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Schrodinger equation for the two-dimensional Coulomb potential
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General properties of the Sturm-Liouville equation and numerical methods are used to determine the
eigenquantities of the Schrodinger equation of a (+ —) pair interacting via the two-dimensional

Coulomb potential q'lnr. The spectrum is shown to be purely discrete and semibounded in its lo~er
part with a density of levels of dg(g)/d g —e '~'q', while the wave functions behave like those of a
harmonic oscillator. The spectrum is studied as a function of the coupling parameter q. %ave functions

Q and radial densities rjQj' are plotted against r and some matrix e1ements ( /jr" jQ ) are given.
The q = 1 spectrum is used to evaluate the corresponding sum-over-states which allows us to give a
clear meaning to the canonical thermodynamical functions of the two-dimensional Coulomb gas below
the transition temperature T, = q '/2k~.

I. INTRODUCTION

Recent investigations' in the statistical mechan-
ics of the two-dimensional Coulomb gas have led
us to consider quantum binary interactions in a
pair of opposite charges, in order to set on a
firm basis the canonical equilibrium at low tem-
perature. This explains why we now address
ourselves to solving the eigen-Schrodinger-
problem for the two-dimensional Coulomb po-
tential q'lnr solution of Poisson's equation

hV= —(n —2)S„5, n ~ 3

=-S„5, n~2

with 5„=2m" '/I'(nl2), n being the space dimen-
sionality. This problem also deserves interest
in its own right, by allowing us to gain some
insight into the dimensionality dependence of
the Coulomb interaction, the basic interaction
upon which the real world is built. ' The one-
dimensional Coulomb-Schrodinger problem is
encountered in the quantum treatment of the
linear Stark effect q'r of a one-dimensional sys-
tem. ' It is solved quasianalytically in terms of
Airy functions. On the contrary, and in analogy
with many other two-dimensional situations (see
for instance the hard-disk problem in statis-
tical mechanics), the present two-dimensional
Schrodinger equation requires the introduction
of numerical techniques nearly from the begin-
ning. It must also be noticed that the solutions
of the considered Schrodinger equation may have
some connections w'ith those obtained from sim-
ilar problems with potentials r "lnr used in the

II. GENERAL PROPERTIES OF THE
STURM- LIOUVILLE EQUATION

Now, we follow quite closely a presentation
due to Titchmarsh' for the treatment of the two-
dimensional Schrodinger equation:

Zy+ [z —V(r)] g = 0 (2 1)

with V(r) =q'in' and atomic units (8 = g =1). The
introduction of the usual polar coordinates in
Eq. (2.1) through $(r, 8) =f (r) g (8) leads to

so-called peratization techniques in phenomeno-
logical quantum field theory. ' We shall first
consider the general properties of the two-dimen-
sional Schrodinger equation with a monotonic
increasing potential in order to be able to draw
semiquantitative conclusions about the spectrum
behavior and obtain the minimum of information
needed to support the numerical investigation
considered further. Then, we study quantitatively
the given discrete spectrum as a function of the
coupling constant q. Furthermore, for q = 1, we
graph some first-excited-state wave functions
P together with corresponding radial densities,
and indicate numerical values for matrix ele-
ments ( P )

r'
~ P) (v = 1, 2, 3). The q = 1 spectrum

is used to evaluate the pair (+ —) sum-over-
states which gives access to the canonical ther-
modynamical functions of the two-dimensional
Coulomb gas below the transition temperature
T, =q'/2ks. These results allow us to set on a
firm basis preliminary conclusions drawn by
Hauge and Hemmer' from a perfect gas of non-
interacting pairs (+ —) of hard disks.
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g"(8), sinmq
g(e) ' cosm&

(2.2)
result

d' 2 l(l+1),f,{x)=— e+ ——, f,{x) .dx x x (2.8)

f" (r) + + A —V(r) — f(r) = 0.f'(r) m The same procedure may be duplicated in the
two-dimensional situation with Eq. (2.3}written
as

Equation (2.2) could also result from the in-
variance under O(2) (the group of plane rota-
tions) of Eq. (2.1). By inserting f(r) =r '"g(r)
in Eq. (2.3), we get the required radial differ-
ential equation:

, + ——E r)

tg
X —q'ln — ——F (r)g2 L ~2 fit

2

x" I~|~ (& —&( ) —™
~
' xtrl=o, (2.4)

which looks like the corresponding hydrogen
equation' with (m' ——,) instead of l(l +1) in the
centrifugal term, so that the fundamental state
(m =0) retains the quadratic contribution 1/4r
in the potential energy while it is known to vanish
in three dimensions (l =0). This property is a
very important one. It will be shown below to be
responsible for the very large distance between
the fundamental and the first excited state stand-
ing for all q values. The normalized eigenfunc-
tions associated with the eigenvalues ~ „may
be written as

(2.5)

The foregoing equations have been written with
three-dimensional "atomic units, " although the
coupling constant q is not given a particular value
by any physical constraint. However, in close
analogy with the three-dimensional Coulomb
problem, it appears possible' to introduce two-
dimensional "atomic units. " For this purpose,
let us return to the radial hydrogen Schrodinger
equation' written as

1 d' 2p e' 8' l(l+1)
, [rF, (r)] = ——, A+ ——,F, .r dr' ' I' ~ 2r

(2.6)

Then, the natural unit of length (e' in units of
energy-length ') is the Bohr radius ao=h'/pe'
with p. the reduced mass of the two-particle sys-
tem, and the unit of energy is then the Rydberg
Il„=due'/2h'. So, with x=r/ao, Eq. (2.6) becomes

I. d' 2 l(l + 1), (xE,(x})= — e + ——,E,(x)

(2 '7)

with e =E/8„. F, (x) =f, (x)/x gives the expected

m'-
inx+ ln — ——I" (x)I x2 OI

(2. 10)

corresponding to Eq. (2.3). It is a direct analog
of Eq. (2.7). Incidently the choice I. =b drops out
the constant term on the right-hand side. In
three dimensions when one makes change F,(x)
=f, (x)x ' nothing changes with the centrifugal
term l(l + 1)r, but in two dimensions the analo-
gous change F (x) =f (x)x '~' modifies Eq. (2. 10)
to

2 1
Pgr,f (x)= — e -lnx —,f„(x),dx X

(2.11)

a direct analog of Eq. (2.4). It must also be
noticed that the considered two-dimensional
"atomic units" h = 1, q = 1, and p =

& are com-
patible with the previous three-dimensional
atomic units 5= p, = 1. In the following most of
an calculations will be performed with these
two-dimensional "atomic units. "

Before going on with the numerical task of
evaluating X „and P „ it proves useful to in-
voke some general properties' of the Sturm-
LiouviIIe equation (2.4). First, we obtain at
once from the monotonic increasing behavior of
V(~) that the eigenvalues spectrum A. „ is a
purely discrete one located between -~ and +~.
Moreover, the number of eigenvalues smaller
than an arbitrary A. is given by

N(A. )- — [A. —V(r)) r dr = 8q'e' ~'

v(r)» x.

(2. 12)

which is a very quickly increasing function of A.

Now the natural unit of energy is q' with the cor-
r esponding i.Bohr r adius" b = {2pq' jk') ' '. In
these units Eq. (2.9) becomes (x = r/b, e = A/q')

d' 1d
2+ ——I' (x)dx x {gx
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allowing the appearance of the very interesting
property of lower semiboundedness.

A lower bound A., for the eigenvalues may be
defined by

"' dN(A)

dA.

From Eqs. (2.6) and (2.7) it follows that

z~i& j~2Ã
(2. 15}

where H;& is the two-body Hamiltonian associated
with Eq. (2.1) with the masses I, = m& =1. %e
then h.ave

l~i&Jf ~28

(2.16)

(2.14)

Equation (2.14) makes it clear that the spectrum
is void between -~ and A, An immediate and

important by-product of Eq. (2.14) will be the
Lower-semiboundedness of H» which is the first
step toward the existence of the stability property
for the two-dimensional Coulomb gas' reached
through the 2N bod-y Hamiltonian (N=N, =N )

1
ff 2z

—— QQ — (~& + +/) —q tq j in I Yo ~'
1~i&j ~2M

( ~ ) ) (2N —1)X, , for q(q &0

which gives the required necessary condition
& (2N —l)N'

~
X, ~

for the existence of sta-
bility.

III. QUANTITATIVE DETERMINATION

OF THE SPECTRUM

A. Eigenvalues

The FORTRAN computer program due to Cashion,
Cooley, and Zare" is used to calculate the eigen-
quantities A„„and P „attached to Eq. (2.4).
The key quantity of importance in the numerical
procedure is the number of nodes n of a given

„, which is allowed to run over the whole
spectrum by labeling the eigenvectors once a
given A. „has been reached, through the essay
and errors method. Keeping in mind further
applications to the statistical mechanics of the
two-dimensional Coulomb gas in Sec. IV, we
first study the variations of the lowest eigen-
value A, , with q. It is shown in Fig. 1 together
with the prediction (2.14). Note that at the limit
q=0, Eq. (2.4) gives back the Bessel equation
with A., O= 0. The true variations being much
less important than those due to Eq. (2.14}. It
then appears possible to let q = 1 in the following
without introducing any significant restrictions.
The expression (2.12) for the density of levels

20-

10-
i( p

250-

200-

-40-

FIG. 1. Variations of the lowest eigenvalue Q o (in
three-dimensional atomic units} with the coupling con-
stant q. Gurve 1 gives the prediction formula g.4).
The numerical calculation is labeled as curve 2.

0—
0

lB
I I I I

500 1000

I"IG. 2. Density of levels p as a function of the mag-
netic quantum number m.
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is an average taken over the magnetic quantum
number m. A sharper expression may be obtained

by considering the number of levels per unit en-
ergy

given as

U;„=q'(-,'+ ln]q '[2(m' ——,')] "' ]) . m ~ 1

{3.4}

p=
2O-~m O

(3.1)

p = 0.7787 & 10 'm'+ 0.35302 ~ 10 'm+ 4.525,

0 ~m «300

=0.6421& 10 'm' -0.2413 &10 'm+ 7.795,

300&m 600

= 0.8938e'"""" ~+ 4.1237 600&m ~ 900

plotted in Fig. 2. We restrict ourselves to the
first twenty levels because the higher part of
the spectrum appears as a very dense one for
all q values, in accord with Eq. (2. 12). The
resulting curve is well fitted by

for r =q '[2(m' ——,')]'". &. „could be refer-
enced to U, as in Fig. 3, where the quantity
A=A. , —U (q =1, 1 urn~80) is quite well fitted
by

6 = 0.4473 & 10 'm+ 5.4530 —U;„ for 1 ~m ~ 20

and

Oe241610m+5+5103Uffijft

for 20 &m ~ 80 . (3.5)

Then, the sharp decrease observed in the be-
havior of 6 allows us to write

„=U +a+np ' for 1-m 80

= 0.2912e'""'" "+2.630, 900 &m ~ 1200

„=U +np ' for m&80.

8. Wave functions and matrix elements

(3.6}

(3 2)

U(r) =q'1n] ~] ( +' m— —,')!~' (3.3)

with q =1.
A straightforward localization of X „, with

m ~ 1, xnay be obtained through the density of
levels and the minimum of the potential curve:

A general idea of the properties of the first
excited states may be gained from the data col-
lected in Table I where some matrix elements
( P ]r"

] g) are given in two-dimensional "atomic
units. " A number of corresponding eigenfunctions

„with m=0, 1, 2 and n =0, 1, 2 may be seen in

Fig. 4. Their general shape looks very similar
to the harmonic-oscillator wave functions in two
or three dimensions. " Their best maximum is
always located just before the right-turning-
point solution of A. „-U(r) = 0. Related radial
densities r ] P „]'are plotted in Fig. 5. They
are of course sharply peaked around the maxima
of g„. An interesting feature to note is the in-
creasing localization towards large distances,
of wave functions g „, with increasing values
of m. This is nothing but a by-product of the

TABLE I. Some data concerning the first excited
states for coupling constant q =1. All energies and
matrix elements are in trvo-dimensional 'atomic units. "

QI~Ii& (wI& Ig') (~l~'I o)

0'
0

I

20
i

f,P 60

0 0 0.243 95 14.99
0 1 5.71537 0.265 98 x 10
0 2 6.301 21 0.897 87 x 10~

0 5.4539 0.3839 &'10'
1 1 5.7416 0.5119x 10
1 2 6,3012 0.8980& 10~

278, 24
0.265 98 x 106

0.81829x 106

0.1496 x 10'
0.2660 x 10
0.8183 x 106

0.6063 x 10
0.1400x 108

0.755 82x 10'

0,5912 x 10'
0.140 10&( 10

0.7559 x 10~

FIG. 3. Lowest eigenvalues A. 0 (two-dimensional
"atomic units" 8=2p = q =1) referenced to the minimum
of the potential part (3.3) as a function of the magnetic
quantum number m.

2 0 5.4546 0.3846 x 10'
2 1 5.7420 0.5120x 103

2 2 6.3013 0.8983 x 103

0.1501x 10
0.2661x 10~

0.8189 x 108

0.5942 x 10
0.14018x 10

0.7567 x 10
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0.05 i„=5. "416
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002-
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0.08
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-0,02
574.8
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mic units").ensional atomifunctions (two &mFIG. 4. First excited-states wave fun
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08—
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0.5

03 314.9
I

629.9
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944.8 1259.8
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01

0
0 8 33 24.99

I

33.22
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0

314.9 629.9 944 9 1259.8

L

3%9 944.8
L I

0 314 9 629 9 944 9 1259 8

FIG. 5. First excited-states radial densities {two-dimensional "atomic units") .
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relative weakness of the logarithmic potential
when compared to the centrifugal term (m'- 4)r '
in the origin vicinity.

The kinetic-energy part is obtained through

V-&pe BP-~/4 v dPP sP&(4-

p
2 A'

P p
{4.5)

IV. TWO-DfMENSIONAL COULOMB GAS
AT LOW TEMPERATURE

Now, we intend to apply the foregoing results
to the study of the corresponding sum-over-
states, so that the low-temperature canonical
equilibrium of the two-component two-dimensional
Coulomb gas could be described in the approxima-
tion of a perfect gas of X noninteracting pairs' ' "
through the canonical partition function

whe re A = k/(2s m ks T)"' denote s the cor re spond-
ing de Broglie wavelength; so w'e have

lim Q, (V, T}

=2 —, e "'"+2 e

(4 8)

Q*(V, T') = N!V" lim [Q, {V, T)]"

th 12

(4.1)

(4.2)

where n is the number of nodes in P „(r'). The
estimation of Q, requires some insight into the
quantitative behavior of ~ „. The fundamental
state with rn =0 has been singled out in the fore-
going expression because the numerical study of
the eigenvalues of Eq. (2.4) shows that for all q'
values, the inequality

where P (1,2) denotes the two-body eigenfunc-
tions of H = ——,{V',+ V2)+ V(r„) written as

(4 3)

with n—= (P,m, n), P=P, +P„R=(r,+r, )2 'and
E = ,'P'+ X „. E-quation (4.2) then becomes

U Q. I,»i»= f d*. g
P,m, n

(4 4)

aa»~, m, n, m, (4.7)

remains fulfilled. Moreover, the density of
levels deduced from Eq. (2.13) predicts a very
dense quasicontinuum for increasing X, so that
the numerical evaluation of the eigenvalues is
expected to become meaningless above a critical

depending on q'. Therefore, it appears
convenient to rewrite Eq. (4.6) in the form

1' 9, t», T) 0
' Ee ''. ~ 2EQ . ~ 2 dz)

dA,n=p nt= 1 nM nips np

(4.8)

(2/ 2-8) &which remains finite only when g
e"~' ' dA&+~

with k~T& 2q', thus providing an important and
independent confirmation of the discontinuity of
Q* at the transition temperature T, =q'/2ks. It
must be kept in mind that we are still consid-
ering a classical system with quantum binary
interactions, in accord with the splitting of the
Hamiltonian into kinetic and potential parts,
respectively. However, the quantum treatment
of the (+ —) interaction allows us to consider
point particles and derive meaningful thermo-
dynamic functions for T& T, . More precisely,
in the vicinity of T- T, , we get

I" = ——,k~TlnQ, (V, T)

= —-'f! '(2/q' -!)~ .. - »(-2/0'+fi) (4.8)

v = +
2 sp2

" +- — +2(1 T/T )2
(4. 10')

with V-~ (E and C» being refered to one par-
ticle) where use has been made of the inequality

f -8'0.
dA.~wp, np n=p nt =I

valid for T- T, . More complete E and C& ex-
pressions valid in the 0 ~ T ~ T, domain may be
reached as explained below, through the discrete
sums in Eq. (4.8). It must be noticed also that
the partition function (4.1) gives back immedi-
ately the ideal gas equation of state PV =Nk~T.
The diverging behavior of the thermodynamic
functions near T, now arises from the infinite
set of discrete levels accessible to the two-
dimensional "molecule" when the temperature
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rises from 0 to T, . This feature complements
in a certain way the high-temperature description
underlying Eq. (1.7) of Ref. 1, so that we are
faced with the unified picture of a transition tem-
perature with divergent thermodynamic functions
associated with the formation or destruction of
lom-lying internal states for the pairs of opposite
charges. Nevertheless, me feel that the present
low-temperature binary approach should be prop-
erly included in a many-body picture as the most
important contribution in the vicinity of T, . As
stressed previously, the numerical resolution
of the Schrodinger equation (2.4) could give access
to mell-defined canonical quantities for T& T, .
We have thus obtained

(4.12)

in two-dimensional "atomic units" for g = 1,
2&P & 11.50 with a = —2.6093 and b = —0.5307,
an estimate for the discrete sum particularly
interesting when P -~, which gives

and (m„n, ) ~ (905, 0), so we get in that case
(q= l, p»1)

lim in@, = —2.6093P -0.5307

~ 0 1575 x 108e -5.0858)P(p 2)

(4.14)

1 0.5307 0.1575 x 10e 'I'

(4.15)

0 157 x 108~ -5,0838
C„= '

3 {12.817p' —41.142p
P(P -2)'

—99.536P' + 14.252P + 14j .

(4.16)

Equation (4.15) shows a nonvanishing free energy
at T =0 corresponding to a residual interaction
within each pair, while limCv =0 for T-O, as
expected.

2 e"-8'"~~~o
limp, ~e' ' +-
V~~

with

e&2-8~ &no, no

P(P -2)

(4.13)
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