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Stability boundaries for two-mode lasers in the strong-coupling limit
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We present here, for the first time, the criteria for determining what field fluctuations are
required to cause a bistable two-mode laser to flip from one mode to the other. Results (for
a particular two-mode model) generated numerically are presented. Extensions of the method
to more-refined two-mode models and multimode cases are discussed.

Mode hopping in multimode lasers is a phenome-
non which has been examined theoretically' ' and
observed experimentally' ' by many investigators.
The mode-hopping effect, for example in the con-
text of Lamb's rate equations' for the modal elec-
tric field amp1. itudes, is fundamentally a nonlinear'
effect resulting from self-saturation of each mode
and cross-saturation between modes, An interest-
ing application of this effect would be ihe coding of
information' on the transmitted beam by controlled
selection of various mode configurations.

According to Lamb's theory of optical masers, '

bistability may arise (e.g. , for two-mode opera-
tion) in the strong-coupling limit (H»9» P,P, ); one
or the other mode is completely suppressed in
steady-state operation. The past history deter-
mines in this case which of the modes is ultimately
suppressed and which attains a state of stable (fi-
nite) oscillation. It was noted by Lamb' that many
gas-laser amplifiers are inhomogeneously broad-
ened and, hence, the modes are usually (but not
always!) weakly coupled (p, p, &8„0»). However, it
is possible to construct He-Ne lasers„ for exam-
ple, which display strong coupling, ~' %'e address
ourselves to finding necessary and sufficient con-
ditions for the two-mode strong-coupled system to
evolve into each specific steady-state case. Such
a consideration will be of utmost importance in the
design of bistable lasers as coded information car-
riers. Gur analysis derives from the theory of
differential equations of Lyapunov's theory of sta-
bility of motion. "We treat here in detail the case
of a particular two-mode bistable system. ' Exten-
sions of the theory to more elaborate two-mode
models and multimode lasers are discussed.

Following Lamb' we consider the two-mode mod-
el in terms of the field intensities X=E,' and Y=-F22

where

X =2X(n, —p,X -6,~ Y),

I =2I'(n, -e„x—P, I'),

the n's are the unsaturated gain coefficients, and
the P's and 0's are the respective self- and cross-
saturation parameters. ""We note that this
model is restricted' to the case where

field intensity
saturation field

For notational convenience we define" a coupling
parameter

1~2 12 21 '

In the strong-coupling limit (r. &0), the model (1)
admits three nonvanishing critical points: (i)
X = o, /P„ I' = 0; (ii) X = 0 „

I'= o, /P, ; (iii) X
= (n, P, —o,&»)/I, I'= (o,P, —o,s»)/(. The first
two critical points are asymptotically stable (hence
the bistability) and the third is unstable. " We are
thus faced with the problem of determining the sta-
bility boundary in the positive X V quadrant past
which fluctuations from one of the stable critical
points will reIax to the other. The problem is
transformed by defining new variables:

x=-X —a, /P, and y=- I'.

In these new variables, Eqs. (I) become

X = -2Ck1X —261+ —2Q1X —261~%'$ )

y =2(n, —H»)y —26»xy —2p,y'.
To restate the problem then, which fluctuations
sx(& —o. , /p, ) and sy(&0) from the new origin of (2)
will relax back to this origin, and which will evolve
to the other stable critical point?

The solution is defined with the aid of an adden-
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dum to Lyapunov's stability theory provided by
Zubov"'" requiring the solution of

.
(

)~U(x, y) ~

(
)Bv(x, y)

= -&(x,y)[1 —U(x, y)], (2)

where Q(x, y) is an arbitrary, positive definite,
continuous, scalar function. The set ((x, y)~v(x, y)
= 1] defines the desired boundary. As the required
integrals in solving (3) for the case of (2) cannot
be obtained analytically, one must resort to nu-
merical solutions. Power-series solutions of (3)
are straightforward but converge slowly. " Exact
(numerical) solutions of (3) for two-dimensional
systems may be quickly obtained by an algorithm
developed recently by one of the authors. ' The ba-
sis for the algorithm is that the stability boundary
is piecewise an integral curve" of the system un-
der investigation. 'e Segments of the boundary may
thus be generated by numerical integration once a
point of the boundary is known. A point of the bound-
ary may be obtained by a. number of methods'; in
the case of (2) such a starting point is found by in-
spection to be the third (unstable) critical point:
='„(,6„o.J', )/-~(f„v = (~,V, o,6„—)/~ »g-.

ure 1 illustrates the resulting family of bound-
aries for (2) where n, is varied over [0.6, 1.9]
with the other parameters fixed:

O2 =p, = p2=1 and 9~2=~2, =2.

As the numerical method used here is completely
general for two-dimensional systems, the above
analysis may be immediately extended to more re-
fined models than (1) such as the fifth-order expan-
sion in electric field of Uehara and Shimoda, "' '
for understanding systems with higher field inten-
sities than admitted in (1),'" or for the similar
models of Bambini and Burlamacchi. ' The method
is also easily extended to the "free-run"' three-
mode case. In this case the three-dimensional
boundary surface is generated via a sequence of
two-dimensional cross sections by parametrizing
one of the coordinates. " In like manner, partial
boundary surfaces may be generated for even more
complex systems. Another interesting application
might be a similar analysis of porarizakion mode
hopping as experimentally observed by Isenor. '
The general theory may be further extended by
considering the inverse problem whereby con-
straints on the required gain and saturation coef-
ficients are determined such that a given stability
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FIG. 1. Stability boundaries for the two-mode laser with strong coupling described by Lamb, Ref. 1, with o2 =P& ——
P2

-= 1 and 0&&
—-

0&& =2. Note that e, also describes the stable critical point (+&, 0) along the X =E~ axis while the other
stable critical point (0, 1) does not vary with 0, &. The case n& =1 corresponds to the symmetrical example illustrated
by Lamb (Fig. 5 of Ref. 1). The concavity of the boundaries with respect to the symmetrical case illustrates an in-
teresting perturbative effect on the symmetry induced by variations in unsaturated gain. lt is apparent that as G,'& 2
or ~

&

—0, 5 we eventually obtained the situation where for all practical purposes only a single mode is allowed to
operate. This is the typical behavior obtained for certain cases of weak coupling (0&282 f «P/P2).
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boundary is obtained. Work on this latter problem
is currently in progress" and may be particularly
tractable in view of the experimental capability of
exIernall y modulating such systems demonstrated

recently by Kobayashi et al."
One of us (J.T.) gratefully acknowledges several

discussions concerning this paper with Professor
D. Zeroka.
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