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A quantum theory of the laser is presented in which the coupling between atoms and field is retained

in the treatment of the irreversible behavior of the atoms. A master equation for the optical field is

obtained and compared with that resulting from the laser theory of Scully and Lamb, where atom-field

correlations are neglected in describing the relaxation of the atoms. It is confirmed that for laser powers

currently available the approximation employed by Scully and Lamb is valid.

I. INTRODUCTION

Since the laser was first proposed as an extension
of the maser principle to the optical region by
Schawlow and Townes' in 1958, it has attracted a
considerable amount of attention from both theore-
ticians and experimentalists, In fact, more than
10000 papers have been published on lasers and
related topics. ' The theoretical description of the
laser can be approached in a variety of ways de-
pending on the exact nature of the questions one
wishes to ask about the system. A distinction may
be drawn between three categories. First, we
have the fully quantum-mechanical approach uti-
lizing either the Langevin equations, the density
matrix or master equation, or the Fokker-Planck
equation. t'For a review, see the articles by Hak-
en, ' Lax, ' and Hisken. '} Second, averaging over
the quantum fluctuations leads to the semiclassical
equations. ' ' Finally, several of the gross fea-
tures of the laser are accessible via the rate equa-
tions. ' " In this paper we are concerned solely
with the fully quantum-mechanical approach.

Although the semiclassical theories of the laser
were successful in deriving the most important
properties of lasing systems, the need for a fully
quantum-mechanical treatment was recognized if
a complete understanding of line shape and photon
statistics was to be attained. For a formalism to
include quantum fluctuations, it is necessary to
introduce loss and pumping in a nonphenomenolog-
ical manner. This may be accomplished by cou-
pling both the laser-active atoms and the field to
thermal reservoirs, which accounts for the inter-
action of the atoms with lattice vibrations, non-
lasing light modes, etc. , and the field with the
mirrors, scattering centers, etc. The quantum
theory of dissipation from a single quantum sys-
tem S coupled to a Markoffian reservoir g has
been extensively studied. " " However, it has

been pointed out, initially by Walls" and subse-
quently by others, " "that the conventional tech-
niques for treating cases where S involves intern-
al coupling are incorrect, in that they assume a
factorization of the reduced-density operator in
the derivation of the irreversible part of the mast-
er equation. This has rather dire consequences,
since it leads to an incorrect canonical form for
the stationary solution of the density operator,
and in general destroys detailed balance. "

The strength of the internal interaction in the
laser model depends directly on the strength of
the optical field, and it has therefore been tacitly
assumed in all laser theories to date that this field
is sufficiently weak to justify the use of the con-
ventional factorization ansatz in the treatment of
all reservoir interactions (see, for example,
Weidlich and Haake. " The limitations of this ap-
proximation are recognized by Haken, -' where he
states: "It should be noted, however, that very
strong fields cause a partial quenching of the spon-
taneous-emission linewidth. In this region the in-
coherent terms of the density matrix should be de-
rived by using the coupled system: field and atoms
from the very beginning. " The aim of the present
paper is to remove the factorization ansatz and in

doing so investigate the limits of validity of this
approximation. We follow closely the analysis
presented in the paper by Scully and Lamb (SL),20

hereafter cited as I, since for reasons pointed out
in an earlier publication" it is necessary for us
to work with the matrix elements of the density
operator rather than with the full operator equa-
tions. Following a short discussion of the model
in Sec. II, we present in Sec. III a treatment of the
relaxation of a single laser atom without neglect-
ing the effects of the coupling to the field on the
reservoir interaction. We then derive the master
equation for the reduced-density operator of the
field alone in Sec. IV, and conclude with a discus-
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sion of our results in Sec. V. Throughout we em-
phasize the very close correspondence between
our analysis and that of SL.

ll. MODEL AND ANALYTICAL APPROACH

does not depend on any factorization ansatz may be
derived using the approach discussed in II. How-
ever, as was pointed out there, this requires
knowledge of the solutions to the equations of mo-
tion

A diagrammatic representation of a physical
model on which a complete quantum-mechanical
description of the laser could be based is given in
Fig. 1. Expressed within the formalism developed
in our earlier paper, "hereafter cited as II, the
Hamiltonian describing this system reads

dH

ih [H~R, H~+Ha],

APED~)
(2.3)

H =Hg +HR +HsR,

where

(2.1)

Hs =HF + H+„&+ HF A&&,

HR HR + HR~) &F

SR FRF A(P) Rg(I1 ~
(2.2)

Here HF, H&„& and H„«„&are the Hamiltonians for
the free field, the p.th free atom and their inter-
action, HR and HR are the Hamiltonians for

RgV)
the thermal reservoirs associated with the field
and the pth atom, and HFR and H&„~R„&„&expressF
the interactions between these reservoirs and the
corresponding parts of the free lasing system.
Now theoretically a master equation for the re-
duced-density operator p of the free system which

Owing to the interaction term in 8 s these are non-
linear operator equations which remain unsolved,
and for this reason we must look to a laser model
which works directly with matrix elements. Hence
the adoption of the SL approach as outlined below.

%e treat a single-mode laser which is resonant
at a frequency Ap with the laser-active atoms,
each of which is taken to be a four-level system
as represented by Fig. 2. Laser transitions take
place between the upper two states ~4) and I3),
each of which interacts with its respective reser-
voir g, and g, so that relaxation to the lower two
states I2) and ~1) occurs. These reservoirs are
assumed to be at zero temperature, which means
we are neglecting thermal fluctuations arising
from the interaction of the atoms with their sur-
roundings. Motions of the laser-active atoms are
neglected and they are considered to be so con-
fined that they all see essentially the same ampli-
tude of the field.

%e work in the representation for which a basis

TOTAL LASER
SYSTEM

THERMAL RESERVOIR
FOR LASI~G
LiGHT MODE

S PLUS R

LASIN6 LIGHT

MODE

Internal coupling

Internal coupling

LOSSLESS

LASER SYSTEM

ATOM ATOM

2
~ ~ 4 ~ ~ ~ 0 ~ ~ ~ ~ ~ ATOM

Coupling Couuiina

THERMAL
RESERVOIR

FOR ATOM 1

THERMAL
RE$ER4QlR ~ ~ ~ ~ s ~ ~ ~ ~ ~ s ~

FOR ATOM 2

THERMAL
REQERgjiR y ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~

&OR ATOM]g

I IG. 1. Diagrammatic representation of the laser model.
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is formed by the kets ln, (, . . . , $, . . . ), where
n =0, 1, 2, . . . refers to the state of the field and

(„=1,2, 3, 4 refers to the state of the p.th atom.
If X is the density operator for the complete sys-
tem including all reservoirs, then the reduced
density operator p for the free lasing system alone
is defined by the matrix elements

P&, ky, C p, ~ ~ m ~ I)y ~ ~ ~ sI) II, ~ ~

= (n, $„.. . , („, . . .
I Tr„()t) lm t)i t}„,. . . ) .

(2.4)

LASER
TRANSITIONS

ATOMIC
STATE

(4)

We define the matrix elements p„& . „by trac-
ing over all of the atoms except the p, th one,

FIG. 2. Energy-level scheme for laser-active atoms.

(2.5)

and then the reduced-density operator for the opti-
cal field alone has matrix elements p„given by

„,(T, (X)) =E P. ,„
g If= 1

(2.6)

Now our approach, adopted from SL, treats each
atom separately in interaction with the net field
and thus neglects atom-atom correlations. We
consider the pth atom injected into the upper las-
ing state at a time t and then follow the time evolu-
tion of the system, considering only the interac-
tions directly involving the Pth atom (that defined

by H„+~ and that defined by H&„+ ), to a time
t +n. t, observing the change 5P(' (tfin the matrix
element p„produced by the pth atom during this
interval; i.e., using the Hamiltonian

the field to its reservoir during this stage of the
analys is .

From this one-atom interaction, we can obtain
the terms in the master equation due to spontan-
eous and stimulated emission by summing over all
of the atoms, under the assumption that y,~t of
them appear in their upper state and relax during
any interval gt, y, being the pumping rate. This
yields a macroscopic change np„(t) in the density
matrix elements given by

&P. (f) = g, 6P„"(I)= r,.«6P„, (&), (2.10)

where the superscript p, can be dropped since all
of the atoms are identical. The coarse-grain time
derivative may then be defined to give

8P ((() .a, p (()„„=r.~p„(f) .
emission = (2.11)

The contribution (Sp„(t)/St)d' 'p (; ndue to the damp-
ing of the field is considered separately.

H -Hs +H~+Hs~,

with

(2.7)
III. RELAXATION OF SINGLE LASER ATOM

Hs =H~+H~)+He~)

R R~) q

SB ~)R~~) &

we calculate

(2.8)

5p„" „(I)= g p„, , (t+n. t}—p„(t).
=1

(2.9)

Since it is quite reasonable to assume that changes
in the field occur on a time scale which is large
compared with the relaxation time of the atoms,
~t is chosen to be much greater than these relaxa-
tion times. Hence we may set P„4. ~(t+n. t) and

P„, ,(t+nt} equal to zero. Here we also find
some justification for neglecting the coupling of

In order to calculate the change 5P„" (I) defined
by Eq. (2.9), it is necessary for us to derive ex-
plicit expressions for the matrix elements
P„&,„, (/+at) Since all the. laser-active atoms
are identical we may drop the subscript p, and
formulate this problem in the following manner.

The system whose behavior we must describe
falls into the general classification of an open
quantum system S involving internal coupling in-
teracting with a. Markoffian reservoir It (as dis-
cussed in II). In this particular case the system
S consists of a four-level atom coupled at reso-
nance via its upper two levels to a single mode of
the electromagnetic field, the reservoir divides
into two independent subsystems g, and g„and
the interaction between S and g involves separate
terms expressing coupling between p, and atomic
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levels ~4) and ~2), and Rh and atomic levels ~3) and

~1). Hence the total system tt+R may be defined
(apart from an explicit expression for H„which
need not be given) by the Hamiltonian

8 -0 +0 +0

where

HH =fi{dnata+ g E&A&~At +hK(AntA3a+atA3tAn),

@SR +SR +HSR +2+4l R + I R +4

+g~g, l., +I",',ZtA, . (3.2)

Here a, n are boson creation and annihilation
operators for the field mode, A&~ and A& create
and annihilate the atom in the state ~$), $ =1, 2, 3,
4, and I'R, , I R, and I'„„I'»are appropriate reser-
voir operators. The atomic energy eigenvalues
are given by

p(t) e{i««/h)t p())e{-i«3 /h)t

(t) et{«3+Htt/ h)tH e -t(«3+ H tt /tl )t (3 6)SR{3,b SR' b

Here p is the reduced-density operator for the sys-
tem S defined by the Hamiltonian Hs and

f11(R) =f, (R,)f,(R,) =e Htt ' /Tra(e «tt hr} (3.9)

is the density operator for the thermal reservoir
assumed to be in thermal equilibrium at a temper-
ature T. Explicit evaluation of this formal solu-
tion may be carried out using the same method as
was applied in II to the treatment of dissipation
from a boson-field mode coupled to a two-level
atom. This simply involves expansion of all opera-
tors in terms of the chosen representation and sub-
stitution for the transition amplitudes

(u, (~ e{"» "i{'-t&[m, t})

F-4 = 2 S&0, F 2
= ~ g(d ~

—gu,
1

E3 = —pk&0,

(3.3) which arise. For our four-level system the non-
zero amplitudes read

and ~ is a coupling constant. Use has been made
of the familiar rotating-wave approximation in ex-
pressing the internal interaction.

The problem now involves two distinct steps.
We must first derive a set of coupled equations for
the matrix elements p„&. „(t), and then follow this
by obtaining the solution of these equations for
t& t„subject to the initial condition

P„(. „(t11)= 5, ,5 „,P„„(t11). (3.4}

a
km. nn (& t t +

Bt '
L Bt „„Bt
+Vljg)

Formally, the solution to the first part of the prob-
lem is given by

1 { e{t i HH
/h)tI 11 = 6 &it(n-1/3)mo —~b)t

/ n, m 7

2{ {1i «3/hit ~m 21 6 &
1 i{{n+ 1/3) 'o-a1a]t

i n, m

(n, 3) e" ' H& /"&'~m, 3) = 6 e" &" ' "' cosKn ' 't

(3.io)

(tt, 4~ e{3 r «3/"&tjm, 4) =5„e" 3{n"""cosK(it+1)' 't,

(Pl 3~ 8 3 ~ttt 4) = %36 8 11{" sin«tt

(n, 4~ e{at«&/ &[mht, 3)

= si6 e"~it{a+ '/hit sinK (tt +1)'/ht
n, m-l

Hence after a certain amount of algebra we arrive
at the coupled equations

B~n ~ ~ +"" '=-[r". {'n)+r", ( )] p„.„,
where -iI[K(it+1)t/'-ip, &(tt)] p„„,

Bp
et „„= (1/ta)[H„ p],

rl ~ b Bp ahb
(- &S/'~)~ — e&'+S/ )

irrev Bt
(3.6)

—[K(m+1)' '+ty, (/tt)] pa a. , 3j,

Bpn+1.3;m+1.3 [P+){) ) +P+)(m)] p
Bp e, b

= (-1/It ')
Bt RRri ig[K(it+1)'-/3-iph &(tt)] p„,. „,

x [[H Htt (t), [H«tt h(t'), pf, (R, h}]])dt', —[K (m+1}' '+tv'~ '(ttt}] Pn+1, 3;m, a] ~
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Bpn4;,m+1, 3 [yt+){s)+P+)())3)]p

-i([«j's +I)"- tyn '»] pn+ 1. 3; m+ l. 3

—[«j))3+1)'t'+iy, ){))4)]p„,.

{3.13)

n+1, 3;m, 4 [p+)(4)3) +yt+)(43)J p

The solutions to the remaining two equations may
be expressed as direct integrals once these have
been solved. Thus we will have

p„,.m 4 (t') d t'

p„+, 3. 4{t')dt'

i{[«{n.l)'t -tyt-)( )]p„...,
—[«(m+I)'t3+Zyt )())3)]p„„,. „,},

+yt.-)jt ) p„, ,» (t') d t' (3.20)

(3.14) p„„,. „,(t) =[yt )I'n)+yt„')(I)] p„„, ,„,(t' ) d t '

+ y'. '( ) p.„,...+y'. )(t ) p„,,.„„
(3.15)

Bp))+l, l;m+1, 1 [P+){ ) +P+)g)] p

yb { }pn, 4;m+1, 3 ))«( ) pn+1, 3;m, 4)

(3.16)

p„, „(t.')d t'

p„„, , (t') d t' . (3.21)

A relatively simple methodology for solving the
coupled Eqs. (3.11)-(3.14) is available if we adopt
a matrix formalism. Interpreting p(t) now as the
2x2 matrix defined by

where

P &, (k) = —,'[r. ,(~i.'), (k)) ~ r. ,{~t'),(k)) ],

r, , (&u) = 2m g. , (~) i«, ,(~) ~',

u&t') (k) = w, , +«(k+ I)' t'

)13) (k) =(u, , -«(k+I)'t3

(3.17)

(3.18)

() p„, , (t) p„., „,, (t)

pn+1, 3;m, 4{ } pn+1, 3;m+1 3{

these equations may be written as

Bp
i(iVp —-pM)

Bt

where W and M are the 2x2 matrices

(3.22)

(3.23)

~new ~old e —t(n-tn)t 'pt
pn, g;in, I) pn, g;m, I)

(3.19)

The limit T- 0 has been taken in deriving these
equations so that thermal fluctuation effects are
excluded, and for mathematical convenience p has
been redefined according to the scheme

-)|)"n) «) ~ ))'«'-'««, 'n)}
«(n+ I)'tn-iyi, )jt)} —tytn'(t3)

g't(m)) «(m+1}li3+iy, )(m)

«(m I}'+t'+iy& ){m) zy,'()n)

(3.24)
A comparison of Eqs. (3.11)-(3.16) with Eqs.

(67a)-(67d), (66e), and (66f) of I will now show the
essential difference between our analysis and that
of SL. The effect of the inclusion of the internal
coupling in the treatment of the reservoir inter-
actions has been to introduce a dependence on the
strength of the optical field into the decay con-
stants y&')(k) and )tn')(k), and to include an addition-
al coupling between the matrix elements exhibited
by the terms p )(k) and ytn )(k). Our equations cor-
respond exactly with those of SL only under the
nonphysical conditions n +1 =m+ I =0.

Now in seeking a solution to Eqs. (3.11)-(3.16}
we observe that we need in fact only consider a
set of four coupled equations, Eqs. (3.11}-(3.14).

If we then seek matrices P and Q such that

&).,"(n) 0P 'NP =A»= '0 «@)

) ", (m) 0
MQ-A~ —

0 ~( )

we may convert Eq. {2.23) into the form

8v—=-i(A 0 -0A )

where
0' 0'

0 11 12 ~-1pq

{3.25)

(3.26)

(3.27)
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and since Eq. (3.26) is now diagonal, it will have
the obvious solution

« „,(n, m) =2 [){,"(n) —&,"(m)]. (3.29)

(i) O (i )e-«IZZ(n, m)(t-tP)

O (i) O (i ) e- «I22n(m), ( t-t 3)

o (f) o (i ) e-x 1(2nm)(,t- t)p

{Z (i) —(7 (i )e k21(n m)(t tp)

where

(3.28)

Although this technique is straightforward, the
algebra involved in its application is extremely
laborious and mould be presented here to no advan-
tage. Therefore we merely state that P' and Q and
the eigenvalues Xz" 2(n) and A.~»(tn) may be evaluated
by conventional techniques" and that subsequent
inversion of the transformation (3.2V) then leads to
the solution

P (i) — 2 m 3
&

-X Z(Z,3m)(t-t )Pe-k 1{2n, m)(t-t )3
(i)

It, 4;%,4 (1 p p )(1 q q ) 1 2

p p e-«I21{n, m){t tp) +-p f q q &-x 22n{, )m(t-t )3)1 2 1 2 1 2 (3.30)

p„,,(t) = —' p
( q e-»Z(n m&(t-tp)+q e-«12(n, m)(t-tp)p. ..(f )

II 4;III+1,3 (1 p p )(1 q q )

+p p q e ) 21(n m)(t-tp) p p q e -122(n, m)(t-tp))

p (f) n, m 3
(p e -k (zzn}(mt-t,p) p q q e-k 1(2,nm)(t tp }-p i)

It+1, 3;m, 4 (1 P P )(1 q q ) 1 1 1 2

P ek (2n1m)(t-t , )4PP q q )22{nm-)(t-t ))31 ~1 1 2 (3.32 }

(i) Pn, m( P}
( P q &-XZZ(n, m)(t-tP) +P -el. 1(2,n)m(t-t )P

&t

n+13m+13 (1 p p )(1 qq) 1 2 1 2

+t, &-).21(n, m)(t-tP) * &-X (22mn)(t t))P-
&1&2 (3.33)

where p, and p, are functions of n defined by

1{(n +1)1~2 —iy(n ))'n) Xz" ('n) +iy(;}(n)
)("(n}+iyf+}(n) ({I'n +1)1~2-iy(, )(n)'

(3.34).(n. 1}z~ -iy(.-)(n) },"(n)+iyf;)(n)
},,"(n)+i/+}(n) t{l'n +1)1~2-~iy '(n)'

(3.35)

and q, and q2 are functions of m defined by

t(m{+1)'~ 2i+y, )(})nXz" (zn) -iy{;)(zn)
)(1)tniy(pion-) t{Ijn+1)' 2+iyf «(m)

'

(3.36)

z{(m+1)'~'+iy(, )(m) X", (m) iaaf;)(vg-)

A,~(m) -iy{+)(m) t{(m+1)'~'+i/, )(m)
'

(3.37}

The eigenvalues X~»('n) and )lf 2(m) are given by

X" ('n) =-i2[&f'('n)+p"'('n)] + [[t{(n+ 1)' ' iy( '(n)][&{-(n+1)' ' ip, '(n)] —-[2'[y'"'(n) —y"(n)])'j' ' (3.38)

«1", , (m)=i-,'[y( )(tn}+y{;)Q)]+[[({(m+1)'i2+iy(,'(m)][&{(zn+1)'i'+iy{, '(m}] —[-,'[y,' (nz) —y,
' (m)])2]'~' (3.39)

Equations (3.30)-(3.39) together with Eqs. (3.20)
and (3.21) now constitute the complete solution for
the reduced-density matrix of our relaxing system.
Although this solution may appear too complicated
to provide much physical insight, it mill be used

in Sec. IV to produce results bearing a very close
relationship to those of SL. In a future publication
we hope to investigate these solutions within their
own right, paying particular attention to the use
of the rotating-wave approximation.
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IV. MASTER EQUATION FOR OPTICAL FIELD

Having treated the single-atom interaction, we
may now turn to the problem of deriving the mas-
ter equation for the optical field in the manner dis-
cussed in Sec. II. The term arising from spon-
taneous and stimulated emission follows from Eqs.
(2.11) and (2.9) and reads

t)p„,.(t) =r, p„, , (t +at) —p„„(t)
emission =1

(4.1)

Now recalling the assumption that gt is large
compared with atomic relaxation times, we are
in a position to simplify the forthcoming calcula-
tions considerably. Under this assumption we may
set p„, , (t+ at) and p„„,. „,(t + c t) equal to
zero, and in the light of the solutions (3.30)-(3.33)

this implies that all of the decaying functions
exp[- X»(n, m)gt] vanish. Hence in addition to the
obvious simplification

=r, p„ t. , (t+o.t) —p„(tsp„,.(t)

emission =1

(4.2}

we need only retain the contribution from the low-
er integration limit (now t) in the evaluation of
p„,.„,(t+t) t) and p„„,. „,(t +nt) from Eqs.
(3.20) and (3.21), since the terms arising from the
upper limit (now t+c,t) involve linear combinations
of the functions exp[- X»(n, m)n t].

Thus from Eqs. (3.30)-(3.33), replacing t, by t
and t by t+~t, the four integrals required for the
evaluation of the two nonzero diagonal matrix ele-
ments read

(4.3)

r
t+ At p (t)(tl)dtl )),I)l q2 q2 q2PyP2 q2P) P2

(1 -P,P,}(1- q,q, } A.„(tt,m) l).„(n,m) x„Q,m) x„(n, m)
(4.4}

(t )dt, P) PAiq2 P P q q2p, (t)
()-),).)))-«q.) (&„4, ) &,.h, ) &., fe, ) &..4, ))' (4.5}

(t))dtI pn, l)( I Plq2 + Plq2 + Plq2 Plq2
))-),p, ))1 -q, q, )( 1„4, ) x„ln, ) z„g, ) x„R, ))' (4.6}

Now it is desirable to cast these results into a form which bears direct comparison with Eqs. (78aj and
(78b) of I. Thus with our sights set in this direction we turn to a simplification using the various defini-
tions presented in Eqs. (3.29} and (3.34)-(3.39). After a considerable amount of algebraic manipulation
we arrive at the following:

(4 7)

r, l'u, ~) p„„,, „,(t')dt' =p„(t) ', ' [tR(s, m) +$*(m., n)], (4 8)

(4.9)
(4.11)

~

~

~

p„,. ,»(t')dt' =i p„(t) ', $*(m, n),
t

(4.10)

where we have defined
(4.12)
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and

, y, (n, rm)y. , j'n, m) + [K.{n)K,I'n ) -K,*( )K,*I'm}]
(4.13)

with

A (n, m }= y (n, m) y, (n, m }y„(n,m}y,~ (m, n ) +K, (n )K~ (n )[y, (n, m) y~ {m, n }+ y~ (n, m)y, ~ (n, m) ]

+K,*(m)K,*(m)[y, {nm)y, (n, m) +y (n, rn)y„(m, n)]+[K,(n)K (n) -K,*(m)K,*(m)]'. (4.14)

We are now in a, position to evaluate the matrix elements p„, , (t +sf) and p„+, , „,(/+at) using the
formulas (3.20) and (3.21). Substitution of the results (4.7}-(4.10) into these equations yields

p„, , (t+ St) =p„(t}[I-(R(n, m)[K, (n)/x](n +1)'~' -61*(m, n)[K,*(tn)/x ]++1)'~'),

p yy r. y g g
(f +6&) = p (f}[ 6(tnym)[Ky(n)/Ic](m+ 1 ) +61*(m&n)[Kf {m}/x]{n+ 1 ) }

(4.15)

(4.16)

As we would expect, from these equations we may
est.ablish the relationship

„p, , „,, ( f~+)f+.p„,, „.. .(f+~f)=p„,„(f). (4.1&)

The final step in the derivation of [Sp„„(t)/St],„;„

now simply involves the substitution of the results
(4.15) and (4.16) into Eq. (4.2). By defining ft (n, m)

by

ft (n, m} =y, (R(n, m)

this yields

=-[(n+I)'~'[K, {n}/x]R (n m}+(m+1)' '[K*(m)/x]ft*(m, n)j p„(t)(
&p„. (f)

emission

+(m'~'[K (n —I)/z]ft (n —1, m- I}+n'~'[K~+(m —I)/x]Z+{m —1, n —I)jp„, , (t}, (4.)9)

which may be compared with the equivalent result,
Eq. (83) in I. This comparison shows that the two
results will be exactly the same only if we set
x =0 in definition (3.18)

The derivation of the required master equation
will now be completed when we include the term
describing the damping of the optical field. In II
we considered dissipation from a single mode of
the radiation field coupled to a two-level atom.
In the derivation of the master equations for the
diagonal elements of the reduced-density operator
the internal coupling was retained throughout, and
as a consequence, the resulting equations differed
from those obtained by conventional techniques. It
is easily checked, however, that if the photon num-
ber is much greater than unity {as in the la.ser) the
differences are negligible and the usual irrevers-
ible term for a damped-oscillator system results.
This seems quite reasonable since we would expect
a strong field to be largely unaffected by its cou-
pling to a single atom. However, in the laser we

have something a little different. Here there are
many atoms coupled to the one-field mode and
their cooperative behavior could conceivably have
a noticeable effect on the nature of the dissipation.
In contrast, however, the damping of the field
which results largely from loss through the end
mirrors is essentially classical in nature, and
therefore the usual linear damping term

= - C[np„„(f) —@+I)p„„„„(t)J,~p„.„(t)'

dissipation

(4.20)

where C is the cavity bandwidth, seems perfectly
in order irrespective of the strength of the internal
laser coupling. In any case, treatment of this
problem by the technique used in II is unthinkable
because of the number of degrees of freedom in S
and so we must be content with retaining SL's
term

= —C{—,
'

{n +m) p„„(f)—(n + 1)'r'(m+ I)'~'p„„„„(t)j.sp„..(t)
cl1sslP8 t100
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Now combining Eqs. (4.19) and (4.21) the full laser master equation reads

~P 8) = —[(» +1)"'[K {n)/«JB (n, m) + (m+1)'t'K,*(m)tt*(m, n)) p„(t)
+(m' '[K, (» —I)/t&]tt ling

—1, m —1) +n'~'[K «$n —I)/«]R*(m —1, n —I))p„, ,{t}

—C[z tn+i»)p„{t) —jn+ I)' t'{m+ I)' t'p„+, +, (t)). (4.22)

If we focus our attention on the diagonal matrix elements alone, we can simplify Eq. (4.22) to obtain the
form

= —{n+l)AI'»}[I+{»+l)[BQ)/A(n)]) 'p„„{t)+»Ajn —I}[I+n[B(n—1)/A(n —I)]) 'p„, „,(t)
—Cnp„„(t) +C{'» +1)p„„„„(t), (4.23)

where

»(n)r.&(») —~&{n)5~(n)
{4 24}'r'. (»}[r.(n)r, (n) —(}.(n) &,(n)] '

B(n) 4«2 rab( ) ab( )
A{n)r'.,(n)[r.(n)r, (n) —5.(n) 5,(n)]

with

(4.25)

and

y. (n) =y.(n, n) =2r".i( },
y, (n) =y, (n, n) = 2y", (n), (4.26)

r.&(n) = r„(n, n) = r". (n) + r", (n) = gr. (n) + y, (n)]

5.(n) =2r'.-&(n),

5,(n) = 2',-~(n),

5.,!n) =r'.-&(n)+r& (n) = —,'[6.(n)+5, (n)] .

(4.27)

This master equation is of exactly the same form
as Eq. (86} in I except for the n dependence which
now appears in A(n) and B(n).

Y. DISCUSSION AND CONCLUSIONS

In this final section we discuss the results of
the preceding analysis with a mind to clarifying
the differences between them and those of SL. In
particular the significance of these differences
will be considered from the point of view of justi-
fying the normal use of the factorization ansatz.
To this end, we commence by pointing out that it
is clear, without any further investigation of the
master equation (4.23), just what condition deter-
mines the accuracy of the conventional approach.
As has been apparent in all earlier treatments of
open systems with internal coupling, " "the effect
of retaining the complete system Hamiltonian
when deriving the irreversible term in the master
equation has been to split the frequency at which

the system and reservoir are resonant. Thus
here we have resonant frequencies &@~0(n}, &u~,'~(n),

xI,'~(n), and uI, ~{n) defined by Eqs. (3.18), while
conventional techniques would simply give ~, and

Fundamentally this is the only difference be-
tween our analysis and that of SL. If we were to
set ra 'i(n) =rut"(n) =&a, and &u,'(n) =~~~'(n) =-u&« the
two treatments would become identical. It is
therefore clear from Eqs. (3.18), that if «(»~+ I)' '
« ~, ~, where n~ is the photon number around
which the laser distribution is peaked, the correc-
tions arising from our approach would be com-
pletely insignificant. In actual fact, as will be-
come apparent further on, the condition is less
stringent that this, reading

«"(»~+1}«(u,(u, .

This condition is certainly fulfilled for current
continuous-output lasers and the only possibility
of finding sufficiently intense fields to violate this
inequality would be to look among the large pulsed
systems which are currently being developed.
For a neodymium glass laser where T-0.2 msec
and A.,-1.06 p, m, we find for a cavity of length
20 cm and cross-sectional area 25 mm' I&1' = I.'I
&&10' sec '. Hence for this example the usual
factorization ansatz would become invalid as the
peak photon number approached the value n~-10".
This corresponds to an energy of -10' J. This
condition could possibly be violated in the micro-
wave region, where for a cavity volume of 10' cm'
and an atomic dipole moment of e X 10 ' cm angular
frequencies of -10"sec ' result in the failure of
the above condition for n-10".

We now proceed to a more detailed discussion
of various aspects of our solution, seeking to
understand just what modifications we should ex-
pect to arise if the condition (5.1) fails to hold. A
certain amount of care is required here, since
recognizing the use of the rotating-wave approxi-
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mation (RWA) in expressing the Hamiltonian (3.2},
we cannot expect to be able to extend our results
to the region v(n~+ 1)' '-+, , and obtain reliable
predictions. We make this statement both in the
light of the attention recently paid to the RWA" "
and in the knowledge of the fact that in this region,
definite anomalies arise in the results of Sec. III
which we believe appear solely as a consequence
of the RWA. %e have strong evidence to support
this belief but will pursue the matter no further
here, leaving a detailed exposition to a future pub-
lication.

Now as we mentioned above, the fundamental
difference in our analysis from that of SL is the
splitting of the resonant frequencies ~, and ~b
giving the two pairs &u!,'!(n), &u", !(n) and roI,"(n), ro!,'i{n).
This difference manifests itself via the definition
of y',",(n), or more precisely by the exact form of
the strength function 1, ,(~). Before discussing
the solution to the master equation (4.23) we will
therefore take a closer look at the "decay con-
stants" y~,*'b(n). In order to clarify to some extent
their significance, we find it expedient to expand
the strength function I', (cu) and F~(&u) in Taylor
series about ~, and u„respectively. Thus we

have

F,(~) =F,(~,) gs,
f=O

1",(~) = I', ((u, ) Qb,
n=o

&( + 1)I/2 2k

4'= 0 b

(5.4}

I', (~,) ~ x(n + 1)'~'

f!!=0 (db
(5.5)

where a~ and b„are dimensionless constants de-
fined by

1 {d', d'l, ((d)
k 1 I', ((u, ) d(o"

(5 3)
b d I b((d)

k! F,(~,) du)'

Invoking these expansions in Eq. (3.17) and making
use of Eqs. {4.26} and (4.27) we then arrive at the
following expansions for the functions y, b(n) and

5, ,(n):

I',(u), ) x" ~(n+ I)'i'-'
y, (n) = ' ~a„

A,
'= 0 (dd

Now the interesting feature of these results lies
in the fact that y, (n) and y, (n) depend only on the
even powers of x(n+I)' '/e, „while 5,(n) and

6b{n}depend only on the odd powers. This would
seem to support the interpretation that y, (n) and

y, (n) include the effects that all the even-order
interactions between the atom and the field have
on the irreversible behavior of the atom, and

5,(n) and 5,(n) account for the effects of a.ll the
odd interactions. A distinction may be drawn be-
tween these two categories since the even interac-
tions have no direct effect on the state of the fieM,
although their inclusion can alter it indirectly by
modifying the atomic lifetime. The odd-order
interactions change the state of the field directly,
both an increase and a decrease in photon number
being possibilities. It does appear that these two
possibilities occur in opposition, since if we take
the case where the two lasing levels are identical-
ly damped,

y, (n) = y, (n) = y.,(n) = y(n),

5, (n) = 5,(n) = 5„(n) = 6{n),

then from Eqs. (4.24) and (4.25), A(n) and B(n)
are given by

A(n) =2x-'r, , ),
1

'y' n

B(n) = 4x', .4(n) .
1

y'(n)

These expressions are both independent of 5(n),
which implies that here the optical field is com-
pletely unaltered by the inclusion of the odd-order
terms. We propose the interpretation that this
indicates a cancelation between the effects of those
odd-order interactions which give rise to an in-
crease in photon number, and those which give
rise to a decrease. Thus for a laser where both
lasing levels have similar lifetimes, the only
modification we expect is a change in effective
lifetime exhibited by the variation in y(n). For
example, if we propose a flat frequency spectrum
for the strength function around and above the
frequencies co, „and a fairly rapid fall-off at low
frequencies to I'(0) =0, according to our theory
we would observe a decrease in the "decay con-
stant"' as the strength of the optical field in-
creased, until for ~(n+1)'~2» ~, b, y(n) would have
the value 2y(O). Thus we obtain a quenching of
the spontaneous emission linewidth corresponding
to the prediction of Haken quoted in Sec. I.

To conclude let us turn our attention to the mas-
ter equation (4.23) and its steady-state solution.
This follows from detailed balance considerations
in exactly the same manner as in I and reads
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A(k —1) B(k —1)
Pn, n PQ, OQ C A(k 1)k= 1

(5.8)
(3.18), it then follows for z(n+1)"«u. ,.. that

Before any comparison can be made between this
and Eq. (92) of 1, a model must be adopted for the
strength functions 1,(cu) and 1,(&u) so that the n
dependence of A(n) and B(n) becomes explicit.
The specific differences observed will therefore
depend directly on the particular model chosen.
As an example we take the model which was used
by Haake" when he treated non-Markoffian effects
in the damped oscillator. Under the assumption
that both lasing levels see reservoirs with the
same strength functions, this model is defined by

yes
Fa,s(~) =1 2 ~~2 ~ (5.9)

where y and I' are appropriately chosen constants,
From Eqs. (4.26), (4.27), (3.17}, and

y, (&) =y, = {y/I')(u„5,{n)=y, (n+ 1}'~'(z/(u, ),

y~(n) =y, = (y/1"')(u~, ~~{n)= y~{n + 1)' '(v/or~),

y~(n) =y, (,
= (y/1')~. g, &„(n)=y„(n+1)'~'(~/~, ,),

where

~aa = k(~a + ~n) .

Here, since the model is linear in ~ around the
region of interest, the n dependence has dropped
out of y, (n) and y~(n), and we can therefore isolate
the influence of the odd-order interactions for a
case where y, e y, . Using the results (5.10) in
Eqs. (4.25) and substituting in Eq. (5.8), we obtain

)A K B K
p. ..=po OII 1-k (1+&a) 1 —k +k —1 —k (1 —hu. ,'

C (dz(d~ (d~4)g A (5.12)

where we define h~ by
A =2g2r, , B=4~' A .1

ya yah ya Yb
(5.14)

L~ = ((a, —(u, ) /((ug + ~b)

and A and B have the same form as in I:

(5.13) If we now assume h~ to be sufficiently small to
neglect the second-order term, we find we may
write this in the form

0, 0 h=l
(5.15)

psL„being the SL result for the nth diagonal matrix element. In this expression we find direct verification
of the condition (5.1), since if the inequality (5.1) holds, then we retain the SL distribution.
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