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A model is derived for the differential cross section for (e¢,2e) reactions on atoms, leaving
the residual ion in an excited state. The eigenstates of the ion are described by the shell mod-
el with configuration interaction. In the case of argon, 3s~! spectroscopic factors are inde-
pendently determined. They describe the probability that each of the three ion eigenstates
whose (e, 2e) angular correlation has the 3s~! shape, contain the 3s~! configuration. Two
Hartree-Fock single-particle models are compared. The spectroscopic factors add to 1 for
both, but only one correctly predicts the experimental single-hole energy level.

I. INTRODUCTION

In a previous paper by Hood, McCarthy, Teub-
ner, and Weigold! hereafter referred to as I, we
showed that the angular correlation, or momen-
tum transfer distribution, measured in 400- and
800- eV (e, 2¢) experiments on argon and helium
can be extremely well understood in terms of a
model for the atomic structure and the quantum
mechanics of reactions. In that case the simplest
spectroscopic situation—the removal of an elec-
tron from the topmost single-particle state leav-
ing the ion in its ground state—was considered in
order to concentrate on the reaction aspect of the
problem.

Now that the validity of the reaction model has
been established, it is interesting to consider the
use of the reaction as a probe for the structure
of eigenstates of the ion Hamiltonian other than the
ground state.

In the first experiments at 400 eV by Weigold,
Hood, and Teubner,? at least three states of AriI
were observed in addition to the ground state. The
ionization energies were 29.3 eV for one state and
about 40 eV for two (or more) unresolved states.
Two ion states near 40 eV are known in photon
spectroscopy and the data are consistent with the
excitation of these states. The coincidence count-
ing rate as a function of binding energy of the
ejected electron, as reported in Ref. 2, is shown
in Fig. 1.

We will specifically consider the formalism for
the ionization of closed-shell atoms, with argon
as an example. The formalism is easily extended
to open-shell atoms. We will show that the (e, 2¢)
reaction enables us to find the spectroscopic
factors, which relate the single-particle wave
functions to the actual eigenstates of the ion Ham-
iltonian. The position of the single-hole energy
level can be found as the centroid of the corre-

|

sponding ion eigenstates weighted by the spectro-
scopic factors.

II. SHELL MODEL FOR ATOMIC STRUCTURE

Our discussion of atomic structure will be pres-
ented in the language of the shell model with inter-
particle interactions. In this model the energy
eigenvalues £,and eigenstates |p) of the many-
body system (atom or ion) are found theoretically
by diagonalizing the Hamiltonian in a basis of
independent-particle wave functions ®{a). The
wave function \I'p for the atomic eigenstate lp) is
expanded thus

Y, =3 ay(@)d,(a). ¢y

We will denote the corresponding expansion for the
ion by

Vo=2 bo(BI%(A). (2)

The primed wave functions describe a system
with Z-1 electrons; the unprimed functions refer
to Z electrons.
Each independent-particle wave function ®,(a)
is a Slater determinant of single-particle wave
functions y¥7;; with the Z electrons distributed over
them. The situation for the ion is analogous. An
independent-particle basis wave function is called
a configuration. Different configurations (different
a) correspond to different ways of occupying the
single-particle states. Each basis configuration
must have the same total angular momentum and
parity as the corresponding eigenfunction.
Contributions from Hamiltonian matrix elements
for configurations involving the occupation of
single-particle states far removed from the lowest
possible ones are small. Hence, in a practical
calculation the basis is truncated to include only
a finite number of configurations, in which only

260



9 STRUCTURE OF ATOMS FROM THE (e, 2¢) REACTION 261

I T T T

RELATIVE COINCIDENCE RATE

INCIDENT ENERGY (eV)

FIG. 1. Coincidence counting rate vs energy of the in-
coming electron for ¢ =10°, 6, = 6,=45° and E = E, + Ep
=400 eV, E,= E5. The geometry for the reaction is dis-
cussed in full in I. The arrows indicate the positions of
the states discussed in the text.

single-particle states near the lowest possible
ones are occupied.

Single-particle states will be denoted by the old
spectroscopic notation. Spin-orbit degeneracy
will not be explicitly referred to except when it is
necessary for counting states. We will call the
configuration, in which all the single-particle
states lowest in energy are occupied, the filled
configuration. The actual lowest-energy eigen-
state may contain different configurations (ground-
state correlations) with electrons excited into
higher single-particle states.

Each configuration will be described by a set of
single-particle states with occupation numbers
denoted by superscripts. Negative superscripts
denote holes in the filled configuration. For exam-
ple, two configurations involved in the expansion
(1) of the ground state of Ar are the filled con-
figuration and the 3s723d® two-particle two-hole
configurations 1s22s%2p%3s%3p° and 1s%2s%2p®3s~2
3p%3d%. Single-particle states which will never
be occupied by particles or holes in our truncated
basis are usually suppressed in the notation for
simplicity.

In a calculation of the ArII ion by Luyken,® which
we will use for reference, only the states with
n=3 or 4 were considered in the basis. The
ground-state ¥, of ArII was found to consist en-
tirely of the configuration 3s%3p®, denoted alter-
natively by 327'. Thus the amplitude b,(3p"") in
Eq. (2) is 1 and all other amplitudes are negligible.

A single-particle basis is of course defined with
respect to a single-particle potential U(r). The

“best” single-particle potential has two definitions
that concern us. The theoretical definition is the
potential that minimizes the number of configura-
tions in the expansion (1) or (2). It is possible to
construct a nonlocal potential by requiring that all
amplitudes of one-particle one-hole configurations
are zero. This is the Hartree-Fock potential.
Different numerical approximations yield different
Hartree-Fock potentials and wave functions. An
equivalent definition of the Hartree-Fock potential
is that it produces self-consistency between the
potential used to calculate the wave functions and
the potential derived from the resultant charge
density. Antisymmetrization is responsible for
the nonlocality.

The second definition is an experimental one.
1t is the potential U(r) that gives the best fit to the
(e, 2¢) angular correlation, which is very sensitive
to the potential shape. We showed in I that these
definitions are consistent for some Hartree-Fock
calculations when describing the (e, 2¢) reaction
to the ground states of argon and helium ions.
This gives us confidence in using the single-par-
ticle wave functions from these calculations to
construct our basis.

In the (e, 2¢) reaction we are mainly concerned
with states of the ion. In the shell-model calcula-
tion of Luyken, the argon-ion states with total
angular momentum and parity 3 - and $- (which
are not distinguished in the model because spin-
orbit coupling is omitted) had only one numerically
significant configuration, 3p~'. Ion states with
total angular momentum and parity 3 + had three
numerically significant configurations. Luyken’s
example is the eigenstate at 29.3 eV. The coeffi-
cients b,(p) for these configurations are shown in
Table I. Other coefficients are numerically in-
significant.

The Hamiltonian matrix is essentially a 3 X3
matrix, so it has three eigenstates. Three energy
levels whose (e, 2e) angular correlations corre-
spond to the knockout of a 3s electron were ob-
served by Weigold, Hood, and Teubner.? We will
assume that they correspond to the three 3 +
eigenstates in the model. Since the numerical
values of the coefficients depend on the details of
the single-particle wave functions used in the
basis, we could expect some differences for dif-

TABLE 1. Coefficients byy(B) for the three numerically
significant configurations in the 3+ eigenstate at 29.3eV
in Ar u, as calculated by Luyken (Ref. 3).

Configuration 3s7! 3p™23d 3p?4d
Configuration index B 0 1 2
Coefficient b,4(B) 0.78764 -0,55573 -0.26416
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ferent single-particle models, but they are not
expected to be appreciable if the model is valid.
There is a sum rule involving the coefficients

b,(B) with which we will be particularly concerned.

Multiplying Eq. (2) on the left-hand side by @ *(a)
and integrating over all space, we use the ortho-

normality of the independent-particle wave func-

tions ®4(B) to give

bo(@) = (B5(a) | ¥5). 3)

The closure relation for the eigenstates ¥ gives
2 [bo(@)])?= 3 @@ ¥o)E | ag(an=1.  (4)

We are interested also in defining the single-
hole energy level. Denoting the single-hole con-
figuration in the ion by 8=0, we define the single-
hole energy level for states of the same total an-
gular momentum and parity as the expectation
value of the ion Hamiltonian H;,, for this con-
figuration:

E=(9(0)|Hion [95(0)). (5)

Using the closure relation for the ion eigenstates
¥/ and Eq. (3), we have

Eo= 3 [(@5(0) )Y | Hion [%5:)(E;1€4(0))]
[

= 3 [66(0)]2E,. (6)

a

In view of the sum rule (4), the definition of the
single-hole energy level is the average of the
eigenstates with the same total angular momen-
tum and parity, weighted by the factors [5,(0)]%.

The factors [b,(0)]? clearly play an important
part in the shell model of the ion. They are called
the spectroscopic factors.

III. DIFFERENTIAL CROSS SECTIONS

In order to write a Schrédinger equation for the
system consisting of the incident electron and the
atom, we will label the incident and struck elec-
trons and their associated coordinates and poten-
tials by subscripts 0 and 1, respectively. Anti-
symmetrization between these particles will be
performed later. We will neglect overlaps be-
tween these particles and the core of the ion (i.e.,
the electrons with total quantum numbers =1 and
2), so that further antisymmetry involving them
will not be performed. Independent-particle wave
functions are of course antisymmetrized within
the set of ion electrons, whose coordinates are
collectively denoted by &.

The Schrédinger equation for the whole system
is

{E = [Hion (&) + K, + Ko+ V, + Vo + Vo [P =0, (T)
The equation for the ion is
[€p=Hion(£)]¥;=0. (8)

The kinetic-energy operators for particles 0
and 1 are K, and K,, respectively. The two-elec-
tron potential is V,,. The potentials between par-
ticles 0 and 1 and the ion are, respectively, V,(F,,)
and V|(T,, £). These potentials depend on the ion
internal coordinates £, since each particle is
(weakly) capable of exciting the ion inelastically.
We are neglecting the recoil of the ion for sim-
plicity of notation. This is not a necessary ap-
proximation.

In order to compute the differential cross sec-
tion we will expand the total wave function in ion
eigenstates ¥;(£):

Vot =D (T, F,)Y(E). (9)
P

Substituting (9) into (7), multiplying the left-hand
side by ¥/*, and integrating over £, we obtain a
set of coupled equations for the channel wave
functions %,(%,, T,):

{E - € K1 - Ko - Vox}uo(;o: f1) = Z Vopupy (10)
p
where

Voo = (U5 V(o) + Vi(F )| 82) . (11)

In our model we will neglect the coupling be-
tween channels p and 0, except insofar as it is
included in optical-model potentials V() and
V,(¥,), which are assumed to be the same for all
channels of interest. Optical-model potentials for
argon are defined and semiphenomenologically
evaluated by Furness and McCarthy.* The neglect
of explicit coupling between ion excitations is well
justified in atomic physics where inelastic cross
sections and collective effects such as £2 photon
transitions are small. The ion excitations are of
course described in the optical-model potential for
each channel.

In this approximation we have a set of uncoupled
equations for each channel o.

(E =€, =K, = Ky= V=V, = Vo, )tto(Fo, ¥,) =0. (12)

The evaluation of each channel wave function u,
is a quasi-three-body problem of the type dis-
cussed in I. In the (e, 2¢) experiment each channel
o is separately excited and is identified by the ion
energy level ¢,.

For the entrance channel the wave function for
the atom in its ground state may be written

Vo(F,, 8) =AY a,4,(F)¥(8). (13)
p
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In the independent-particle (Hartree-Fock) ap-
proximation the sum (13) contains only particle-
hole terms, that is, terms in which ¥/(£) is de-
scribed only by configurations involving a hole p
[left by removing the particle whose wave func-
tion is ¥(p)] in the filled configuration of the ion.
Other terms in ¥, are called ground-state cor-
relations. If they are negligible the spectroscopic
amplitude a, is 1. Otherwise a, is less than 1.

In terms of the expansion (2) of the ion eigen-
states p we can write

To=AY " ay,(F) ) 0,(B)25(B), (14)
) [:]

where the Hartree-Fock terms are the ones in-
volving only the single-hole configurations =0
corresponding to the ion state p.

We will assume that the Hartree-Fock approxi-
mation is good for the argon atom (although we
will briefly discuss what happens if it is not). In
this approximation

¥, =A 3 g, (F)25(0). (15)
p

For the exit channel, in the optical-model ap-
proximation (12), where k, and k; denote the mo-
menta of the outgoing electrons,

U3 (ky, kp) =0 (ky, kp) Wo(E). (16)

We can now write the matrix element for the
(e, 2e) reaction which is, apart from kinematic
factors,

Mp =K, k) Vo + Vol ko, %) (17)

This amplitude can be written immediately from
the formal theory of scattering.® The ket vector
of the matrix element (17) is the state vector of
the separated electron-atom system which is the
solution of the Schrddinger equation involving all
the potentials except V;, and V.

Using the approximations (15) and (16) in (17)
and factorizing the integral into an integral in-
volving the ion coordinates £ and a three-body
integral, we have

M2 =AY (15185(0)) (G Ry, k) Vo + Vou Ko, ) -

P (18)

In the Hartree-Fock approximation for the atom,
the index p stands for the single-particle indices
n, I, j, m in which j and [ give the total angular
momentum J and parity 7 of the ion state p and m
gives the magnetic substate.
Taking the expansion (2) for the observed ion

state ¥/ and using the orthonormality of the basis
configurations ®,(8) we have
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M[T=b,(0)(2j+1) 2T (19)

The factor (2j+1)!”2 comes from the normaliza-
tion and antisymmetrization of the first factor in
(18). The factor T,% is the distorted-wave off-
shell impulse-approximation amplitude of I.

Note that in the Hartree-Fock approximation for
the atom there is no term in the overlap (¥;|%;(0))
involving basis configurations in ¥; other than the
simple one-hole configurations that we have
labeled by B =0. If there are ground-state cor-
relations, they give additional terms in (19) with
coefficients a,b,(8) from the expansion (14) of ¥,.
Since @, is small, these terms are not expected
to be very important in the cross section, but
their possibility will not be overlooked.

The differential cross section is given by

0= Zav ’MI’: 2 ’ (20)

where ) ,, denotes the average over initial mag-
netic substates and the sum over final magnetic
substates.

The final form used for computation is

0=(2j+1)°S,(0)04, (21)
where
So(o) = [bc(o)] 2 (22)

is the spectroscopic factor for the configuration
B=0 in the ion state o, and oy, is the cross sec-
tion for the knockout of a single particle in the

distorted-wave off-shell impulse approximation:

Taw =f|<%(7<,4 - Ra)ltc{%lkA —T‘nlz}
X [3(Ro+ 7)) 2| ny (R [ (23)

In the absence of a measurement of the absolute
cross section, we will ignore the kinematic factor
f. The distorted momenta k; are closely related
to the experimental momenta k; . In fact it was
shown in I that they may be equated to k; without
loss of accuracy, provided the distortion is ac-
counted for by an over-all attenuation factor,
which is again undetermined by the present experi-
ment.

The first factor in (23) is the square of an off-
shell Coulomb {-matrix element,® which is inde-
pendent of the azimuthal angle ¢ in the present
experimental kinematics in which the energies of
the outgoing particles are kept constant and their
momenta make constant and equal angles 6 with
the incident direction. The shape of the differen-
tial cross section is thus a direct (and very sensi-
tive) measure of the Fourier transform ¢, (k) of
the single-particle wave function y,,(F,) of the
struck electron. [The sum in (20) removes the
quantum numbers m by the addition theorem of
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spherical harmonics and the neglect of spin-orbit
coupling makes j a redundant subscript]. These
facts were demonstrated in I.

The additional information available here con-
cerns the relative magnitudes of differential cross
sections for excitations of different ion eigen-
states in the same experiment. These quantities
are experimentally measured. Cross sections for
ion eigenstates of the same total angular momen-
tum and parity are proportional to the spectro-
scopic factor S,(0) which describes the probability
of finding the appropriate single-hole configura-
tion in the eigenstate. They can also be compared
with cross sections for ion eigenstates of different
total angular momentum, where the comparison
involves an additional factor (2j+1)?>. We can
consider that there is one factor of 2j +1 since
there are 2j+1 chances of removing an electron
with angular momentum j. There is another such
factor since there are 2j+1 possible angular mo-
mentum projections of the final state.

Essentially we have a means of directly mea-
suring the spectroscopic factors S,(0), which give
us the coefficients b,(0) in the shell-model ex-
pansions (2) of the eigenstates 0. Similar re-
actions (stripping and pickup) have long been used
for a similar purpose in nuclear physics.”

IV. SPECTROSCOPIC FACTORS FOR THE
ARGON ION

We will assume that the wave function of the
ground state of the argon ion consists purely of
the configuration 3p~!. This is suggested by the
fact that only one energy level with a 3p~! angular
correlation is observed in this experiment and
also predicted by the shell-model calculation
of Luyken.? We are therefore assuming that
S15.76(3P—1) =1.

In order to determine meaningful spectroscopic
factors we must use a single-particle model and
a reaction model that adequately reproduce the
angular correlation shape. In Fig. 2 we show that
the Hartree-Fock models of Herman and Skill-
man® (HS) and of Fischer® (CF), which give in-
distinguishable theoretical curves, both fit the
3s~! data very well for all but the highest mea-
sured momentum transfer values. These Hartree-
Fock models also gave an excellent fit to the 3p™!
angular correlation in I. An experimental accep-
tance angle of 7° has been folded into these calcu-
lations.

In order to compare relative magnitudes of
cross sections we have chosen to consider 3s~
angular correlations at minimum momentum
transfer (¢ =0) and the 3p~! angular correlation at
q=0.717a;* (¢ =15° for E=400 eV). These points

1

e E=400eVv (a)
6 o  800ev
x 1200 ev

E =400eV
800eV

RELATIVE DIFFERENTIAL CROSS SECTION

qlag")

FIG. 2. Relative differential cross sections for the
(e,2¢) reaction exciting (a) the 29.3-eV level and (b) the
two levels at 40 eV. The solid line is the theoretical
curve for E = E, + E5=400 and 800 eV, for which the 7°
angular uncertainty has similar effects. The broken
line is for £=1200 eV, which is more affected by the
angular uncertainty.

are both in the region where the shape is excel-
lently reproduced by the model and they are near
maxima so that the effect of folding in the experi-
mental acceptance angle is minimized.

The 3s~! spectroscopic factor for the ion eigen-
state at 29.3 eV and the sum of the spectroscopic
factors for the two unresolved eigenstates at 40
eV are shown in Table II for both single-particle
models. The spectroscopic factor S,, ; of Luyken’s
calculation is 0.62.

The sum of the spectroscopic factors is 0.92
+0.07 for CF and 0.96 +0.07 for HS. Both satisfy
the sum rule within experimental error. We may
in fact expect the sum of the spectroscopic factors
to be less than 1 for two reasons. First, there
may be appreciable ground-state correlations in
the argon atom. Second, there certainly are more
than three ion eigenstates with a contribution
from the 3s~! independent-particle configuration,
although these contributions are small. It remains
to be seen whether such effects can be identified
in more accurate future experiments.

So far the CF and HS Hartree-Fock calculations
give indistinguishable results. However they can
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TABLE II. Relative cross sections and spectroscopic
factors [assuming S5 ¢ (3p~!)=1]. The different single-
particle models are described by CF [Fischer (Ref. 9)]
and HS [Herman and Skillman (Ref. 8)].

Relative cross

Ion section

state  (Expt., E =400 eV) Scr Sus
3p~! 0.945 (¢ =15°) 1 1
38553 0.34 (¢ =0°) 0.50£0.05  0.52%0.05
35y 0.26 (¢ =0°) 0.42£0.04  0.44%0.04

be distinguished by applying Eq. (6) for the experi-
mental single-hole energy level, which can be re-
written as

Ey=_ So(0)E,.

The experimental 3s~! level, computed as the
centroid of the relevant ion levels using HS spec-
troscopic factors, is 34+1 eV, while the HS
Hartree-Fock eigenvalue is 28.7 eV. These are
inconsistent. The corresponding values for CF
are consistent. They are, respectively, 341
and 34.8 eV.

V. CONCLUSIONS

We have derived a model for the (e, 2¢) reaction
leaving the ion in a particular resolved eigen-
state. In the model the differential cross section
is proportional to a spectroscopic factor describ-
ing the probability of finding a particular single-
hole configuration in the ion eigenstate. The shape
of the angular correlation is given by the dis~
torted-wave off-shell impulse approximation.

The shape of the angular correlation has pre-
viously been shown to be very sensitive to the
detailed shape of the single-particle wave function
used in the calculation. This provides one crite-
rion for the “correct” wave function.

Another criterion, which depends both on the
validity of the reaction model and the single-par-
ticle model, is that the spectroscopic factors
should sum to 1. The spectroscopic factors for
357! configurations in the only three eigenstates
of the argon ion that are observed to have the 3s~
angular correlation shape are independently deter-

1

mined relative to that for the ground state, which
is assumed to be 1, since only one such eigen-
state is observed. Their sum is 1, within experi-
mental error, for two sets of Hartree-Fock wave
functions (CF and HS) that give equally good fits
to angular correlations.

The experimental position of the single-hole en-
ergy level is defined to be the centroid of all the
eigenstates containing the corresponding single-
hole configuration, weighted by the spectroscopic
factors. In the case of the argon ion the Hartree-
Fock 3s™' energy level is consistent with the ex-
perimental determination for the CF wave func-
tions but not for HS.

This analysis leaves several questions to be
answered. If the sum of the spectroscopic factors
is 0.92, where is the missing 8%? If it is mostly
in remaining ion eigenstates whose cross sections
are too small to show up in the present experi-
ments, more accurate future experiments may
reveal it. If it is mostly in ground-state correla-
tions of the argon atom, such terms would give
3d™! and 4d™! angular correlations, which would
slightly distort the 3s~! shape. It is unlikely that
the small distortion due to an 8% effect could be
experimentally distinguished.

A more serious problem is perhaps the fact that
the theory gives a noticeably worse fit to high-
momentum components for 3s~' argon states than
it does for the least-bound single-particle states
in helium (1s7!) and argon (3p~!). In view of the
accuracy of the theory in these cases it is difficult
to see why it should be inaccurate in the 3s™! case.
It is tempting to believe the theory and speculate
that the Hartree-Fock calculation gives an inferior
3s wave function for very small values of the
radial coordinate, where the rapid oscillation of
the function is responsible for high-momentum
components. We have checked that sufficiently
high-momentum components do not come from
3d™! or 4d™! excitations that could result from
possible ground-state correlations of the argon
atom.

Finally, it is worth noting that although the 3p ™!
and 3s,, , excitations have been observed in photo-
electron spectroscopy, '° the ionic states with sepa-
ration energy near 40 eV have not been observed.

*Work supported by the Australian Research Grants
Committee. One of us (S.T.H.) acknowledges the receipt
of a Commonwealth postgraduate research award.

1S, T. Hood, 1. E. McCarthy, P. J. O. Teubner, and
E. Weigold, Phys. Rev. A 8, 2494 (1973).

2E. Weigold, S. T. Hood, and P. J. O. Teubner, Phys.
Rev. Lett. 30, 475 (1973).

SB. F. J. Luyken, Physica 60, 432 (1972).

4J. B. Furness and 1. E. McCarthy, J. Phys. B (to be
published).

M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91,
398 (1953).

SW. F. Ford, Phys. Rev. 133, B1616 (1964); J. Math.
Phys. 7, 626 (1966).



266 HOOD, McCARTHY, TEUBNER, AND WEIGOLD 9

"™M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 0g . Siegbahn, C. Nordling, G. Johansson, J. Hedman,
32, 567 (1960). P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark,

8F. Herman and S. Skillman, Atomic Structure Calcula- L. O. Werme, R. Manne, and Y. Baer, ESCA Applied
tions (Prentice-Hall, New York, 1963). to Free Molecules (North-Holland, Amsterdam, 1969).

5C. Froese-Fischer, At. Data 4, 302 (1972).



