAL

EQUATIONS

We investigate the instabilities of a uniformly
aligned nematic liquid crystal in ac electric fields
with respect to bend-shear modes. The starting
equations are the torque balance equation for the
director field, the equation of motion, and some
fundamental electrodynamic equations. A detailed
derivation has been given by DuBois-Violette
et al. ' We can limit ourselves, therefore, to a
short outline in which we will emphasize the
points of interest.

The director n of the unperturbed nematic is
assumed parallel to the x axis of a Cartesian co-
ordinate system and the applied electric field
parallel to the z axis. Only modes of small am-
plitudes are considered and only first-order terms
are retained. We can write accordingly for the
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bend modes of interest n = 1, 0, P with

g = Q, cosqx, $,«1.
The torque-balance equation in the first approxi-
IYlation ls

Time derivatives here and in the following are
indicated by a dot. y, is the rotational viscosity
of the directorfield, a, is a Leslie-Erickson
viscosity coefficient which accounts for the fric-
tional coupling between bend and shear modes, 033
is the bend elastic constant, e, =e, —e., is the di-
electric, and y, = g, —y, is the diamagnetic aniso-
tropy (1-direction II and 2-direction in). We
admit that a static magnetic field is applied par-
allel to the x axis. In cases where it is applied in
g direction, X,H' has a negative sign in Eq. (2).
For aromatic compounds y, &0, so that in the first
case the field stabilizes the original alignment and
in the second case destabilizes it ~

We neglect the compressibility of the liquid and
set divv =0; no boundary effects are taken into
account. The induced flow has, therefore, only
a z component. The equation of motion becomes

(3)

Here p is the mass density, p, is the charge den-
sity and t), = —2(-a, ++4+a, ) is the effective shear
viscosity.

The inertial term pv can in general be neglected,
in which ca.se Eq. (3) gives 8'v/Sx' as a linear
function of p„and Sg/Bx, which can be substituted
in the derivated Eq. (2).

Furthermore, we have

q~ is the viscosity coefficient of the bend-shear
mode and T, is its decay time. The coefficient 6,
known as Helfrich parameter, determines the
stability of the system. This can be easily seen
when the last term proportional to p, is neglected.
As q~ is always positive, the sign of the torque
due to the electric field is given by the sign of 6.
The field, therefore, always stabilizes the align-
ment unless 6& 0.

Neglecting the last term is justified only for
certain limiting cases. But, judging from numeri-
cal results, the conclusion seems to be generally
true when z, & 0.

In case of dc fields, both terms involving time
derivatives can be neglected and we obtain for the
threshold field simply

8,' = —(k»q'+ x, tf ')/6 .

III. STABILITY CHARTS

In the limit of small amplitudes we may write
for the charge distribution

p, = —qgg, g, sinqx .

Together with the definition (1) and with E, =E,
x cos~t, Eqs. (5) and (6) lead to the following sys-
tem of coupled differential equations for the am-
plitudes Q, and ft), :

T qQq+[(Tq/Tg) —2((al~Tq) 8 cos (dt]Qq

pe dlvD = cy +~ Fz (4) +2[1+(&u,T,)']e'

cosset

T,q), = 0,

which give sE, /sx as a function of ps, eg/sx, and

Finally, for p, we obtain

1 9$
p, = —divj = ——p, +Qg,

I

i =1, 2.

T,$, +p, +cosset/, =0.

Following the earlier treatment, ' we have intro-
duced a reduced "field" e and a cutoff frequency
~, defined by:

i
q~e, 4m 2 '

Here o, and o, denote the principle conductivities,
and T, and T, are the decay times for space
charges. Q, determines the equilibrium charge
distribution for a given field E, and g. Using
Eqs. (5), (4), and (3), we obtain from Eq. (2)
(neglecting pv)

(10)

The cutoff frequency is related to the Helfrich
parameter 8 =e,e, (&v, T, )'/4ve, . It remains to cal-
culate threshoM fields as a function of the fre-
quency and to study the dependence on the param-
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Here p, is a characteristic exponent of which the
imaginary part corresponding to the periodicity
of the system is determined only modulo e. For
Re p, & 0 the amplitudes increase in time (instabili-
ty); for Re p, & 0 the amplitudes decrease (stabili-
ty). The boundaries or thresholds are obtained
for Rep. =0. In general, there are two different
characteristic exponents with different Rep, , and
to each one belongs a solution of the form (11).

With p. its conjugate complex p. t is also a char-
acteristic exponent because the coefficients of (9)
are real. There are no more than two essentially
different exponents and we conclude, also using
the relations, '12), that generally Imp =n&o with s
integer. Without loss of generality we can, there-
fore, assume Im p, = 0.

It can be directly verified that with Q, (f ), Q, (f ),
the functions Q,[t +(v/&o)], —Q,[t +(v/~)] are also
solutions. This ensures that the solutions of the
form (11) suffice directly or can be modified to
suffice one of the following relations:

a, „„=a,,„=0,
al 2v a2, 2v+ $ 0; v =+1, +2, +3.

(12a)

(12b)

In the first case the series for the bend mode con-
tains only even-indexed coefficients; the second
ease contains only odd-indexed coefficients (Imp.
=0). Referring to the bend mode, we will in the
following differentiate accordingly between even
(12a) and odd (12b) solutions, or simply speak of
even and odd modes. The even solutions incor-
porate the instability known as "conduction*' re-
gime; the odd solutions on the other hand incorpo-
rate the "dielectric" regime.

Using the form (11) of the solutions, we can ob-
tain the following recurrency equation:

v, v -y I, , v-2 + v, v y, v + v, v+ Iai, v+2 = 0 ~

M»=(7, /7~)+(p +ivy)7, +i@»,+M, „+,, (13)

e' 1 + (&u, 7, )-"

2 1+a, +'( +1),) '

eters 7',/r, and &u,v„. The third parameter, v, it-
self, can be eliminated by the introduction of a
reduced time f/~, . The threshold curves plotted
against cov, form, therefore, a two-parametric
family of curves.

Equations (9) form a system of linear differential
equations with periodic coefficients. From the
theory of differential equations (Floquet theo-
rem"), it is known that there are two independent
solutions of which at least one can be written in
the form

y, =e"'Qa„e" ', j =1, 2.

IU. NUMERICAL RESULTS

We limit our calculations to the range of positive
e' in which the instabilities of physical interest
occur with materials of a negative dielectric an-
isotropy. Instabilities in the range of negative e'
are of interest for materials with positive anisot-
ropy which will not be considered in this paper.

A. Even modes

For even modes, a useful first-order approxi-
mation exists. It is obtained by setting M, , =0
and is valid when the off-diagonal terms M, ,»
are small against M, „ for

~
v~ ~ 2, as is true for

4», l I+i 7, 1

2+ I~.~, l'+ lu7, I

In first order we thus obtain

(14)

(1 + p, ~,)'+ ((o~,)'
' ~,)(~.7,)'- (~~,)'-u7, [I+u~, +(~.r, )']

(i5)
Equation (15)ean be used for a discussion of the time
dependence of the amplitude of the mode. For
small values of p. and for frequencies not too close
to m„Eq. (15) gives

(15')

We see that for e & e, the conduction-induced
effects dominate and the electric field is destabi-
lizing. Above the threshold p turns positive
and the bend-mode formation begins. The value
of p, and the speed of formation increases with the
field in the first-order approximation. Exact calcu-
lations show the existence of an upper boundary for
the even-instability range. The exponent p. , there-
fore, reaches a maximum for some finite field value.

When ~ & au, the dielectric torque dominates and
the field stabilizes. The stabilizing effect in-
creases with the frequency until for (d» (d, only
the dielectric torque remains.

For p. =0, Eqs. (15) and (15') are equal to the
earlier derived approximation for the threshold. '
In Fig. 1 the top part shows a set of threshold
curves calculated in higher order for ~,7, =1.41
and a number of different 7,/r~ values. The area.
to the left of each curve corresponds to the region
of instability. The bottom part of Fig. 1 shows the

The three-term recurrency equation can be numer-
ically solved using the method of continued frac-
tions" (see the Appendix). Convergent solutions
exist only for suitable sets of parameter values.
This condition gives for p, =0 the threshold field
as functions of the parameters coT» ru, 7, and 7, ,/'7~.



and elect ' s. The

27

c ric fields. The

y side is due ty sid ' o the form
igh-fre-

mation of
's in fact opossible to b-o 0

In the a,b e
C'

or frequencies

a, eeofamaa, sene gnetic field,
mode is th

l

surned for q-0
rding-

est mavelen
ssumes accox'

conditions
i le with thi 1 e ex-

er'mental obs
i nematic f'l

ade in

d cular to th
undaries" ' o e layer. T

pp

of
y

r mitted modes

same thresho
approximation

r
ms that in the

ther deviat'
is good in th

in the figur

g

res occur
are not in

'

w regoencie
hefi s-o d p ximation-or er ap ro

orhood of the

For negat'aiveT

h e cutoff

instable in the
instabilit

e of an elee e f ctric field.

ic ield. A
' es mentioned

y a vertical

to even di

, electric
f'

g e feet with respect
' i y exist'sts above the

is range. At fre
e horizontale ' e

BEND-SHEA R-MODE INSTA BIL I

ld curve

ITIES OF

urves calculated in
' - r e

NEMATIC I.LIQUID. . .

e e F.'u 2 ~ 0 (16)
q& v/d.

The rrelation (16)
b d ...,..ih y applied magnetic

Exact calculation
fi ld"'" e limits of th

ay still use it f more
ion, but

more qualitative've con-

0.0

j.2

FIG. 1 Com a
stabilit

p rison of

half —thr h ie

'
x y charts: (i

r h ields inreshold fie
r-order a

a even rno
selected

ode for
values of v /&

(b) envelope f modese 0 odd
m thresh-mimulTl

& w& varies). (ii)
r —threshold

irst-order aer approxima-

Q.O

0.8 1.0 1.6



2702 PAPIYA SENGUPTA AND AL FRED SAUPE

FIG. 2. Threshold volt-
age of even modes (con-
duction regime) calculated
for different sample thick-
ness (H = 0) . The selected
material constants are
typical for MBBA.

siderations.
Using Eq. (17), the experimental threshold

curves in the conduction regime as observed in
thin films should be compared with the theoretical
curves calculated with q =w/d. In the first ap-
proximation without a magnetic field, the thresh-

old voltage (V=E,d/v 2 is then independent of the
film thickness. Figure 2 shows the results obtained
with this assumption for material parameter
values corresponding to nematic liquid MBBA
(methoxybenzalbutyloxyaniline) a.nd H = 0. The
first -order approximation becomes accurate for

l.6

+Z~~ f/)

CJQ

FIG. 3. Threshold field dependence on w~&&. (a) even modes; (b) envelope of odd modes.
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7.6

mine the ratio k»/g, but the results may be af-
fected by the diffusion current. "4 Figure 5 shows
that the dependence of T, /T, on the frequency in
the studied frequency range is practically linear.
The slope depends on ~,v;; it becomes steeper for
larger values of the parameter.

The threshold field dependence on ~,T, is pre-
sented in Fig. 6. The field increases with de-
creasing ~,v; and in the limit ~,7; -0 approaches
the vertical line ~v; =0. The dependence differs
strongly from the rv, r, dependence of the even
solutions.

V. DISCUSSION

3.0

0.0 f.O 2.6 3.0

minimum is reached for a permitted q ~ a/d so
that boundary effects can be neglected. The ob-
servable threshold is in such cases given by the
envelope.

The threshold is independent of a magnetic
field, since it induces merely a change of q so
that T„remains constant. Measurement of q as
a function of H can, therefore, be used to deter-

FIG. 6. Envelopes of odd modes for selected cutoff fre-
quencies.

The comparison between experimental and cal-
culated curves is only possible to a limited extent,
since in regions of overlapping instability regimes
only the lowest threshold can be readily observed.
For this reason, the upper-instability border for
the conduction regime was not found experimentally
in sinusoidal electric field with MBBA and PAA.
It is, therefore, of interest to discuss under which
conditions the return to stability can be best ob-
served and what material properties are most
favorable.

In Fig. 7 calculated stability curves assuming
material constants typical for MBBA and PAA are
compared. The graphs show that the conditions
for MBBA are more favorable. In general we find
(see Fig. 8) that at a given v;/7; the intersection
between the threshold curves moves further away
from the apex with decreasing cu, ~, . The upper
boundary and the return to stability has been in
fact observed recently with a compound of a strong

-- J, , 6
PAA

Cd Z) = . F5'

7gjrg = o.oos

Z
c5

160

CO -. 0.8

FIG. 7. Threshold fields
typical for MBBA and PAA:
(a} even mode (conduction
regime), 7,/7„correspond-
ing to a 100 pm thick film
with H=0 I'b} envelope of
odd modes.

- 04

20.0

k.o &,8

0.0
S.6
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5;0

30

FIG. 8. Threshold fields
against ~/~, : (a) even
modes for 7&/7~=0. 002;
(b) envelopes of odd modes.

0.0 '

0.0 O.Z 0.6 1.0

APPENDIX

The three-term recurrency equation (12}can
conveniently be solved using the method of con-
tinued fractions. " We rewrite Eq. (13) in the
form

Q~ 34@ 1) y2

2, v%2 Mv, v Mv, v%2(+2, v22/nl, v )
(18)

For a convergent series and for a large enough

negative anisotropy" for which accordingly ~,~,
is likely to be much smaller than for MBBA.

As we have mentioned, the curve of the conduc-
tion regime, and the even threshold curve in

general, can only approximately agree with the
curves observed in thin films because of the
boundary effects. For the odd-threshold curves
boundary conditions are usually without influence,
but here the validity is limited due to the diffusion
current which becomes important when the wave-
length of the mode is comparable to the diffusion
length of the charge carrier in the time 7;.' It
may cause considerable deviations at relatively
low frequencies. These limitations should be kept
in mind when the graphs are used for a survey
on the variation of the stability curves with ex-
perimental conditions and with material properties.

and calculate successively A„ for 0& v& n using
(18), replacing a, ,v/a, ,~„» by A,„. The calcula-
tions are carried down to v=2 for the even series
()2 even) or to v= 1 for the odd series (&2 odd). For
a compatible set of parameter values, we have

M„2A 2+M, , +M, 2R, =0 (n even},
(20)

A, A, =1 (n odd).

Equations (20) are in general not fulfilled. A
suitable parameter, e.g., e' or ~v„has then to
be varied until the condition is met. Setting p
=0, one can thus easily calculate the boundaries
of instability ranges.

A Burrough 5500 computer has been used for
the numerical analysis. The program is written
in Fortran and we have used a simple iterative
procedure. For the calculations, we set n, = 50
(even series) and n= 51 (odd series), although
results are practically independent of n for n&10.

positive value )2, we may neglect M,„«„„)(a»@,&/
a, ,„) against M,~,„. (For large

~ vj, M, , ivur7„-
while M„„»-e'/2). This allows the following
procedure:

For a given set of parameter values ~v;, ~,v;,
7, /v;, and e', and for a large number n, we start
with
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