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Fluctuations of a cholesteric liquid crystal in a static magnetic field

J. D. Parsons and Charles F. Hayes
Department of Physics and Astronomy, University of Hau'aii, Honolulu, Ha@&aii 96822

(Received 17 January 1974)

The normal modes of a cholesteric liquid crystal in the presence of a magnetic field are
determined from the hydrodynamical equations. The damping constants of the orientation
modes are found to be sensitive functions of the field and exhibit band gaps when their wave
vector is an integral multiple of a reciprocal-lattice vector. The results disagree with those
of an earlier calculation by I'an, Kramer, and Stephen and reduce to the correct result in
the zero-field limit. The light scattered by the modes is discussed in the Born approxima-
tion.

I. INTRODUCTION II. STATIC SOLUTIONS

In the absence of magnetic fields and other per-
turbing forces, cholesteric liquid crystals have a
helical structure. ' The long axes of the molecules
tend to be in planes and in any plane the ordering
is like that in a nematic liquid crystal, i.e., the
molecular axes tend to be parallel. In a direction
perpendicular to these planes (the helical axis)
the axes are rotated from point to point and trace
out a helical path with a pitch of several thousand
angstrom s.

A static magnetic field H couples to the aniso-
tropy of the magnetic susceptibility y, and tends
to orient the molecules in the direction of the field
(for g, &0).'" lf H is perpendicular to the helical
axis the spiral structure tends to unwind and t;he

crystal becomes nematic at a certain finite crit-
ical field."When H is parallel to the helical axis
an intermediate conical structure is stable if the
elastic constants satisfy a certain inequality. '

In this paper we discuss how the fluctuations in
orientation and the light scattering due to these
fluctuations are modified when a static magnetic
field distorts the crystal. The case when H is per-
pendicular to the helical axis has been discussed
by Fan, Kramer, and Stephen' who found that the
field produced band gaps in the damping constants
of the director modes. Quantitatively their results
are deficient, however, because they do not re-
duce to the correct limit when H =O. We derive
expressions for the modes here which differ from
those in Ref. 6 and which reduce to the correct
limit when H=O,

In Sec. II we briefly review the effect of H on
the static structure. In Sec. III the normal modes
in the presence of H are discussed using the hydro-
dynamical equations. Finally in Sec. IV we con-
sider the light scattering by these modes.

First consider the distortion of the crystal when
H lies perpendicular to the helical axis. 4 The
Frank' free energy in the presence of the field can
be written as

E, = 2 k„(V n)'+ —,'k»(n ~ Vxn+ q, )'

+ 2k»(n ~ Vn)' —2y, (H n)', (2.1)

where the k;; are the Frank elastic constants and

y, is the anisotropy of the magnetic susceptibility.
We assume it to be positive and choose H = HO, .
The equilibrium configuration must satisfy the
Euler -I.agrange equations'

e aE, , aZ,
~Pit J- ~Bi

(2.2)

with the constraint n' = 1. The director n is de-
fined in the usuat. way as a unit vector which lies
along the direction of average molecular orienta-
tion at each point in space. It can easily be shown
from (2.1) and (2.2) that n is given by

n '„"= cosy, (z), n,'"' = sing, (z), n,"'=0, (2.3)

where we choose the z axis to be the helical axis
and where the pitch angle P,(z) is given by P,(z)
=q,z when' =0. The pitch in zero field is then
P, = v/q, . The magnetic field changes the pitch
angle and it is given by

II|» 2 +y, fg sing, cosp, =O.
dg

(2.4)

This has solution

sing, (a) = sn(z/$k, k), (2.5)

where sn(u, lz) is a Jacobian elliptic function' of
argument u and modulus k, and where (' =k»/y, ff'.
The energy is minimized by choosing 0 such that
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q, g =2E(k)jttk,

and the pitch is given by

(2.6) cosity. Typically y, =0.1 P. %e assume a Bloch
expansion for P'(z, l):

H, = —,
'

vq, (k„/q, )"'. (2.8)

Typically k22=10 dyn, y, =10 cgs, @0=10 cm '

and this gives 0, = 10' G. At the critical field the
helical structure has been completely unwound
and we have the so-called magnetically induced
cholesteric-nematic phase transition as first dis-
cussed by de Gennes. '

The effect of a static magnetic field parallel to
the helical axis has been considered by Meyer. '
If the helical axis stays parallel to 8 we would ex-
pect a conical configuration:

n„"= cosB cosq„z, n ~~" = cosB sinq„z,

'~ ~0~ = sin6}.

P(H ) = P,(2/tt)'K(k) E(k) = 2(kK(k), (2.'I)

where g(k) and E(k) are the complete elliptic inte-
grals of the first and second kinds, respectively.
We see that P(H) -~ logarithmically as k-1.
From (2.6} this corresponds to a critical field

@r(z l} It I/2p q (z) e-1 &Ht

the volume V is included as a convenient normal-
ization.

First consider the case of a small field. Then
we can expand the equation to order 0 where jP
=

}l, H'/k» q', . Inserting (3.2) into (3.1) gives a
Mathieu equation in this limit:

„;+(a+k'cos2u) hatt, =0, (3.3)

with a=natl, „/k» q', and u =q,z. The solution of
(3.3) to order k' [solutions of higher order are of
no interest since (3.3) is only valid to order k']
may be found by standard perturbation methods. "
The requirement that the solution reduce to the
previously known field-free result when A =0
yields a relation between the damping constant
I'«and the field. The form of the solution de-
pends on the value of the wave vector q and may
be written as

According to Meyer such a configuration will be
stable only w'hen k» &]mt» and the magnetic field
lies in the range

(2/tr) (k„/k»)'~'H, -H - (2/1f) (k„/k„)'l'H, .

(2.10)

(a) q«q, » q»q. :

4, (z) =e"'+
6

exp[i (q+ 2q, ) z]
qjqo+ I

muf (q-tq. ) I

)q/q, —1 (3.4)

In this range B and qH change continuously. Below
it there is no perturbation (8=0, q„=q,) and above
it complete breakdown to the nematic state
(8 = 2 v). In the range given by (2.10) we have q„
= (k»jk»)(H/H, }q, so that the pitch decreases as
II is increased.

III. NORMAL MODES

I',e = k» q'» +0t(k');

(b) qsq, :

t}t,(z) = cosqz + (-,
' k)' cos(q + 2qo) z,

FQll k22 q /1 1 ~ (Xa H /Yl) t

(c}q&qo'.

(3.5)

(3.6)

(3.7)

%e assume the fluid to be incompressible. The
effects of compressibility will be discussed brief-
ly in Sec. IV. The director n can be decomposed
into a static part n, discussed above and a small
time-dependent part n'(r, l) which represents ther-
mal fluctuations in the fluid. If we consider only
those fluctuations which propagate parallel to the
helical axis, the modes separate into a twist mode
with a time-dependent pitch angle 4t'(z, l) and a
conical mode u,'(z, l}. We consider each mode sep-
arately.

The equation of motion for the twist mode in the
presence of the field is given by'

g2 t' '-2 jP
w

+ k'[1-2 sn2(u, k)] 4t'=0, (3.1)

hatt, (z) = sinqz + (-,
' k)' sin(q + 2q, ) z,

r,„=k» q'/y, + (q. H'/y, ) . (3.9)

There are two solutions and two different values
of r,„at the transition point q =q, . This means
I',„has a gap

f' t = Xa H '6't (3.10)

at q =q, (see Fig. 1). When q is far from q, the
perturbation is small and I',„is essentially the
field-free result k» q'/».

For fields comparable to H, the approximation
(3.3) is no longer valid and we must work with the
exact equation (3.1). Using (3.2) we can write it
in the form of a Lame's equation of order one":

where u=z/$k-qoz whenH=O. y, is a Leslie"
friction coefficient which has the units of a vis- d",'+ [h-2k'sn'(u, k)] qt, =0, (3.11)
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I'IG. 1. Dispersion of the damping constant I;H for

the twisting mode in the presence of a magnetic field

perpendicular to the helical axis.

w"ere"=k [(( y r«/k»)+1J. There exist three
simPle solutions to (3.11) for certain eigenvalues
h. They are the ellipsoidal harmonics of the first
order:

field. This is to be expected since a transverse
field produces no stabilizing effect on the director.
This dispersion relation exhibits a gap but now the

gap is shifted to q = qH corresponding to the in-
crease in pitch. The magnitude of the gap is still
given by (3.10) and it approaches the value (2 v)'

x(k»q', /y, ) near the critical field. The solutions

P, have the Bloch form associated with a periodic
structure of period P(LL). The results for I',„
when expanded to order k' reduce to those obtained
previously for small fields. They differ from the
results for I',„given in Ref. 6 which can easily be
shown to diverge when k, H- O. The solutions
reduce to the small-field results within a field-de-
pendent normalization factor which may be fixed
when correlation functions are computed, for ex-
ample, and also differ from the results in Ref. 6.

The viscous splay modes discussed in Ref. 6

are also modified by the field. If pI+pp 0 a
"slow" conical mode n, completely decouples from
the "fast" viscous waves e„,v, . We shall assume
this is the case. The Bloch expansion for»,' is

y, (u)=dn(u, k), k=k'
n,'(z, L) = V '" Q n„(z) e '«' . (3.21)

=cn(u, k), k=1

=sn(u, k), k=1+k'. (3 ~ 12) Using the hydrodynamical equations we can derive
an equation for the amplitude u„:

By expanding the elliptic functions into Fourier
series we find that the solutions and damping con-
stants can be written as

+ [k+(k»/k„} k' sn'(u, k)J n« ——0,Ill (3.22)

I H=o'

(b) q=-q„:

(3.14)

2 /+ 2

p, (z}= — »„cos(q+2Lq„) z, (3.15)kK, », j +g""

r,„=(1-k')(k„/y, k'g');

(c) q q„:

(3.16)

2 /+ l/2

p, (~) = k—p 1 „„sin(q+2Lq„)z, (3.17)2/+ I

r,„=k„/y, k't'. (3.18)

In these equations g is the nome and is given by

(a) q«q„..
1T 2 7I

p (z)=e"' —+ — cos2Lq z
2K K 4+g" H y

(3.13)

wherek=(k'$'/k»)(y, y,„—k»/k'$'). This is a gen-
eralized Lame's equation and closed-form solu-
tions are only known when (k»/k»}= —n(n I+)

where n is an integer. " Such a condition will not,
in general, be satisfied. For small fields we can
expand (3.22) to order k' = lL, H'/k» q', . lt can then
be put in the form of a Mathieu equation

+ (a —k cos2u)n„=0, (3 ' 23)

where a=(y, y,„—k»qo)/k»q'„L0 =(k»/2k„) k', and

u =q,z, The form of the solution again depends on
the value of q:

(a) q«q, or q»q, :

k„k' exp[i(q+2q, ) zJ
16k„q/q, +1

mf (e-2v.)*~)
q/q, —1

L:=e' ""i ' K'(iz)=K(k') k'+k"=1; (3.19) y,„=(k„q'+ k„q', )/y, + O(k'};

(b) q:rj
(3.25)

q„=v/P(a) = v/2Kkt. (3.20)

The result (3.14) merely shows that the damping
constant vanishes with wave vector even in a large

u„= sinqz —
6 sin(q+ 2q, ) z,k33k'

I.I
(3.26)

y«=[(k»q'+k. .qo)/y, J[1-(k„/'4k„)k'J; (3 27)
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(c) q=q, :

»„=cosqz — cos(q+ 2q, }z,k33k'

ll
(3.28)

to strong light scattering. The light scattered by
the normal modes when H =0 has been discussed
in Ref. 6. The cross section is proportional to

y, =[(k„q'+k„q',)/y, J [1+(k /4k. ) k'J.

(3.29)

Again there is a gap in the dispersion relation of

y, a at q =q, . The size of the gap is

k33 ~a + kll + ~33 . 22- qo
kll k22 qO ~l

(3.30)

where again me have taken y, +y2=0. The damp-
ing of the conical mode decreases because the
field has an unstabilizing effect on the director
and softens the fluctuations. In contrast the twist
mode is practically unaffected by the field when
6 is small. The opposite case of 6= 2 ~ is easily
discussed because then the structure is almost
nernatic and the normal modes mill have approxi-
mately the same structure as in a nematic. "

IV. LIGHT SCATTERING

In the Born approximation the cross section for
light scattering is related to the space-time Fou-
rier transform of the autocorrelation function of
the dielectric tensor e;, . Since in a cholesteric

6 t~. = E'j 5.
~

+ t )7 )l~ (4 1)

where e, =e.
,
-e and e,

, (e, ) is the dielectric con-
stant parallel (perpendicular) to n„ fluctuations
in n modulate the dielectric tensor and thus lead

and it involves all three elastic constants. For
q ~ q, y,„approaches the field-free re-suit. It can
be shown that a calculation valid to all orders of
k' but only to first order in k»/k» gives for the

gap size G, = (Bk»q'/y, )[g/(I -g')J where g is
given by (3.19). For small k, g = (~ k)' and this
reduces to (3.30) to first order in k»/k». AsH
-H, we have k'- 1 and C,', approaches 2k» q', /y, .

The effect of a magnetic field parallel to the
helical axis can be discussed in the same way. If
H is such that the conical configuration (2.9) is
stable, the normal modes are the two independent
components of n which lie perpendicular to n, .
They mill be coupled together and also will be
coupled to the viscous shear modes even when the
fluctuations propagate parallel to the helical axis.
If 0 is small so that the structure is approximate-
ly helical the modes propagating along the helical
axis will separate into a twist mode (p'} and a
conical mode (n,') as in the field-free case. The
damping constants mill be given by

I'.H=k„q /y„y, » —(k, „q +k,3q' —y~H')/y, ,

(3.31)

I (q, ~) = ( e,)' [1 + cos'(9+ y) J(1+cos'6)

&& [S,(q+ 2 q„~)+ S&(q —2 q„u) J

+[sin'(y+28)+ sin'(y+ 6) J

x[S,(q+ q„~)+S,(q -q„~)J, (4.2)

where q is the momentum transfer, (d is the fre-
quency shift, 6J is the angle between the incident
ray and the helical axis, and y is the scattering
angle. S,(q, ~) is the power spectrum of the twist
mode

2k' I' I,
S&(q, ~}= „' 2

22q ~ +
(4.3)

and S,(q, &u) is the power spectrum of the conical
mode

k q +k q' (d2+ (4 4)

The evaluation of the cross section for arbitrary
values of H when H is perpendicular to the helical
axis is quite complicated and we will not discuss
the general case here. However to order k' the
cross section is unchanged from the field-free
case (4.2) except that in (4.3) I', is replaced with
I',„and in (4.4) y, is replaced with y,„. The mag-
netic field has little effect on the intensity of scat-
tered light but significantly changes the width of
the Rayleigh line and produces band gaps at q =q„.
Notice that the conical mode scatters light most
strongly when q =q, mhereas the twist mode scat-
ters light most strongly when q =2q, . Also the two
contributions have a different angular dependence.
Thus the two modes should be separable experi-
mentally.

A magnetic field parallel to the helical axis has
the effect of softening fluctuations in the con-
ical mode», ' (provided that the static distortion is
small). Therefore we should see an increase in
the intensity scattered by this mode when the field
is applied.

%'e have assumed throughout that the fluid is
incompressible. In a compressible fluid there
mill be sound wave modes as well as the over-
damped modes discussed here. It can be shown,
because of the smallness of the orientational elas-
tic constants that the sound wave approximately
decouples from the director modes and is not af-
fected by a static magnetic field. One can see
this qualitatively by comparing the energy assoc-
iated with a twist deformation (k»q', ) and a mag-
netic deformation (y, H') with the energy of the
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sound wave (p,c') where c is the sound velocity.
Thus compressibility always plays a negligible
role in the structure of the overdamped director
modes.

In conclusion we have found that a static mag-
netic field applied perpendicular to the helical
axis significantly changes the width of the Rayleigh
lines due to the overdamped director modes.

The most unique feature of the dispersion relation
is the presence of band gaps in the damping con-
stants when q =q„. Our results differ from those
given in an earlier calculation' and reduce to the
correct limit whenH=O. %hen the field is parallel
to the helical. axis the damping constant of the con-
ical mode decreases and the light scattered by it
increases. There are no band gaps in this case.
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