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A discussion of an anisotropic {p state) Fermi superfluid with a spatially varying order pa-
rameter is presented. We restrict ourself to the Landau-Ginzburg region and consider spa-
tial variations governed by the linear gap equation. The kernel of the linearized gap equation
is shown to be related to a current-current correlation function of quasiparticles in the nor-
mal state. This relation permits the calculation of the two coherence lengths (z and (z de-
fined earlier in the framework of a phenomenological Landau-Ginzburg theory, and a discus-
sion of boundary conditions for the order parameter at interfaces. A significant anisotropy
in the coherence lengths is found {g~ = v'3gz), which reflects itself in the nature of the super-
currents. The boundary conditions at specularly and diffusely reflecting surfaces lead us to
expect that the vector t, which describes the orbital angular momentum of a Cooper pair in
an "axial" state, is anchored normal to the walls. Some consequences of these results on
various experimental problems {fourth sound, monodomain production, Josephson couplings,
behavior in thin capillaries) are briefly discussed.

I. PHENOMENOLOGICAL CONSIDERATIONS
(3)

A. Introduction

The resonance data on the A phase of 'He '

strongly suggest that it is a superfluid phase with
Cooper pairs in a triplet spin state. ' The orbital
pairing state must then correspond to I odd
(L =1, 3, . . . ). We assume in the present paper
that L =1 (p states} is the correct answer. Our
aim is to clarify some macroscopic properties
of such an anisotropic superfluid, through the
Landau-Ginsburg equations. In the present sec-
tion we shall first recall some basic phenomeno-
logical features, which have been already de-
scribed briefly. ' In See. II we present a micro-
scopic analysis of some of the relevant param-
eters. In Sec. III we discuss the problem of bound-
ary conditions, together with some applications to
wall alignment, to the behavior of 'He in capil-
laries and in porous materials, ete.

Our starting point is the condensation amplitude
h, z (k), which is conveniently written as'

a„~(k) = Q A~, k, w~(op), .

The nine complex coefficients A~, involved in Eq.
(1) define the order parameter of the system.
Clearly, the description of the system in terms of
18 real numbers is exceedingly heavy, and one of
our main aims will be to simplify it as much as
possible.

B. Free energy, permanent currents

The Landau expansion of the free energy I' in
powers of the order parameter is particularly
interesting. " The Landau assumptions concerning
this expansion are in fact acceptable for 'He (just
as they are for superconductors) because the low-
temperature coherence length

&,
= vF/2xT,

is much larger than the interparticle distance.
Neglecting dipolar forces and assuming no external
field (for the moment), we observe that the free
energy I" must be invariant separately under rota-
tions in spin space (involving the indices p) and in
orbital space (involving the indices i) It is the.n
of the form

where k,. is a component of the wave vector k. For
instance, k, corresponds to pairing in an orbital
state Y,o, with I., =0. The spin-wave functions
w~(p =1, 2, 3}are defined symmetrically with the
orbital functions: re~ is an eigenfunction of the
pair spin operator S~ with eigenvalue zero:

F =-,'a(T) Q Ap, A~;+F, +

where a is linear in temperature:

a =a'(T —T,), a'&0 (6)

For instance se, has the explicit form

(2)
while I 4 is the sum of all terms quartic in A, and
is I'4=-0. Below T, the quadratic term is negative
and favors all components A~,. equally. This
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implies a considerable degeneracy, which is re-
moved (partially) by E„as discussed in Refs.
4 and 6. The situation here may be compared to
a Heisenberg ferromagnet, with magnetization M,
and with a weak cubic anisotropy, leading to an
F of the form

F = ~aM~ ~ , b M—'+ e( M„+ M', +M', ). (I)

Depending on the sign of ~, one has either M

along a [111]axis (e &0) or M along a [001] axis
(e & 0): the continuous rotational degeneracy of
the Heisenberg ferromagnet is reduced to a dis-
crete set of possibilities.

The 'He case is conceptually similar, but prac-
tically more complex, because, after application
of the E4 terms, we are left with nonequivalent
states, and also many of these states still retain
a continuous degeneracy.

Let us now allow spatial variations of the order
parameter A. ~,. (assuming these variations slow
on the scale of F„). Then the free energy contains
extra terms of which the leading terms will usually
be quadratic in the gradients, and have the form'

F„=g —,'K~~divA~('+ ,'Kr(c—urlA~)',

where K~ and K~ are two positive constants and

A~ is the vector of components A~, . The con-
stants K~ and K~ may be associated with two
coherence lengths:

$2~ =K~/~a~ (longitudinal),

@=Kr j~a~ (transverse).

Apart from the quadratic terms E~, we may also
find (in some very special cases) terms which
are linear in the gradients, namely

F„=P —,'Q(A~~ curlA~+ c.c.).

F„ is a pseudoscalar, and Q will be nonvanishing
only if the system does not have mirror symmetry;
a possible example is a porous medium, made
with very small quartz particles, all of the same
chirality, with He inside the pores.

The current density 4 may be derived from E,
by the following operation: A fictitious eleetrie
charge e is attributed to the 'He atoms, and an
external vector potential a is applied. In the total
free energy E the gradient terms must then be
modified according to the rule

Vg q,. —(V + 2 i ea) Ap(,

where 2e is the charge of a Cooper pair. The
particle current is the functional derivative

, 5f
&a

Carrying out these operations with the forms (S)
and (9) for F, one finds

T =2 1m+ (K~ A~ divA~+Kr A~

x curlA~ —QA~ x A~).

Note that, because A~ is a complex vector, the
cross product A~ xA~ is nonvanishing.

C. London limit

In the following discussion we shall restrict our
attention to a particular set of states, which is at
present the most plausible candidate for the A
phase of 'He.

Both from the theoretical calculations of Ander-
son and Brinkman' and from the resonance data'
as analyzed by Leggett, "we are led to postulate
that the following structure for the A~, 's corre-
sponds to the minimum of the free energy' in the
A phase:

(12)A~,. = const' b, ,

where V is a real vector (the "spin quantization
axis") and can be chosen to be of unit length
(V' =1). The orbital part Z is a complex vector:

gI ~gtl

We shall eall this state, which was first investi-
gated by Anderson and Morel, ' the "axial state. ""
It may be described by the condition

(14)

This state carries an orbital angular momentum
parallel to 6'xh'. The unit vector along this
direction will be called l. The orientation of the
triad 6', 6", 1 can be defined by l plus an angle

q specifying the orientation of 6' in the plane
normal to l. A multiplication of all the com-
ponents A~, by a phase factor e'~o is equivalent
to a rotation in this plane y- @+y,. Thus the
angle y may be called the phase of the order
parameter.

To summarize: An ordered state of the axial
type is characterized by one amplitude 6 =~2, '~

= ~n "~ and by five angular variables, namely, the
polar angles of V and l, plus the phase y. Our
next aim is to find what is the relation between
these geometrical objects and physical observ-
ables such as the supercurrents.

The London limit corresponds to a situation
where the currents are weak, and we have an
axial phase with constant amplitudes 6 and angular
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variables (V, T, &p) which vary slowly from point
to point. The explicit meaning of the word "slowly"
is given by

$(T) vy«1
(and similar inequalities for V and T). In the
London limit the structure of the current is com-
paratively simple. Using Eqs. (11) and (12), we
find that V does not contribute and we are left
with

can generate through the prescription (10) an addi-
tional current density S c? curlA~ x A~. It is, how-

ever, a consequence of the boundary condition
derived in Sec. III (A~ parallel to walls) that there
is no net current of this form through any physical
channel.

II. LINEARIZED-GAP EQUATION

7 = p, grad&p+ c curl 1 —4tIIn'T, (15}
A. Weak-coupling limit

In this chapter me shall show hom the nonhomo-
geneous states of a p-state Fermi superfluid, dis-
cussed in Sec. I, may be obtained from micro-
scopic theory, and me shall calculate the two co-
herence lengths $~(T) and 4(T) In a. ddition, the
theory developed here mill allow us in Sec. III to
study situations in which translational invariance
is broken by boundaries.

To begin with, me consider a BCS-type pairing
theory. In the next subsection me give arguments
which suggest that the inclusion of higher order
effects, essential to explaining the stability of an

anisotropic state, ' does not change the essence of
the results obtained here.

Our starting point is the linearized self-con-
sistency equation for the pairing amplitude
A„()(k, q). Using Gor'kov's formulation" of the
pairing theory, one obtains in the momentum
representation

The second term in (15) is the analog of the equa-
tion for the magnetization current in a ferromag-
net (2 =curlM), but the coefficient C is also aniso-
tropic:

C]( 2~2K~, C~= 242K~.

The last term in (15) shows that rotating pairs
moving in a helical medium must also have a trans-
lational motion of mell defined sign. This effect
may be observable. However, for simplicity, me

shall assume Q =0 in all that follows.
One remarkable consequence of the anisotropy

of p, is the following: even if l is constant in

space, the superfluid current J can have a non-
vanisking curl. Defining axes (1,2,3) along Z',
Z", and T, we have in fact (for p =const)

82
(cur1$)( = 2n'(Kr -K~)

(curlS), = 2b. '(Ki —Kr)
BXj BX3 )

(curlf), = 0.

(18)

Thus the anisotropic superfluid density has as
a consequence the fact that one can have a distri-
bution of vorticity from the first term of (15)
without singularities in the order parameter.

By adding terms to the free energy density (8)
which are proportional to total derivatives, one

where (grad(p} ~ dh is the angle of the rotation
around the local axis T(x) which maps Z'(x),
Z"(x) into Z'(x+dx), Z"(x+dx). In general
curl(grad(p) need not be zero. The compact ex-
pression (15) for the current has been achieved
at the expense of a generally valid global defini-
tion of a (p field. The first term in Eq. (15) is a
natural generalization of the London equation,

p, being a tensor superfluid density, with dif-
ferent principal values along T(p„;) and transverse
to 1(p„). A simple calculation yields

p, , i
=46, K~,

p, i = 2b, '(Ki +Kr).

n s(k, q) =TQ
ff k yk

& V(k, k') Go (k'+-,'q, k" +-,q')

&& G' „(-k'+-,'q, -k" +2q') h„()(k",q').

In the weak-coupling approximation for P -state
superfluids V(k, k') is approximated by a point
interaction of p symmetry"

V(%, %') = —,k k'. (2o)

A, (?()= fd'R')(, , (?l, ?(')A, (i'), (21)

G' (k, k') are the propagators for noninteracting
fermions moving in a potential determined by the
walls of the container; „are the Matsubara fre-
quencies [(v„=(2n —I) wT, n =0, +1, . . . ].

Using definition (1) of the order parameters
A~„and going over to the spatial representation,
one obtains
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K„(R,R') =3gT Q lim, —,—,G' (R, R') G' (R„Rf)~ .
)I R) R ~ R( (( r ( 6 lj Rj sRgj

(22)

Ne shall now transform K, , into a correlation
function for fermions in the normal state. For
this purpose we use the Lehmann representation
of the propagators,

(23)

dM
—K + V(R)) (),(R) =d, d, (B). (24)

The potential V(R} contains all the effect of the
walls. Since the Hamiltonian in Eq. (24} is in-
variant under time reversal, the U„(R) can be
chosen to be real. Using this property K,, can be
written in terms of matrix elements of the cur-
rent-density operators j(R):

G~ (R„R2)= Q . U„(R)U„(R').

U„(R) are the one-particle eigenfunctions defined
by

tion function calculated for a microcanonical
ensemble of energy E~. One then obtains the final
result

K, j (R, R') = 6)jt(t(0) gT Q dt e " K('

n 0

M~
x ~, &j, (R, O)j,.(R', t)), , (28)

F

The correlation function & jj) in Eq. (28) is closely
related to the nonlocal conductance used to discuss
the skin effect in normal metals.

An evaluation of the correlation function in Eq.
(28) for a bulk system leads to the result

3t)t(0)gT p (R —R'), (R -R'),.
lR —R'l

Kj, (R) R') =6gT Q Q . xexp (28)

x ~, &vli, (R)l)(t)&t(l jj(R')lv) (2~}

The identity (for &u„&0)

1 -(i ~ I-i~ }t
e'('} 'v }'fl it

('~K eK)( i~. —e) ) &O t~n —eK

(26)

allows one to rewrite Eq. (26) in the form

x Q&vl j((R, o)jj(R', t)Iv)6(e -e.)

(2't)

Equation (27) is still exact within the framework
of a weak coupling theory. It should be compared
with the equivalent formula in an s-type super-
fluid. " The only (but significant) difference is that
the current densities in Eq. (2't) are replaced in the
s-wave case by particle densities. Our subsequent
approximations are analogous to those used in the
s-wave problem, and may be justified in the same
way. "' The two essential steps are (a) in the rele-
vant energy range Q, & vl jjl v}6(e —e „)can be ap-
proximated by t)t(0)&jj), „where i)t(0} is the
density of states at the Fermi energy and &jj),=,
represents the current-current correlation func-
tion averaged over states at the Fermi energy.
(b) This averaged correlation function can be re-
placed by the classical current-current correla-

Substituting this form in (21) and developing the
order parameter on the right-hand side around
the point R, one then easily obtains in leading
order

3 2 6
KT = 5 E, , K~ -Kz, = —, (, . (31)

Thus the coherence lengths $~ and $~ defined be-
low Eq. (8) are given by

)2~ =3&2r = —', E2(T,/T, —T).

(Recently Vuorio has obtained the result (~=3(~
by another method, "}

B. Fermi-liquid effects

%'e shall now give a brief justification of the
simple pairing model used in the rest of this
paper. The arguments we give are very similar
to those employed in the theory of superconduc-

(30)

Above, T, is the transition temperature
( ,T= u)exp(-[ j(V)O]g'I}, and g, is the quantity
which occurs in the s-wave theory, "namely E',

='tv''r„(3) j48 jj'T', . Comparing (30) with the equa-
tion one obtains by requiring that the phenomeno-
logical free energy Eq. (5) plus Eq. (8) be sta-
tionary with respect to variations of A~&, one
concludes that in the model of the present section
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x r (k'+ ~q)

(32)

where I represents the irreducible particle-par-
ticle vertex and the 6's are the exact one-particle
propagators.

That Eq. (32) is equivalent to the simplified
form (19) follows from the following observations.
The smallest momentum and frequency scales
which enter I and the self-energy parts E (con-
tained in the G's)are set by 0» and », the char-
acteristic paramagnon wave number and fre-
quency. These variations have to be compared
with (, ' and T„which are characteristic of the
peaked structure coming from the propagator
product GG. Since in 'He ksF (,» 1 and &»T,» 1,
it is reasonable to make the replacement
I(k, k', q; ~„,cu„')=I(Ark, krak', 0; 0, 0) and at the
same time to introduce a cutoff at &„,~„' = ~».
Expanding I in terms of spherical harmonics and
keeping only the p-wave part leads to the form of
the pairing interaction used in Eq. (19). (We
mention in passing that different angular momenta
only decouple at q =0. The coupling to L =3, 5, . . .
pairs modifies the results only in orders higher
than q' and is therefore neglected. )

The observations made above also provide a
justification for making a quasiparticle approxi-
mation for the single-particle propagators in Eq.
(32). One expands the self-energies occurring
in the propagators about 0 =4~ and „=0 as in
Eqs. (7)-(9) of Ref. 14. The Fermi-liquid correc-
tions are then contained in a wave-function renor-
malization constant Z and an effective mass cor-
rection M*/M. The parameters lV(0), vr, and g of
Sec. IIA have thus to be interpreted as renormal-
ized quantities

lV(0)-N (0) =(M /M)X(0),

Ur —v ~ = (M/M ) Ur,

g- g* = I/Z'.
(33)

The current-current correlation function in Eq.
(28) thus has to be understood as the correlation
function of noninteraeting quasipartieles moving
with velocity U~. Ne want to emphasize that this
correlation function replaces a simple product of
propagators and does not contain any vertex cor-
rections to this product. Therefore, any type of

tivity (see, e.g. , McMillan and Rowell").
Consider the linearized gap equation for a trans-

lationally invariant system in its general form

&~8(k, ~,)=TZ + Ineys(k~» ~qi ~n~~n)

collective mode need not and indeed must not be
included in Eq. (28).

Some special remarks should be made with re-
spect to boundary effects discussed in the following
sections. ln a small range of order 1/kz near a
boundary the self-energy and the vertex I are
modified. This effect is not included in Eqs. (27)
and (28). However, since we are not interested
in calculating properties of this small surface
layer, these effects will be absorbed into our
phenomenological description of the scattering
properties of bulk quasiparticles at a surface. It
mill be shown in the following sections that all
interesting effects occur in a rather large region
(of order $,) at the surface. This justifies a Pos-
teriori the neglect of detailed structures very near
the surface.

IlI. BOUNDARY EFFECTS

A~, =const(b, . +z) (z» g, ). (34)

The aim of the more detailed calculations to be
carried out near z =0 is to find the correct value
of the extrapolation length b,

Let us consider first the case of a mall which
is an ideal mirror (specular reflection). Then the
kernel K, ,(12) (for two points 1 and 2 which are
on the helium side) may be split into two parts:
a direct part K" coming from particles traveling
on a straight line from 2 to 1, and a reflected
part K" coming from particles which start from
2, hit the wall, and then appear to come from the
image point 2. Upon reflection, the velocity com-
ponents U„and i), are unchanged, while v, is re-
versed. This implies the following properties

A. Specular reflection on solid wall

lf it is clear from Eq. (28) that the kernel F,, (12)
of the gap equation is very sensitive to the colli-
sions of quasiparticles on the mails, when points
1 and 2 are within a distance (, from the wall. %'e

shall nom discuss this effect, for a planar wall
lying in the (xy) plane, with the 'He filling the
upper-half space (z & 0). We assume that all
directions in the plane of the wall are equivalent,
and also that the wall does not contain any chiral
species.

Ne shall more or less follow the approach used
long ago" to discuss a superconductor-insulator
interface. As explained in this reference, it is
enough for most boundary effects to consider a
restricted problem, where (i) the order param-
eter depends only on z; (ii) the temperature T is
set exactly equal to T, . The most general solution
for the A~,. is then easily shown to be asymptot-
ically linear in z
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K"„,(12) =K'„,(l2),

K"„(12)=K'„(12),

K"„(12}= -K'„(12).

(35)

(The nondiagonal components K„do not enter in

the final results when A», depends only on z. )
We shall discuss now more specifically the

properties of a "transverse" component A», (or
A», ). The equation for A~ reads

A»„(1)= d2 [K„„(12)+K„(IR)]A~(2).
g&& 0

(36)

We can transform this by extending the definition
of A~ to the nonphysical region z &0. We choose
the following convention:

A,„(2)=A„(2). (3't)

Then Eq. (36) takes a form which does not differ
from the bulk

A (I)= d2K„'„(12)A (2).
all g2

The solution of this equation which is compatible
with the parity requirement (3'7) is simply

(38)

A~„=const.

A„(()=J dm( ('(( (2-(('(( 2()la,.( 2. (
a2& 0

Here the natural continuation is

(40)

A„(2) = -A„(2), (41)

and this again leads to a translationally invariant
equation

Comparing with (34) we see that the extrapolation
length b„(or b, ) is infinite: The A'a»»sverse com-
ponents are not affected by a specula» boundary
(Fig. 1).

Consider now the longitudinal component A~, ,
which sa,tisfies the equation

This coincides, as it should, with Eq. (34) at
large distances (z & (,), and we see that the ex-
trapolation length b, =0. We conclude that the
longitudinal components of the order parameter
are strongly depressed by the presence of the
wall. The aspect of A.»,(z) at a temperature
slightly below T, is shown on Fig. (1).

Turning now to the more specific case of an
axial phase, where A~, has the structure de-
scribed in Eq. (8), we see that the vectors Z' and
Z" will tend to lie in the plane of the wall (to avoid
the depletion associated with A», ). Thus the vector
l will be anchored normal to the wall.

Note, on the other hand, that the spin quantiza-
tion axis V is not anchored to any particular direc-
tion (since the spin indices played no role in our
discussion). This will be true for all walls where
spin effects are not important (with specular or
diffuse scattering). The resulting boundary condi-
tion is one of zero surface torque on V,

dV
dz

On the other hand, if the wall contained magnetic
spine (such as in the case of cerium manganese
nitrate}, very different conditions would prevail.

8. Diffuse refiection

We consider again a planar wall at z =0, w'hich

confines the superfluid to z & 0. Since the boundary
condition corresponding to diffuse reflection is
somewhat more complex than that due to specular
reflection, we shall only derive the two main
effects caused by such a wall. These are (a) the
longitudinal component (A», ) of the order param-
eter is again suppressed by the wall, and (b) in

contrast to a specularly reflecting wall, the ampli-
tudes of the favored components A~, A~, are also

A„(1)=
t

d2K», (12)A„(2). (42) Apg, Apy

Let us recall at this moment that we are just at
T, . This implies that

K„(12)d2 =1.

Then, as already mentioned, the most general
solution to an equation of the form (42), with K»

depending on the relative distance (2 —1), is simply
a linear function of the coordinates (here, of z).
The odd-parity condition (41) imposes in fact

A, = const z.

FIG. 1. Schematic drawing of transverse (A&„, A»)
and longitudinal (Ap~) components of the order param-
eter near a specularly reflecting wall.
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reduced in the neighborhood of a diffusely re-
flecting wall. Owing to this effect, we predict a
reduction of the transition temperature in small
geometries (size effect).

In the case of diffuse reflection, the contribu-
tion to the kernel K„(R,R') coming from reflected
paths can be obtained by inserting the classical
correlation function

"'"''"' -~t" =
A(0)M2, „(2vP J,„," 2M r ' "

~j,.~

'P ~j,~

x P'„p.p'. 5 p p'

into Eq. (28). This has to be added to the contribution from the direct path which is just the bulk kernel
given in Eq. (29). A useful function for a qualitative discussion is the space integral

+z'& 0

d'R'K„. (R, R'). (44)

C, , (R) is the result of a first iteration of the gap equation if one starts with a constant order parameter.
In the present case one obtains

C„.(R) =0 (f ~ j)t,

C„(R)=X(0)gTQ I —exp — " ' + v~ E, " ' +E,
Vp Vp 5F

C„(R)=C„(R)=N(0)gTQ I --,' exp — " ' + v ' 'E, --. l~. (45)

where E, (R,) are the exponential integrals. C„(R,)
and C„,(R,) [C„„(R,)] are shown in Fig. 2. Two
conclusions can be drawn from these results:
(a) In neither of the cases is a constant order
parameter a solution of the gap equation. The
longitudinal and the transverse order parameters
are both strongly modified by the diffuse bound-
ary (b) The lo.ngitudinal component is more
strongly reduced by the boundary than the trans-
verse components. It in fact goes to zero at the
surface.

The vanishing of the longitudinal component at a
boundary is a general feature (not restricted to the
first iteration) which occurs for any type and

shape of boundary. It can be derived from the
fact that the correlation function

(U, (R,) v, (R, I))

vanishes at a boundary point R, if U„ is the com-
ponent of the velocity perpendicular to the sur-
face.

Returning now to the nonlinear Landau-Ginsburg
equations for T slightly smaller than T„one can
show that the reduction of the order parameters
for the longitudinal and transverse components
heals in the lengths F~(T) and (r(T), respectively.
The loss of condensation energy is thus of order

6F = (F„—E,) $ (T),

where E„—I, is the bulk condensation energy.
Since the longitudinal component A~, is more
strongly depressed at the surface and in addition
has a longer healing length $~(T) we conclude that
this energetically unfavored component is sup-
pressed by the wall. For the axial state this again
means that 1 is anchored normal Po the snail.

Let us now discuss in more detail the behavior
of the transverse components A~„,A~, which are
selected out by the wall. The physically most

l.0 ———

0.5

l.5

FIG. 2. Result of the first iteration of the gap equa-
tion for diffuse reflection as given in Eq. (45}.
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important information is contained in the extrapo-
lation length br defined in Eq. (34). br can be ob-
tained from the solution of the linearized gap equa-
tion at T, (we omit for brevity the indices of the
order parameters):

A(R, ) =
Jt dR,'K(R, , R,')A(R,').

0

For the transverse components, K(R, , R,') has the
form

3N(0)gv Tg E (47)

Equation (46) can be solved by the Wiener-Hopf method. One obtains for the Fourier transform
A(q} of A(R, ),

A, (q) =const ', exp . ~ dk (Imq &0),q$, —i 1 "'" ln[ k'+I)4 k ]
q' 2vi „„k-qg,

(49)

where the sums are cut off at ~~„t =~,.
From the small q behavior of the solution A(q),

one finds the extrapolation length b~:

this gives a conventional Josephson energy

U„=-2qrn, 'cos(y, —y, ). (53)

1
'" dk 4'(k)

' 2v k 4'(k)
'

A numerical evaluation of this integral gives

br =0 54FO .(Fo= v~/2vT, )

(50)

This rather small extrapolation length expresses
the strong influence of the diffuse boundary even
on the favored components of the order paxam-
eter. This leads us to expect observable size
effects in thin geometries with such type of bound-
aries. A detailed calculation of these size effects
will be given in a subsequent paper.

U„= -p Gr(A~'A~2'*+A~", 'A~"„'*)

(a)*—2C~A. pg Apg + c.c., (52)

where z is always the normal to the walls. If w' e
have axial phases in each vessel, each with 1

normal to the walls, and if 1, is parallel to 1„

C. junctions and channels

(a) An ideal tunneling junction, made of an ultra-
thin, flat, solid barrier is probably unfeasible
with helium atoms as the tunneling species. How-
ever, it is of some conceptual interest to look at
the structure of the Josephson coupling U» which
would be expected for such a case, with two ves-
sels of order parameters A~",. ' A~", ' coupled by the
junction. Assuming that the tunneling layer is a
achiral and isotropic in its plane, we mould have
a coupling of the form

But if the 1 values on both sides are antiparallel,
we find U» =0 f Thus the function would probe not
only the relative phase cp, —q „but also (to some
extent) the relative orientation of the angular
momenta. It is of interest to see if similar prop-
erties are also expected for some more practical
weak links; we shall now discuss two types of such
links, a thin channel and a "large" hole.

(b) A long, thin, channel of well-defined radius
R, connecting two compartments, can be prepared
by etching of a particle track the diameter 2A

being adjustable between 100 A and a few microns. "
With mica as the substrate, the channel walls
show noncircular cross sections and mell-defined
crystalline planes, possibly leading to a good
specular reflection. For such a channel, de-
pending on the temperature, we expect different
types of superfluid ordering:

(i) Very near T, the boundary conditions will
accept only one orbital component A~, (z being
the channel axis); in this regime the angular mo-
mentum is quenched.

(ii) At low temperatures [i.e. , when F~(T) ZR]
the angular momentum should become unquenched.
The vector I will tend to be radial (in agreement
with the boundary conditions) and there will be a
singular line (disgyration) on the channel axis
(Fig. 3).

Can we use this sort of channel as a Josephson
junction connecting two vessels 1 and 2'P In regime
(i) the effective coupling between 1 and 2 will be
independent of the relative orientations of 1, and

I, (because Z has only one component in the chan-
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nel). Thus regime (i) appears less interesting
than the ideal junction described by Eq. (52).

(c) Regime (ii) would be obtained most easily
with a "large" (IO pm) hole inside a wall, as
shown in Fig. 4. Here, if the vectors 1, and 1,
in both vessels are antiparallel [Fig. 4(a)] we ex-
pect to have a singular point (or a short portion
of disgyration) at the center of the hole. On the
other hand, if I, and I, are parallel [Fig. 4(b)]
we shall have a disgyration running on (or close
to) the equatorial line. This difference in configu-
ration may be significant if we study superfluid
flows through tke hole which involve the nucleation
of vortex loops. Because the vortex cores are
large [-$(T) -1000 A] in 'He, the vortices will not
necessarily nucleate on point defects at the walls:
They may in fact nucleate on the dry~ rations, and
the nucleation barriers could be quite different
for Fig. 4(a) versus Fig. 4(b).

N'. CONCLUDING REMARKS

We conclude with a brief discussion of various
experimental effects which arise as a result of the
boundary effects discussed in Sec. III.

(a) A thin slab of 'He between two walls should
tend to have its orbital momentum 1 normal to
the walls. This does not grant that the sample will
be single domain (T might be upwards in some
part of the sample, and downwards in others, the
matching being realized through a system of dis-
gyrations). But, when employed in conjunction with
other means, ' this geometry may be of some help
to reach a uniform alignment of l.

(b) Conversely, if we do succeed (in the future)
to have single domains in thin samples, it will be
interesting to apply conflicting fields to this struc-
ture, and to detect the analog of the "Frederick' s
transitions" familiar in nematic liquid crystals. "
This will be discussed in a separate publication.

(c) The measurements on fourth sound (oscilla-

FIG. 4. Configurations of the 1 vector around a "large
hole" separating two vessels 1 and 2: (a) I& antiparallel
to 1&, (b) I& parallel to I&.

tory motions of the superfluid inside a porous
medium), which traps the normal fluid component,
are also very dependent on the boundary conditions
at the solid-fluid interface, and on the detailed
shape of the pores: (i) If the pores can be de-
scribed as a net work of long capillaries, we shall
probably find, inside each capillary, the ar range-
ment skown in Fig. 3, with 1 normal to the walls.
Then the superfluid current will flow normal to
1, and the fourth sound velocity will depend only
on the quantity p, [defined in Eq. (16)]. (ii) If the
solid component is obtained by a regular stacking
of spkerical grains, all of the same size, the 1

field between the grains will be rather complex,
and the supercurrent X will in general be oblique
with respect to 1. The local relation between 2
and the "gradient" of the phase grady will thus
involve a space dependent matrix p, , and the flow
regime is rather complex. (iii) If the grains have
some randomness in their size or in their stacking,
the situation will be still more complicated. How-
ever, after performing a coarse grained average
over regions muck larger than the pore size, it
will be possible to define an. effective superfluid
density p. ..-, by

~ =p, ,„grady

(where f is the volume fraction of 'He). Because
p, ,«- is well defined, it should still be possible to
observe a long-wavelength fourth sound. But it
will be extremely hard to relate p, „„ to the micro-
scopic parameters p, and p„, . (iv) A special men-
tion should be given to the case where the grains
carry electronic spins, for instance, when they
are made with the traditional cooling agent cerium
magnesium nitrate. Here, our discussion of
boundary effect skould be augmented to cover spin-
dependent potentials. We hope to return to this
question in a later publication.

FIG. 3. Radial disgyration in a capillary with radius
A & $ (T). The core of the disgyrationL occupies a region
of radius - $(T) around the axis.
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