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The canonical partition function of the two-dimensional Coulomb gas interacting through the Coulomb
potential —q, q, lnr, , is considered in detail. The equation of state PV/2X = k~T —q '/4 is shown to
be meaningful above the critical temperature T, = q'/2k~ through the use of upper and lower bounds
(valid for all T g T, ) for the canonical partition function Q~ with lim Qa —N! (Q, )~ as T —T,.',
Q,

* denoting the restriction of Q
a to a pair (+ —). Below T„ the equilibrium properties are

investigated with the use of the binary approximation proposed by Hauge and Hemmer for charged
disks. The resolution of the two-body Schrodinger equation allows us to consider point particles and
place on a firm basis preliminary conclusions about the divergent behavior of the thermodynamic
functions. The pair-correlation function g,(r) is investigated above T, for the one-component model
within the f'ramework of the Debye approximation, through a potential of average force ~,(r), up to
the third order in the plasma parameter q'/k~ T. The short-range behavior of ~,(r) appears as a
renormalizable quantity, while the long-range behavior confirms and extends three-dimensional findings.
The T = oo limit of the corresponding thermodynamic functions coincides with exact results derived by
Mehta for the same model restricted to the unit circumference. Finally, the Debye free energy is shown
to fulfill a sufficient condition required by the existence of the thermodynamic limit.

1. INTRODUCTION

Recently a great deal of attention has been de-
voted' ' to the study of the statistical properties
of the two-component and two-dimensional system
of point charges interacting through the Coulomb
potential «t («'„.) = -q, q,, in(r««/I. ) with q = Iq«l = Iq, l

and L =1 fixing the zero point of the potential. The
motivations for this interest are numerous. The
most evident one is to seek analogies or differ-
ences with the well-known three-dimensional situa-
tion. This approach appears particularly fruitful
for the Coulomb potential obtained as a solution
of the Poisson equation

(n —2}S„5, n-3-

allows for a transparent and relatively simple
study of the pair condensation process in the can-
onical ensemble, so that we may hope to gain
some insights into the behavior of a real-dense-
classical plasma with a moderate temperature.
As is well known, it does not appear possible to
evaluate the classical partition function for a two-
component three-dimensional Coulomb gas

which diverges catastrophically when r, , —0. In
two dimensions, the situation appears more for-
tunate with

= -$„6, n=2

wt»„=2~""ir(-n), thus making evident that in
this problem the equilibrium properties are strong-
ly dimensional dependent, while the generality
of the results is guaranteed by the Fourier trans-
form expression -S„p ' valid for all n,. More
specific motivations to consider this problem in
plasma physics are due to its close analogy with
the strongly magnetized real plasma, for which
it could provide a good model. For instance, this
model has allowed Taylor and Mewamara to put on
a, firm basis the linear Bohm conjecture (D B')-
for the diffusion coefficient. '

In contradistinction to the one-dimensional Cou-
lomb problem solved by I.enard and Prager, ' it

Q = t ~ exp p p q,. q,. l Ir, ,nI II d'r, ,
V

P=(&,~) ' (1.3)

where the volume dependence may be separated
out with the aid of the scaling procedure' '

Q = ~ ~ ~ s —s 'i'~ d's ~ ~ ~ d's
& ~i( ~~2~

and we get

Q =V'"' «(« '«'« 'Q (independent oi V) (1.5)

where
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w'ith s,. =s&e' &, 0 «6, «2n and 0 «s, «1 in the unit
circle.

The canonica, l pressure' '

yields immediately the equation of state. Equation
(1.7) is meaningful only if the conditions

(1.8)

are fulfilled. Our investigations started with a
conjecture' which will be demonstrated later'
about the sufficiency of this inequality. Then, we
were able to conclude that the many-body inter-
actions are dominated by the two-body ones in
the vicinity of the transition temperature at least.
The investigation of the equation of state below
the transition temperature requires technical
tools different from those used for the study of
the canonical equilibrium at T ~ T, =q'/2ke. How-
ever, as demonstrated below, it appears possible
to set on a firm ground the Hauge and Hemmer
conjecture'

PV =Xk~T, k~T & ~q2

for a perfect gas of noninteracting pairs of the
opposite charges. Equation (l.'I) stands unchanged'
for the one-component system in the presence of
a neutralizing background, and it may be extended
in a straightforward way4 to the form

I V=(N, +N )u, T 1—

(1.10)
for a system without charge neutrality (N, e N )
Although it is possible to derive some interesting
properties from accurate bounds and estimates
for the interacting part of the canonical partition
function Q, we did not find it possible to esti-
mate the corresponding pair-correlation functions.
This explains why we devote considerable atten-
tion to the high-temperature Debye approximation
for the one-component pair-correlation function
in the presence of a neutralizing background. This
quantity is of a great interest for further studies
in real magnetized plasmas, and it also allows
deeper understanding and appreciation of the vari-
ous approaches used for the corresponding three-
dimensional problem. As a by-product„general
trends about the expansion of the potential of aver-
age force with respect to the plasma parameter
may be obtained. The present paper is organized
as follows: in Sec. II we transform the integrand
of Q* into a more compact expression yielding
upper and lower bounds for all. T & T, . Thus, we
establish the sufficiency of the condition (1.8).

These bounds are further extended to the canonical
thermodyna, mic functions. Ne obtain in Sec. III
an explicit equivalent of Q* for T —T,' exhibiting
in a transparent form the preeminence of binary
interactions in the vicinity of the critical tempera-
ture. The low-temperature properties are in-
vestigated in Sec. IV with the approximation of
N noninteracting quantum pairs of opposite charges.
The eigenvalues of the corresponding two-body
Schrodinger equation are used to establish that
the corresponding partition function and its deriva-
tives remain meaningful when k~T &-,'-q'. C~ is
shown to diverge quadratically at T„ thus con-
firming an earlier conjecture due to Hauge and
Hemmer4 for charged classical disks. %e start
in Sec. V a thorough analysis of the high-tempera, -
ture Debye approximation for the pair-correlation
function g, (r) =e' 2'"' of the one-component sys-
tem in terms of a potential of mean force up to
the third order in the plasma parameter q'/keT
As a by-product of this study, the short-range
behavior limg, (r) as r -0 appears as an easy re-
normalizable quantity, in contradistinction to the
three-dimensional analog. The third-order graphs
contributing to w, (r) are detailed in Sec. VI, while
the Debye thermodynamic functions are given in
Sec. VIII through a first-order estimate in the
plasma parameter for g, (r). The high-temperature
limits of these functions allow one to make contact
with previous results obtained by Mehta' for the
one-component model restricted to the unit cir-
cumference. The Debye free energy is seen to ex-
hibit a functional form compatible with a finite ex-
pression in the thermodynamic limit (N-~, V-~,
N/V&+ ).

II. CANONICAL PARTITION FUNCTION

A. Compact expression

Although it does not appear possible to us to
obtain an explicit expression for Q*, we are
looking for information derived from it through
uniform upper and lower bounds valid for all T & T,.
This is a standard procedure if one recalls that
only a very few partition functions may be eval-
uated exactly. To reach this goal it appears useful
to rewrite the integrand of Eq. (1.6) in a more
compact form, thus making contact with a tech-
nique already used by Dyson, Gaudin, and Mehta"
and others for the one-component version of the
present model restricted to the unit circumfer-
ence where the particles interact through p(8„.)
= -q' In~ e' ~ —e'

&~ and simulate the behavior of
the highly excited nuclear levels whose spacing
proves to be independent of the nucleon-nucleon
potential. The authors considered above obtained
an exact expression for Q* by writing
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exe ((+tele'" —e'"()

as a Van der Monde determinant. Therefore we
consider Eq. (1.6) under the form

1 t-1 2'r 2N

q = 't dr, 'dr, Jt d8, d8 „ IIr,
&0 ~0 0 1=1

, II,=«f=.l~(-~fl"' 4-4I'"
II)",f=tls( —(f '" (2.1)

z]=f( =J(e &, 1& g&/

g,
=—r =re'e&, X+1&i &2A,

and make use of the relation

IIt~i(f~(tt (~l ~f)( e( 4)
II(,f=t (~( —&, )

=(-l) '"" Det )
1

/=1 N Zj ~j
(2.2}

a variant of Cauchy lemma. " It may be checked
in a straightforward way with the aid of a recur-
rence by substracting line 1 from lines 2 ~

in the determinant on the right-hand side, and

substracting column 1 from columns 2 ~ ~ n in the
resulting determinant. Equation (2.2) introduced
in Eq. (2.1) yields the required compact expres-
sion

1

q
* & (~ ()mitt( ( 8 t( ~ I ) QP=1 ~0 0

N

0 0 j-1 ]Z)

The permutation of Qf, with J,
'

f,
'

allows us
to factor each multiple integral as a product of
N two-body quadratures for a pair (+ -), and Eq.
(2.6) becomes

q
t(t & (lV () max(

hatt

t \ ) (q ttt)N (2 7)

where' (4y = pq')
~1 2'r 27f r r

Q, = l dr dr d8, d6}
0 0 0 0 !Z1 Z

v '1(2 —4r)
(1 - r)(1 -2r) 1'(1 -») 1'(2 -») ' (2 6)

Equations (2. '1) and (2.8) prove that q' has no
divergence at T, arising from the collapse of N-
clusters with N&2, in accord with a previous con-
jecture. ' Therefore, the equation of state (1.'?)

may be given a meaning for k'~T & 2q'. In order to
get some ideas about the derivatives of Q with
respect to T ', which define the canonical thermo-
dynamic functions, it appears useful to pay some
attention to a uniform Q* lower bound. The in-
tegrand in Eq. (2.3) is positive, so that

1 1 21T (et 2 ff

~ ~ ~ dr ~ ~ 0
1 2N

~ ~ ~
l d6} 0 ~ 0 d6}2N

0 0 0 40

] f r) Det( )
. (2.3)

q & dz d$(Ah) ~,
D x.b

z =re"~, ( =re"i,i f & j j (2 9)

B. Upper and lewer bounds

An accurate upper bound may be given to Eq.
(2.3) through the inequalities (the first one is
Minkowski)

where ~ and 6 denote the integration domains pic-
tured in Fig. 1 with one pair (+ -) in D and (X-1)
pairs in &, the positive particles being located at
$, and the negative ones at z„so that the pair

e

e

1/tt

(f + g+ ~ + l } dh

+ ~ ~ ~ +

f( & 1 (2.4a)

(f +g+ ~ +1)» dft & I f dx+ ~ ~ ~ + l'df(
J )

Q& k&1 (2.4b}

applied to
Nt

Det
&( —4 ~=t II(=t (&( —

&~, )
(2.5)

with P: (1, 2, . . . , N)- (P„P„. . . , P„) and 6~, signa-
ture of the permutation I', which gives

FIG. 1. Integration domain used for the Q 4' lower
bound.



EQUILIBRIUM PROP ERTIE S OF A TWO-DIMENSIONAL. . . 2601

(z„F„)is located in the circle D of radius -', cen-
tered at z, =-', while the remaining N-1 pairs are
located in the circle 6 of radius —,

' centered at z,
The integrand of Eq. (2.9) is then split into

three parts corresponding to interactions in D, &

and between D and 6, respectively. The inequal-
ities

all i =2, . . . , N

are introduced in the last contribution. Therefore
the right-hand side of Eg. (2.9}may be given the
lower bound (4y=Pq')

ds, d$,
, l~, -41'

lower bound (gaff„~!y) & A-N for the average value
of the total N-body Hamiltonian) has been solved.
More precisely, the basic question is how much
have we to pay in order to get this stability. In
one dimension, ' the classical Coulomb system is
stable thanks to the vanishing at the origin of the
potential, while in three dimensions the full quan-
tum requirements —Schrodinger N-body and Fermi
statistics —at least in one species have to be met.
It is our opinion that more powerful weapons than
the present ones have to be used to settle the same
question in two dimensions. However, the upper
bound obtained previously for Q* may be helpful
in a preliminary investigation toward this goal.
So, let us consider the two-component partition
function (N=N, =N )

(2.13)

with the recurrence formula

(1)4N(l+ j')-8 tq aqua»q s

whence the final result (4y =Pq')

(2.10)

(2.11) PE = 2N(lnpA2 —1)+-,' !3q'N ln(V /L ') —lnq *,

p = 2N/V, (2.14)

with q* given by (1.6), the potential energy
-q, q,. ln~!r„/L! and the De Broglie wavelength

A =h/(2vmksT)'~'. The corresponding free energy
I =-k~T in@ is then

(
& )2S(N-1) (1+ )')- (2H-1)3I

&
q * » (N [)max(8c, l) (q +)N

(2.12)

so that it appears tempting to introduce the esti-
mate"

lnq*--,'Pq'ln2N (N ™,V —~-, N/V bounded)

with upper and lower bounds remaining finite for
N finite. Equation (2.12) renders apparent the
importance of the two-body clustering in the vicin-
ity of T, . This point will be given further atten-
tion in Sec. III.

C. Speculations about the thermodynamic limit

(two-components gas)

(2.15)
in Eq. (2.14) to get a finite expression. Actually,
Eq. (2.15}provides only a sufficiency condition
(perhaps too strong when compared to the true but
still unknown answer) for the existence of the
thermodynamic limit. " More precisely, the cor-
responding Q could be approximated by

~q N/2 +N
q* =- (2N!)" 'q*"= q', (2.16)1

The foregoing Q* upper bound allows us to ques-
tion in a natural way the existence of the thermo-
dynamic limit for the two-component gas, i.e.,
the existence of finite thermodynamic functions
per particle in the limit N-~, V —~ with N/V
bounded.

The existence of the thermodynamic limit for a
three-dimensional many-component system has
been firmly established only very recently through
the powerful efforts of Dyson, Lenard, Lieb and
Lebowitz. " However, the basic features of the
corresponding demonstration (i.e. , the existence
of a regular packing allowing for a long-range
screening of the Coulomb potential) are expected
to be valid irrespective of the dimension, once
that the stability problem (existence of the linear

while our upper bound

q 4 & (N/e)max(1, 8q )N q +N (2.11)

appears too large. Nevertheless, no decisive
conclusion can be drawn from this discrepancy.
The estimate (2.15) shows simply that the free
energy I' may be given the lower bound -~, as
expected.

D. Thermodynamic functions

It is well-known that the thermodynamic func-
tions may be obtained as derivatives of Q* with
respect to T ' in the form
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v —
~T

—
~ T

(2.18}

Therefore it appears worthwhile to extend the
foregoing bounds to dQ*/dy and d3Q*/dy . This is
performed in a straightforward way with

Q+= 6 6Z1'''dg

! dq*
dp

&4 ' (Inl&l) I&l"dz,

1
(N!)" Q vv» ! I4~ v(z„. . . , f»),

p ~~ j=& [Zi gp

(3.2)

where!! = max(0, Pq' —1) which can be proven by
means of the complete Holders inequality (that is,
by using both cases: 0&0&1 and 1 &k). If we de-
note, respectively, the left and the right-hand
sides of (3.2) by ~b, »I

' and (iV!)"Mz, we have
(4~ = Pq')

& ~pe' (2.19)

where I! '+(0') ' =1. The relation Jln»xdx&+~,
for all 0, enables us to choose k't 1, so that
ldQ*/dyl keeps a clear meaning for ksT)-,'q'. The
same argument may be immediately applied to
d'Q*/dy'. As a conse!Iuence, E and C„make sense
for Ã finite and k~T & —,q'.

a.P')=
J

l~ I" ~.~6 J=
II dz, dg,

M,

M), ! , Iz,-—( IB

(M!, dz d$)

III. EQUIVALENT OF Q~{T) WHEN T~ T+,

In our upper and lower bounds, the coefficients
of [Q, (T)]" attain their worst values for T = T„
as can easily be checked. For example, if the
temperature is infinite, we have approximately

(-.')'" &[Q, (T)] "Q.(&)&&',

whilst for T =T,

(l)'"'&[Q, (T)l "Q,(T) (Jv!)'.

We want then to strengthen these bounds in the
vicinity of T, . More precisely, we want to show

lim [[Q,(T)] -"Q„(T)}=¹!.
T r+

C

We shall just outline the method, which wil. l be
developed in a subsequent paper.

A. Replacement of the system by X weakly interacting pairs

The first step is to rewrite Q»(T) in the form

The last equality is obtained by noticing that the
ratio e ~ = lh»l '/M& is invariant under a permu-
tation of $„.. . , (»; (3.2) and thus (3.1) is proven.

We finally remark that our new system

(T) ~! !~II dz; d$; (3.3a)

e '~ & (iv!)"& iv! (3.3b)

contains the information of the existence of the
upper bound (2.14) because it gives it back trivial-
ly.

B. New system of coordinates for pair

The second step consists in using a new system
of coordinates where p, = Iz, —),I, that is where
we have, say, concentrated the divergence of each
term 1/Iz, —),Is' onto only one real variable.

This we can perform by taking, for each positive
particle z, , polar coordinates centered at the
origin, and for each negative particle (, , polar
coordinates centered at its associated ion z,

E!Iuation (3.3) is then transformed into

(3.1) the integration over each pair being

(3.4a)

where w(z„. . . , $») is a bounded function.
We can interpret this as the partition function

of an associated system composed of N pairs =,
= (z, , $,}, each having the internal Coulomb energy
q' lnlz, —),.I, and which interact together by means
of the weak nonlocal N body p-otential w(:-„.. . , =„),
by contrast with the strong local 2X-body potential
we had initially.

To show this, let us first note the inequality

r 2' rl 2ff &](&.e!!s])
d8, ft, dR, dy, dp, , (3.4b)

PO 0 0 0

where we have set (see Fig. 2)

«=lz;I. p! =Iz! -4I
(3.4c)

=R,. cos(p, + (1+R', sin'q!, )'~'
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and where D, stands for the whole domain of varia-
tion of all the variables.

In this system of coordinates, we have also

and thus

(3.5)

C. Extraction of a large subdomain with negligible interactions

Loose statement of the method

We have seen that, if we neglect ~, the potential
of interaction between pairs, the Q„(T}becomes
simply ¹![Q, (T)]".

We are then led to the problem: can we actually
approximate x by 0 everywhere in Do? The answer
is trivially no, because se becomes infinite when
two particles of the same sign come close together.

Nevertheless, though the problem is hopeless in
whole D„we'll show that, provided the tempera-
ture is sufficiently close to T, , we can extract a
subdomain where the potential of interaction can
be neglected, and such that its complementary
part contributes negligibly to Q„(T) and [Q, (T)]".
This implies that, even in this complementary
part, the interacting system can be approximated
by the noninteracting one, because this approxima-
tion consists only in interchanging two negligible
quantities.

2. IKeLi mi navy defln1'tions

In order to give a more precise meaning to our
statement, we have to explain what we mean by a
negligible quantity, and what is the chosen sub-

domain.
To define the first point, let us introduce an

arbitrarily small constant e: we shall say that
the contribution of a subdomain is negligible if
its contribution to [Q, (T)]" is less than e times the
lower bound. It is then obvious, that its contribu-
tion to Q„(T) will be negligible too, with the con-
stant e'. (1V!)' because of (3.3).

To define the second point, let us introduce
another arbitrarily small quantity q and let us say
that the pair (z, , &, ) forms an atom if lz, —g,.l-q.
Qur subdomain will then be defined in the following
way: (i) We have exactly iV atoms formed: lz, —«I
~q for any i. (ii) No positive particle is too close
to the boundary: lz, I~1 -7! for any i. (iii} All the
atoms are far from each other: lz,. —«I&q'i' vi,
gW i.

3, 8'hy do ue choose such a subdomain?

So far, we have introduced the main steps of
our method, and shown how the subdomain is
chosen. Let us now explain why we choose it so.

Conditions (i) originates in the equivalence

p 0p p dp,

which is valid even if q is very small, provided
T is sufficiently close to T, (that is, 1 —Pq'- —1).
Thus, because the integral, in the vicinity of T„
is insensitive to a change in the upper limit of
integration, we should like to replace f,

"'
by

f" in order to simplify (3.4).
But we see immediately that this last equivalence

is valid only if l(R, y)w0. This drawback leads us
then to impose condition (ii) which is just the con-
dition l(R, y) x 0 disguised in the simpler and more
flexible form R ~l —g [and stronger too, because

1 —Z ~q& 1(R, q)~l(R, @)~O].
Finally, we impose condition (iii) in order to

have e ~"-1 in the whole subdomain. To see this,
let us rewrite the two quantities lb.„I ' and M~,
whose quotient defines e ~, under the following
forms:

111*;—a, I"*)

,(, Iz,. —(,. l
z",(,. I g,. -z, l

"
(3.6)

FEG. 2. Coordinate system used in the evaluation of
Eq. (3.1.}.

Because of condition (i), all the distances lz, —«I
are very small, and z,. and $, are almost the same.
We should like then to replace z,. by « in (3.6)
so a«o g« lz( -z, l/lz( -

h, l-»nd
I 5 - (,I/I &; -z,

l
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-1. Moreover, we should like to write the right-
hand side of (3.V) as 1 plus a sum of negligible
terms because lz, —$, l

is very small.
But this can be realized only if the distances

lz, —E,l, i vj,are very large compared to all
the lz, - g, l.

D. The proof made rigorous

It is now a technical job to mme rigorous the
preceding arguments. %'e shall just state the five
lemmas needed for the complete proof.

First, we define the sequence of decreasing
subdomains D0~ Df ~D„„ i = 1, 2, 3, by means of
conditions (ii), (i}, and (iii):

D, =((z„.. . , a„)~D,llz, l-i —q, vi=1. . . , g,
D, = ((z„.. . , 4)E D, llz, —t', l&q, vi =1, . . . , N],

The negligibility of u in D, gives

e p' ' -X~ p' '" &e —,')" Q T
D~ D3

provided T &2T, and

1/a & 1/2

N!3 sup[N(N —1)+(¹!)'' N(N —1)2"'" "] '

By combining the five lemmas with

Do=D, U (D!iD;+&),
j=o

we obtain the definitive result:

IQz(T)-N!IQ, (T)] "l&6&(k) [Q, (T)1"

provided!! &!!0and T & T„with!1 = inf(!!„!!„q,)
and T, = T( „!!q,) which proves the result.

we use the equivalence f"- f in the following.
Lemma 2: Let e ~[0, 1I and L~ [0, 2] be given.

The condition

1 I 1

(1 e) p dP& P dP&(1+&) P dP
0 - 0 0

is realized if the condition T, &T &T (e, !L) is real-
ized, with T, (e, L) = inf (T,'(z, L},T,"(e,L)) and

r, !~I.! r, (s -',,
',=0 I, .-ln(1 —e )

T,"(z, L) = T, 1—,1 &L &2.ln(1+ e)

We now state the negligibility of the disjoint sub-
domains D,iD, „i=0, 1, 2:.
Lemma 2:

p', '&~-,' Q, T
DO

4N(N!)' 3"

Lemma 3:

Q = iyfV" d're-" in~
T&T r&4

2m-¹V
( a 2)dz, , ( .1)

where Ef is a counting factor and V", the con-
figuration integral over the pair's center of grav-
ity. The corresponding free energy is

I' =-k~T lnd ' ', d~0 (4.2)

and it diverges when d-0. However, its partial
derivatives

IV. BEHAVIOR UNDER T,

The above treatment shows clearly the pre-
eminence of the two-body interaction in the canoni-
cal partition function near T, . Therefore, al-
though the canonical expression (1.6) for Q* does
not make sense for T & T„ it appears tempting to
extend the binary approximation below T, . This
approach has been initiated by Hauge and Hemmer'
who considered a system of charged hard disks
(diameter d) interacting only in pairs of opposite
charges with (no more sealing here!)

~l-8q &- 5 ~
1 a g T N

D1) D2

if q & q, and T & T, (!!„!!,);

Lemma 4:

P . 8 in@ N

Cv 1=1+ limP, lnQ
8 if 0

=1+—'(1 —T/T, )
'

(4 3)

(4.4)

32!!(N!)23"N(N —1)

remain meaningful for all d. The equation of
state (4.3) intersects the high-temperature ex-
pression (1.6) at T„so that it could support the
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[~ —V(r)] r dr =-,'~2e2 "~",
v& )

(4.5)

a very fast increasing function of ~, which shows
the very interesting property of a lower semi-
boundedness of the spectrum, i.e.,

" dh(7) . q' 8
d~

dk&1 with ~ & —ln—0 2 q2
(4.6)

so that the spectrum is void for ~& ~, . At this
point it must be emphasized that these properties
still stand" for the solutions of the Schrodinger
equation in a compact domain, a point which could
also be checked" independently through numerical
evaluation on a computer.

As a consequence, the restriction of the pair
partition function to an infinite volume does not
bring in any essential restriction, so we may
replace E(I. (1) by

q (V, T) = 7)7 t V"»m [q, (V, T)1"
p~ao

with"

(4. '7)

(2, (2, 1') = Jd'2 F2,((, 2) "2,((, 2). (4.2)

g (1, 2) denotes the two-body eigenfunction of
H = --,'(27,'+V', )+ V(r») written as

q„(I, 2) = (e( p' "/WV ) q „
with n -=( P, m, I), P, = P, + P„R,= (r, + r, )/2 and

E =-,'P2+A. „, P and R are the usual variables
attached to the pair center of mass. Equation
(4.8) then becomes

(4.9)

ttt —oo n = oo

()(22)=, I:,2-',"" 2 e-" . ),n=p =p

(4.10}p = (1(,T)-'

picture of a perfect gas of N noninteracting (+-}
pairs appearing suddenly at the transition tem-
perature. Although this description looks very
appealing, it appears necessary to put it on a
firmer ground though a quantum description for
the (+-) interaction below T, . Therefore we shall
use the properties of the corresponding Schr5din-
ger equation studied in detail in the following
paper'4 to evaluate the required sum-over states.

For the present purpose it appears sufficient to
restrict our investigations to semiquantitative
information about the spectrum of the given Schro-
dinger equation. First, general properties of the
Stum-l. iouville equation and the monotone in-
creasing behavior of V (r) easily convince us that
its spectrum consists only of discrete levels
located between -~ and +~. Moreover, the num-
ber of eigenvalues smaller than an arbitrary ~
is given by the asymptotic estimate" (~ X~»1)

tn, n

d~(~), »„,
d~

(4.11)

Indices m and n run over the sums of Eq. (4.11)
till an eigenenergy X,,„,reaches a value above
which the spectrum appears as a quasicontinuum
for numerical techniques. Now, it is important
to emphasize that expression (4.11) remains finite
if

e"~' 8' dX&+~ k T&-'q2
tnp, ttp

(4.12)

a condition complementing the one already found
for the high-temperature partition function [E(I.
(1.8)]

r e' "dr&+~ k T&-q2
O

At low temperature (p» 1) it appears possible
to put E(I. (4.11) in the simpler form

~ ) ~tnp ~ np

q, (v, T)=e'"+-
P p —2

(4.13)

with (m„n, ) = (905, 0) and
np

ln ge-'&" +2 Q e "-" —-aP+5,
n=p tn=i, n=p 8)&1

(4.14)

where q=1, 2&P&12 with a=-2.6093 and b
= -0.530'?. From these results it is possible to
deduce in a straightforward way the canonical
thermodynamical functions per particle. For
instance the free energy

E=&P 'in@,

0.5307 0.157x 10'e '«'8
P(p-2)

and the constant-volume specific heat

82
C„=2P' lnq,

(4.15)

0.1575y10 e-5.«»
p(p-2)'

x [12.81'7P 4 —41.142P 2 —99.526P 2 + 14.252P + 4]

(4.16)

with the eigenvalues labeled by the nodal number
n and the magnetic quantum number m. The factor
2 arises from the angular degeneracy in the Schro-
dinger equation. The large distance between ~„o
and the higher X „allows us to split E(I. (4.10}as

p m

q (V T) p
2 Qe 0 )2+2 e mn

n=p ttt, =,n=p
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are defined in the whole range 0 «T & T„.Eqs.
(4.15) and (4.16) are especially accurate (P»1)
near T =0, while they diverge at T, =q'/2k(( (p =2)
and thus confirm the preliminary conclusions
drawn by Hauge and Hemmer' from a hard-disk
model.

(q2/ks T ) ln~ r„~«1, r, -p
' " (5.5)

and without any further restriction on the number
density p. Then we hope to find a small param-
eter in terms of which the cluster expansion may
be constructed with

V. PAIR-CORRELATION FUNCTION IN

THE DEBYE APPROXIMATION

A. Graphical expansion and first-order contribution

Now we turn to the standard Debye treatment for
the one-component pair -correlation function taken
in the usual form" "

g, (r„)=e' 2("(2' (5.2)

where (((,(r„) denotes the potential of average
force for two particles located at a relative dis-
tance r», such that

(5.3)

in terms of the bare potential u(r») = -q'lnr», the
density p =N /V and the "simple 12-irreducible"
cluster integrals

with Q' ' denoting the summation over all possible
"simple 12-irreducible" cluster diagrams that
can be obtained from the root points 1 and 2 and k

given field points.
f, =e "'"«~' 'a —1 is the usual Mayer function.

Equation (5.4) is defined in the limit N, V -~ and
for k finite. Let us introduce the high-tempera-
ture approximation with the condition

As is usual for the case of a Coulomb system,
we shall use the well-known Debye-Huckel approxi-
mation to derive a high-temperature approxima-
tion for the pair-correlation. function of a one-
component system (negative for instance) in the
presence of a neutralizing background with op-
posite charge. Before going on with the develop-
ment of the Debye formalism, we feel it useful
to emphasize the high-temperature behavior of the
canonical partition function [Eq. (1.6)] which has
the infinite-temperature limit

2 fr

lim@*=limlI l dr, r, (1.8((((.Z)~' =v"+ ~-
8 0 8 0 «0 -0

(5.1)

as a result of the uniform bound ~A~
' &1+~6~

with 0& Pq'&1. The same procedure works for
the one-dimensional Coulomb analog but does not
in three dimensions. "'

(5.6a)

(5.6b)

u(r() decreases faster than r ', r& A. (5.6c)

and r„/X«e &1. f(( is then approximately equal
to -1 in the region (5.6a), of order c in (5.6b) and
negligible in (5.6c) with fu(r)(f'r-e)F.

Now only eases where the range of the potential
is long compared to p

'~' (i.e. , pA. '&1) will be
considered. Each cluster integral P, contains k

field points located at r«and / lines. The order of
magnitude is given by e'(p&') =e' "(pe&') . Al-
though e is by definition small, the quantity pe~'
may be large for sufficiently large ~. It is there-
fore useful to regroup the cluster-expansion terms
for (((,(('») according to the value of l —k; the sum-
mation is over k values for fixed l —k. The only
dimensionless parameter in the problem being
q'/ksT, one has to put e = pq'.

In order to meet these requirements we may
consider the Coulomb potential in the form u(r)
=K, (nr), with a denoting the usual positive, van-
ishingly small, quantity and the Fourier trans-
form u(p) =(p'+ a') '. So, in the sequel, we should
have to evaluate the cluster integrals P„with this
modified u(r), assume that the Tauberian prop-
erties are well satisfied, and take the e-0 limit
at the end of the calculation. However, in view of
the complexity of the analytical manipulations, we
shall restrict ourselves to e =0 from the begin-
ning. The corresponding quadratures remaining
finite at infinity. (This short cut is equivalent to
taking care of only the diagrams that are convolu-
tions and neglecting bridge diagrams. '0) More-
over, as explained below, the first- and seeond-
order contributions may be checked through another
derivation free of the previous requirements and
using the BBGKY hierarchy.

So the first-order (l —k =1) contribution to Eq.
(5.3) corresponds to the usual Debye chain

(5.7)

The introduction of f„- u(r, ,)/ksT in Eq. -(5.7)
leads to the Hauge-Hemmer expression4
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6(- ) =(2'}- 1-pl (P)
~ I'

(2 )-1 d2
p'+ 2' p q'

= -p q2K, (x„/~, ), ~2, = b, T/2)1q2p (5.8}

I2e-TV(p) denotes the Fourier transform of the
Coulomb potential equal to q2/P2, and K,(z), the

modified Bessel function of second kind. So, we

get the first-order result

As a consequence, we list in Fig. 3, the second-
order nodal graphs to be considered in the next
higher approximation to u)2(r»). The first one is
straightforward, it reads as

(2.) = —„{-K,( „)1
1

(5 18)

with r» evaluated in terms of ~D. The next two
are equal and are easily explained with the aid of
the Fourier transform-convolution techniques"
for quadratures of the general form (r» = Ir, —r, I):

u)'2(r12) - eK-, (r»/AD) (5.9}

8. Second-order contribution {1-k=2)

satisfying the requirements (5.6a)-(5.6c). Equa-
tion (5.9) has also been obtained by Vahala and

Montgomery" with the use of the Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) hierarchy.

((I, — .I) =
J
". K,(Ir, —r, I)

~ ~

x K,(Ir„~ ~ ~ r, I) dr, ~

so we obtain

(2bc) =(2b}=(2c)

(5.14)

Once the long-range behavior of the -q'lnr po-
tential has been resummed in the Debye chain
(5.8}, we have to pay attention to the short-range
behavior. Fortunately, this task appears much

easier in two dimensions than in three dimensions,
by virtue of the summability at even order of the
watermelon (Meeron) graph' (Sa) in Fig. 4 with

1 d2re(P (C )n! D

where

1 dpe' p'»G( p)H(p),2!(2~)

)X)

dXXK~0 X 40 PX

1
=

p(4, 2), g2 Q'. ((1+4/P')'") ~

(5.15)

(5.16)

4n
" e nr

Ckr sinpr —„&+~, n «2
n! r" (5.11}

has no meaning for n & 2.
This feature allows us to consider the "simple

12-irreducible" cluster diagrams as constructed
from Debye chains and nodal field points where
three or more Debye chains are converging. This
point is a fundamental one, because it makes clear
that no further resummation over the most di-
vergent ladder diagrams is needed, as opposed to
the familiar three-dimensional situation where
the basic bricks of the cluster diagrams are the
Debye chains and the resummed chain"

-1E

+$ (2O ~e "
d(cose) dre'""' e " "~' —1+

0

(5.12)

{a)

FIG. 3. Second-order diagrams {L —k=2) for se2{r&2).

=2m dr rlo ~ Ko ~D +™all " 5.10
0

where (Cn) represents the Debye chain, while the
thr ee -dimensional analog

Q", (z) being the associated Legendre function of
the second kind, and

H(P) = — d(r —r")e'" '"' P K (I r —x "I)
2r 0

dxxKp(x) Jp(xp)
0

= -(p'+1} "~

The resulting expression

- e'P""0.'((1+4/P')'")
p(4 p'}'"(p'+1)

(5.17)

(5.18)

is suitable for numerical evaluation with r„ taken
as a running parameter. However, it appears too
compact to extract in a convenient way the very
important r» 0 and r» -~ behaviors. Therefore
it appears of interest to reconsider (2bc) under
the form

1 ei P
~ ry2

(2bc) = —, dp, duuK', (u) J,(flu},
0

(5.19)

invert the order of summation, and make use of
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t
" dppJ, (pr») J,(pu) [io(u)KO(r, 2), r„~u

(5.20)

I,(z) being the modified Bessel function of first
kind. Identical methods lead to

f P
~ 1

(2d)- „, rdr (4 .)„.(. , ). ().((.4(~)

"" dPPZ. (Pr„)Z.(P u)

(p'+1)'Pp

~
~II

«
~

I
~I

I I2

0
I0

~ I2

0

~

I2

I

~

I2
~t 1I

2

~
~
~I~

~

-,' [-uI, (u)K, (r„)+r„I,(u)K, (r„)), r» &u

(5.22)

the last expression could also be explained through

, I,(pr„) duuK,'(u) J,(p u)

(5.21}

By collecting together the above expressions, the
second-order contribution w,'(r„}to the potential
of average force may be written as

~ "12
*,(r„)=—, ((*,(r„)—2 dry,*( )(,( )) )(,(r„)—)J,(r„)r d M,'( )

&0

12
duuKO(u) [-uI, (u)K()(r„) + I (u)r, 2K, (r„)]

4 0

()0

+ — du uK', (u) [-K,(u) r„I,(r„)+uK, (u)I,(r„)]"r
12

(5.23)

delivering in a straightforward way the limit be-
haviors

lim w,'(r„)- —,[ln(-,'yr„)] ',
r o12

(5.24)

7l' 1 e 12 e 12lim u', (r„)-—,— — -0.6705
11

12

+0.1511r,'I' e '» (5.25)

duuI, (u)K', (u) =0.6046,
"o

where r is Euler's constant. Equations (5.24)
and (5.25) are obtained with the aid of the following
quadratures":

orders, while the same operation appears un-
tractable through the hierarchy. Equation (5.24)
shows that the only diverging contribution at the
origin arises from the ladder (2(2). Equation (5.25) ex-
hibits a slower decrease, reduced by the multi-
plicative factor r» [recalling lim, „K,(z)
-())/2z)'I'e '] when compared to the first order
result (5.9).

This behavior reproduces the earlier three-
dimensionai findings, "'"and it could be con-
sidered as a general feature of the Debye approxi-
mation which is confirmed by the one-dimensional
version of w, (r»)

w~2(r») = -e'e "»

+e"(-,'e 'r» ——', (2e ri2+e-'ri2)

+(1/96m) [-', e '"»+e "»(-', +r»)]]+0(e"),
(5.26)

Mp

kp

duu'Ko(u)I, (u) =0.2636,

du uKO(u)IO(u) =0 6046, .

where e' =q'X~/ksT, An2=keT/2q'p for the one-
dimensional Coulomb potential (p(& = q'~r, &~, with-

p =bI/I, .
VI. THIRD-ORDER CONTRIBUTION {I-k=3) TO w2{r» )

r duuKO(u) =0.5861,
0

r du u'K,'(u}K, (u) = 0.3907.
0

At this point it must be noticed that Eq. (5.23)
may also be derived from the BBGKY hierarchy. "
However, the present diagram analysis appears
more powerful in view of its systematicity and its
straightforward extension to third and higher

The motivations for pursuing the Debye analysis
up to the third order in e, are not only complete-
ness, although this is not a point to neglect if one
remembers that the three-dimensional analog of
the third-order calculation cannot make sense for
diverging graphs such as (3b) or (3d) [see Eq.
(5.11)]. Nevertheless, these motivations are
essentially provided by the necessity to confirm
the conclusions drawn from the second-order



EQUILIBRIUM PROPERTIES OF A TWO-DIMENSIONAL. . .

limits (5.24) and (5.25) and also by the possibility
to suggest an extrapolation to higher orders of
these ~»-0 and r»- behaviors. More especial-
ly, it appears highly desirable to make sure that
the most diverging graph amongst those in a given
order remains the ladder one. A possible draw-
back in this program could be afforded by the
rapidly increasing number of nodal diagrams with
l —k, as may be seen in Fig. 2 with the third-order
contribution. Fortunately, the previously used
Fourier transform-convolution techniques prove
to be helpful for nearly all graphs, the exception
being the compact topology (3m). Less then half
of the L —k=3 diagrams given in Fig. 2 had already
been considered by Salpeter" and also Mitchell
and Ninham" in three dimensions. The first quad-
ratures are straightforward extensions of (2a),

(5.I)

(3bc) =(3b) =(3c)

"12
2 (((r)('(, l) 2,r, (r„l

0

with

+f,(r») Jt duuA, '(u)
12

lim (3bc) = 1.035

(6.2)

(5 3)
0.6~45

lim (3bc)= '
e "22,

r 12 12

(2bc), and (2d) computed in the foregoing section.
So, we get

(3.) = (I/3. ) l-lf, (r,.)) ',

1 2

(Bo) (Bb} (Be)

2

(Bd) (Be)

1 —— 2 1 21~2

(Bj) {Bi)

(B rn}

1 2 I IG. 4. Third-order dia-
gra. ms (~ ~ 3) ~o+ 2(+f2) '

(Bs)

{Bx) 1 (3z )~
I
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(3d) =, du uK', (u) [uI, (u)K, (r „)—I,(u)r„K,(r„)]3!2
TABLE I. Numerically evaluated graphs as a function

of reduced distance.

+, duuK', (u)[K (u)r„I,(r„)—uK, (u)I (r„)],1
312

Reduced
+12 (2 t ~2 (3e~ (2 t )2 (3g~ (2 1 )2 (3j) (2 t )2(3) )

where

( d)
0.2618

T Q12
3

(6 4)

1 & '" 0.03328
lim (3d) = —, — ',

z
—0.3073r'," e "ia.

y 1/2
12

(6.5)

The following eight diagrams (Se)-(Sf}cannot be
analyzed so transparently. Therefore we shall.
leave them in a more compact form appropriate
for numerical. evaluation. We then obtain

1
(3e) =

"dPJo(Pr„)QO'((1+ 4/P')"')
P(4+P')

(Sfgk) = (Sf) =(Sg}=(»)
-dP~.(P,.)Q."((1+ 4/P')"')

(2')', P(4+P')(P'+1}

(6.7)

which makes sense for P-O, if one pays attention
to Q'(e)-z ', for e» 1. The representation goo(z}

'I'"(1, —,'; z, 1/e') allows for an easy and accurate
computation of Eq. (6.6):

0.2

0 4

0.6
0.8
1.0
1.2
1.4
1.6
1.8

0
2.2
2.4
2.6
2. 8

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4 4
4.6
4.8

5.0
5.2
5 4
5, 6
5.8
6.0

0.3375
0.1440
0.062 02
0.032 21
0.021 02
0.015 61
0.011 78
0.008 66
0.006 19
0.004 27
0.002 93
0.001 97
0.001 33
0.000 90
0.0006
0.000 42
0.000 28
0.000 20
O. 000 14
0.000 09
0.000 07
0.000 04
0.000 03
0.000 02
0.000 01
0.000 Ol

0.000 004
0.000 003
0.000 003

0

-0.053 36
-0.044 78
—0.036 42
-0.029 50
-0.023 99
-0.01959
-0.016 02
—0.013 08
-0.01066
—0.008 66
-0.007 02
-0.005 68
-0.004 58
—0.003 69
-0.002 98
—0.002 40
—0.001 934
-0.001 557
-0.001 254
-0.001 009
-0.000 81
-0,000 65
-0.000 53
-0.00042
-0.000 34
—0.000 27
-0.000 22
-0.000 18
-0.00014
—0.000 11

0.021 40
0.020 46
0.019 13
0.017 59
0.015 9'7

0.014 35
0.012 78
0.01131
0.009 94
0.008 68
0.007 55
0.006 53
0.005 63
0.004 84
0.004 14
0.003 54
0.003 01
0.002 56
0.002 17
0.001 83
0.001 55
0.001 31
0.001 10
0.000 93
0.000 78
0,000 65
0.000 54
0.00045
0.00038
0.000 32

-0.012 90
—0.012 64
—0.012 24
—0.011 72
—0.011 11
—0.01043
—0.009 71
-0.008 98
—0.008 24
-0.007 52
—0.006 82
-0.006 15
—0.005 53
—0.004 94
-0.004 40
-0.003 90
—0.003 45
—0.003 04
—0.002 67
—0.002 34
-0.002 04
-0.001 78
-0.001 55
—0.001 34
—0.001 16
—0.001 00
—0.000 86
—0„00075
—0.000 64
—0.000 55

(Sij k) (Si) = —(3j) = (3k)

"dP ~,(Pr „)0,"((1+4/P'}'")
(2')' . P(4+P')(P'+1)'

(6.8)

(Sf) = (Sf) = —
2, ),

dP ~,(Pr„)Q. ((1+4/P')'")
P(4.P'}(/+1)'

(6.9)

(3f ) (3S)~ (3&) (3~), (6.10}

The corresponding graphs are given numerically
in Table I. At infinity they show' the interesting
behavior 1 -,.-,-, IG(p} P

(Sm) = —— dp e'~
2m P2+ 1

with

(6.11)

Fourier transforms of the four bubbles (3m )-(3P).
The first bubble (3m) is also the most intricate
one, and we must confess that we were not able
to derive for it a comfortable expression suitable
for numerical evaluation. However, taking ad-
vantage of its close analogy with a part of the
fourth virial coefficient for a gas of hard spheres
already considered by Nijboer and Van Hove, "we
show in Appendix A how r» —0 and &12- may be
worked out, a result enabling us to reach esti-
mates for the corresponding chains (Sq} and (3s).
More precisely, we get

i.e., the longest chain decreases the slowest, a
feature already noticed in three dimensions by
De Witt and Del Bio." The foregoing inequalities
are reversed for r»-0. Before going on with the
calculation of the remaining diagrams, we observe
tha, t the chain-structured graphs (3q —Se,) may be
worked out with the same Fourier transform-con-
volution techniques if we have at our disposal the

G(p} = d(r, —(r, r, )/2) e'—~"

x«.(lr, —r, l}K,(lr, —r, i)

and the limit behaviors

lim (3m) = -(2a)' x 0.0577, (6.12a)
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(6.12b)
4& Ln2 2„e 2"»

lim (3m) ~, e '"»=g
~ OO 12

corresponding to a rapid decrease at infinity.
Taking into account the continuity of expression
(6.11) with respect to r„we may use (6.12a) and

(6.12b} in order to get estimates for the corre-
sponding chains (3q}, (Sr), and (3&}. The same
procedure may be applied to all the remaining
graphs as soon as the bubbles (Sn), (3$), and (SP)
are explicited. The given procedure is straight-

VII. SHORT-RANGE AND LONG-RANGE
BEHAVIOR OF w2(ru'

Our final result for w, (r») is given as

w, (r„)= w,'(r „)+ w,'(r „)+ w,'(r „)+ ~ ~ (7 1)

with w,'(r») and w,'(r») shown in Eqs. (4.9) and

(4.23), respectively, and

forward but leads to cumbersome manipulations
detailed in Appendix B.

w,'(r») = e'[(Sa) +2(Sbc) + (Sd) + (3e) + 3(3fgh }+3(Sijk)+ (Sl}+(3m)

+ 2(Sno) + (SP) + 2(Sqr) + (Se) + 4(3tuv w) + 2(Sxy) +2(Sea, ) + (Sa,)],

with the r»- ~ behavior (e = Pq')

li w'( )=t' — —— " + + —-(0.7M2 ' —0.03023I)2 12 2 r2 2
' »

Oo 12 12
12

+
~

I
2 ~ ~ 1I

~~

~ r1.26228 C
12+2+ —r e 12

+ — + —r'"e "» + ljm 38)+ 3h +{3y + 3t
O 3073 D

3! 2
(7.3}

where A. , 8, C, and D denote finite constants such
that

8 =2' —4e'+2o. ", C =y+2y'+y", D =5+25'+5"

(7.4)

with the Greek constants given in Appendix B. By
retaining only the most important terms and taking
into account Eq. (6.10), Eq. (7.3) is well-approxi-
mated by

0 3OV3 D
2 L 3. 2

lim w,'(r„)= e' —
I

— ', +—

x r,",'e '»+(3l), (7.3')

with

lim (3 l}& r', ,"e ' » (7.5)
" 12

thus generalizing the slower decrease at infinity
[when compared to the first order -eKO(r»)] al-
ready found in the second-order [see Eq. (5.25)].
Although this is an interesting result, we feel that
the short-range expression

lim w,'(r„) = e' —"
,

+0.3909 in(rr» j2}[1.(r...!2)1'
r 012

is of a. greater importance, because it allows us
to approximate the short-range behavior of the po-

tential of average force with

2

lim w, (r„)=-eK,(r„)+—,K2(r„)
12

——K (r )+0 12

e It'0(y' 12} 1 (7.7)

so that when e «1, the short-range behavior of
the correlation function is given by

VIll. DEBYE THERMODYNAMK FUNCTIONS

Owing to the complexity of expressions (5.23)
and (7.2) for w', (r„) and w', (r»), we shall restrict

lim g2{r12)= e '"o'"»' = —" g «12 12
r 12~0 D

(7 6)

with the A.~ dependence shown.
The resummation {7.7) is much easier to obtain

in two dimensions than in three in view of the or-
der-by-order possibility of evaluating the e" cor-
rections to w, (r») This fa.ct allows us to extrap-
olate to high orders (n ~ 4) the more diverging be-
havior of the ladder graph at r» =0, when com-
pa.red to other diagrams with the same l —A. At
this point it must be mentioned that De%itt" has
recently obtained in three dimensions a resummed
behavior of g, (r») similar to Eq. (7.7).



2612 C. DEUTSCH AND M. LA VAUD

ourselves to a computation of the Debye thermo-
dynamic functions up to e with

g(r»)= e ' 0'"»' = 1 —eK,(r»).
The first term on the right-hand side refers to

the usual perfect gas contribution, so it will some-
times be omitted in the following. It must be
stressed that the direct use of Eq. (8.1) in the vari-
ous virial expressions keeps a clear meaning be-
cause the series expansion of e ' o'»' may be in-
tegrated term-by-term with f, drrK~(r) &+~, all
p, while it is a. mell-known fact that the similar
procedure is forbidden in three dimensions, where
more sophisticated techniques are needed. "

B. Free energy

The virial expression for the internal energy per
particle is

= 1+ )t)(r)[ -eK, (r)] 2nr dh
B B o

=1+ dxx[lnx+in(XD/L)]K, (x)
p

2 90

2 o

=1+-,'Pq'[1 —@+in(AD/2L)]. (8.6)

The last expression is obtained with the aid of

A. Pressure

The right-hand side of Eq. (8.1) introduced in
the virial quantity

= p — r —[ -e Ko(r)]2nr dr (8.2)
B B o

and

dQ

(chu)'

ln(chu)
(chu)' (8.7)

produces easily

P
kBT 4A'BT

(8 3)

This is nothing else but the canonical exact re-
sult valid for one- and two-component systems de-
rived previously. Thus we reach the unexpected
conclusion that the first-order Debye pressure
does not need any high-order corrections to ap-
proximate the complete expression. %e have been
able to check after a lengthly calculation that
w2(r») taken in the first order in Eq. (8.1) gives a
vanishing correction to Eq. (7.3). However,
this appears to be a very painful way to prove the
consistency of (8.3), and it proves much more con-
vincing to rely on a more global argument of the
type recently proposed by Hauge and Hemmer, '
who also obtained the result (8.3) through a dia. -
gram expansion of the pressure. Following these
authors, the high-order contributions to Eq. (8.3)
are all contained in the nodal and vanishing quan-
tities

n n

p" d'~,. -~X, ar„p'&'
Bp

0 =1

- 1- —p=O 8.4p8

Bp

attached to nodal diagrams with n field points, a
being a constant. This is a two-dimensional fea-
ture neither encountered in three dimensions, nor
in one dimension because if one introduces Eq.
(5.26) in Eq. (8.2) with gr2»() -1 —u),'(r»), one ob-
tains

In order to appreciate more thoroughly the phys-
ical content of Eq. (8.6), it appears desirable to
rewrite the Coulomb potential u(r) = -q'1n(r/L)
as a sum -q'ln(A!L) -q'ln{r/8), involving the
linear dimension of the configuration space, so
that the factor 1n(A/L) enters only the factor
multiplying the one -component partition function
[Eq. (8.15) below] written as Q* =e . The
interacting contribution to the energy may be
then given the form [u(r) = q'1n(r/ft-)]

R

u(r) g*(r)2nr dr

R
-q2].n — —pq~KO ylg~ 27Iy'dr

(s.6'}

which is Eq. (8.6) except for 8 replacing I, with

1

8 (2Pq'N )"'
independent of the volume and

PE* = — ln(Pq'N )+ ~ ~ ~ .P q'N

Now the total energy reads

PE = 1+ ln —— Nln(Pq'N)
Pq' ~ I3q'

2

Pq'N A' 1
4 N L'Pq'

p/ksT = p ——,'pe'+ we" +O(e''), w -0.25.
(8.5)

Pq g A~= I+ ln —~
2 I (8.6")
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reproducing the content of Eg. (8.6).
The potential free energy is therefore

where

lim E'"' - ——' qa'(InP —1) ~ (8 9)

The corresponding constant -volume specific
heat Cv

(8.10)

is free from the low-temperature divergence
present in the low-temperature expression

1~" =" '2(rtr. —|)')

PE'"' = dP' E'"' (|}')= — ——y+ln
2 2 2I

(8.8)
with

xexp pq2 ln r„-poq
2 r,'-1

{8.15)

with I. = 1 in the last quantity. As before, "Eq.
(8.14) may be used to derive a sufficient estimate
for the existence" of a finite free energy per
particle

PE= —in@ =N ln -1 + Nln —-in@~
M2 Pq2 V

V 4 L2

(8.16)

in the form

considered previously.
The potential entropy per particle is

Eexc
Sexc I32

9P
(8.11)

in@* „=„4I3g'Nin% „p finite . (8.17)

(8.18}

The latter requirement is equivalent to approx-
imating Q* by

Q* = (&))'""[f(P q')]"
As a concluding remark, it is worth noting that
the infinite-temperature (p-0}behavior of Eels.
(8.9)-(8.11) coincides with the Mehta exact re-
sults" for the one-component system of point
charges restricted to the unit circumference.

C. Speculations about the thermodynamic limit

{one-component gas)

with the free energy given as

pE = N[(lnpk' —1}——,'p q' Inpf ' —ln f{Sq')]

and the internal energy

spE pq', s lnf(pq')

(8.19)

Once again, we try to speculate about the im-
plications of the possible existence of the thermo-
dynamic limit for the one-component gas with
neutralizing background. Now our analysis is
based upon the Debye approximate expression
(8.6) for the internal energy. As in Sec. IIC we
start with the one-component canonical partition
function'

(8.12)

with (o =qfq/ V)

—Hpp +Hp g +H$Q

The exact result for the pressure

PP
P+

1
PV'

(8.20}

(8.21}

is recovered once more. It is shown to be in-
dependent of whether the thermodynamic exits
or not, and it satisfies the required thermo-
dynamic relation

HAPP——(%)=
BV BP

Now let us write the Debye expression (8.6) for the
internal energy per particle as [&D = (2vpq'p) "']

=-q'gin '—"+aqQ d'r ln( i r, —r i /L)
tlE/X = I--,'pq'[lnpf, '+ In2vpq' - 2(I - y -»2)1 .

2
d'r d'r'ln(

i r —r' i/L).
V V

The scaling trick (1.4) works again. It gives

gfA2N I @ f

(8.13)

(8.14)

(8.22)

The important point to notice is that expression
(8.22) is in substantial agreement with expression
(8.20), so that the first-order Debge approxima-
tion for the free energy fulfills the strong and
sufficient requirement for the existence of' the



26i4 C. DEUTSCH AND M. I AVAUD

thermodynamic limit. In order to put this con-
clusion on a firmer basis, we shall investigate
in a future work the higher-order corrections to
Eq. (8.6).
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APPENDIX A

"12 2
2

FIG. 5. Coordinate system used for {3m).

the r12 0 limit with

iim lG(p)l 2~ dwwK;(w)z. (pw)
012 0

p2)1/2 Q2((1 +4/p ) )

lim
l (3m ) l

~ — d 8
i '

dip
r ~0

12
2 P

Q p +1

(A6)

The purpose of this appendix is to provide an
estimate as accurate as possible for the bubble
diagram (3m). We can no longer work with the
Fourier -transform-convolution techniques. How-
ever, recalling the Nijboer and Van Hove" ap-
proach to the fourth virial coefficient for a hard-
sphere gas, we may write:

(3m) =- Z, r„)Z,(r„}Z,(r„)

p(4+ p')'"
= (2~)2 ~0.05772. (A7)

A convenient upper bound is possible through the
McDonald formula:

K,((u/'+ ,'r» —w-r» cos9)'")

0((u'+ —,'r'„+ u r12 cose)'")

with

xK,(r„)K,(r„)dr, dr,

p G(p) 2 dp

(Al )

(A2 }

with

1 "Clg' &'
2 r—exp ——— u + " v '

2 0 g. 2 4

x K,(I ( w ' + ,' r '„)' +—(u. r „cos8)'/v l '"),
(A8)

F(p) = —
~ dr e' p

' ' K,(r) = (p'+1) ',
277 J

G(p) = Jtdr2e' ' 2K2(lr,'-r2'l)K2(lr2-r2'I),

(A4)

v
G(p) ~7/ —exp ——— » dw w J,(pw)

v 2 4U

x e K/,4(( w+-,'2r ) )212'/)

dv exp ——' 1+ —KQ e»'7T P r 12 -r2 //4v

2
Q

2 2 4v

and r,.'=r, —(r, —r, )//2. Equation (A4) is ready for
evaluation in the symmetric frame shown in Fig. 5

with and

{A9)

2 7r 20

G(p) = d9 dw u/K, ((u/'+ r'„—r„w cose)'/2)
0 0

x KQ((zo'+4r»+r»w cos6)'"}e'

4U 1212

so that

(A10)

which proved to be too involved for our efforts.
Fortunately, we can derive from it efficient upper
bounds for (B2). Our techniques are based on the
simple observation that (Bl) is a continuous func-
tion of r», so that sufficient upper bounds for r»- 0 and r»- ~ will ensure the existence of the
Fourier transform of (3w ). Let us first consider

G(p) g d&, &/1/2 e-u(I+P /2)/2 -r 2/2U

12 0

3~22'~4 i
1/2 /1 1 2)1/4 1/2(r12( 2p ) )

(Z +4P

(Aii)

and finally
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"dt)t)K',(r„(1+-,)P')')2) x' " dPPexp[-2r»(1+-, 'P')')2]

" dxexp[-2r»(1+x/2)'"] ))'e '"» " dx 4)T'1n2

2r'„, (1+x){—,'+-,'x) 2r',~, (1+x)(-', + —,'x) r'„

The upper bounds (A7) and (A12) are introduced
in Etta. (6.12a) and (6.12b) in the main text.

APPENDIX 8

Here we detail the evaluation of the remaining
third-order graphs (Sn) to (Sz,). First, the results
(6.12a) and (612b) are used to estimate the chains
(Sq), (Sr) and (3s). Then, the bubbles (3n), (3o)
and (St)) are easily explicited and introduced in the
remaining chain diagrams. So, we first obtain

(3qr) = (3q }= (Sr) = — du uI, (u)(3 m )(u) K,(r„'}
0

+ duuK, u (3m) u} I,(r„
12

du 1( I g(u)(3 m )(u) & +~)
0

+ QCI

duuI, (u)(Sm )(u) &+~.
0

The bubble (3m) has already been considered in
three dimensions by Mitchell and Ninham" who in-
vestigated its ~»-~ limit. The three following
bubbles (Sn, So, St)) are fortunately reducible to
previous quadratures:

(Sno) = -K,(r„)(2bc)

diverges for r»-0 with

)' t) )=029)() ") .
r ~0

12
2

At infinity it behaves like

duuI, (u)(3m}(u) =a &+~,
0

lim (Sn o) = 0.1511—e "» .
r 12 12

The corresponding chains are

( B6b)

duuK, (u)(Sm)(u) =P&+~ (3t uv w) = (St) = (3u) = (Sv}= (3w)

and

lim (Sqr) =P,
r 012

1/2

lim (3qr) =(x 12

r 12 +12

12
(3s) = — du u(Sm)(u)[-uI, (u)K, (r„)

2 0

1 I

+ — tfuu 3PPl u uK1 u 10 &12
12

—K,(u}r„I,(r„)],
(aS)

+ duuKQ(u) 0)(u) IQ(v12). B7)
12

As previously obtained, the relationships (6.18a)
and (6.18b) show that the r»- 0 and r»- ~ limits
of the quadratures define finite n' and P', respec-
tively, so we get

lim (3t uv w ) = -P',
r12 0

1/2

lim (Stuvw) =-o(' 12

r 12 12

while the two-legged extension of (Sno) is

where (Sxy) = (Sx) = (3v)

1/2

llm (38) = —
1/2 +~+ 12

1 m 1/2

2 2 1212

(B4a)

12
du u{o)(u}[-uI,{u)K,(r„)

2 Q

+I,(u}r„K,(r„}]

+ — du u(o)(u)[uK, (u)I, (r„)
"12

with
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(3O

lim (3xy) = — duu'(o)(u)K, (u)(+~, (810a)
r 12~0 2 0

1 2 w
lim (Sxy) = —— duu'(o)(u}I, (u) 12

0 12

1 1/2

d„„(0)(„)1(„) 12

2 0 2

m +6'r'" e '". 810b)
12

ln the same way, the last bubble (SP) is

with an expression analogous to (5.19) and (Sno)
replaced by (Sp), with

}' (3 3,)=) 3 zl(, ( )(33)( } ~", (8133)
r 12~0 0

(30 1/2

lim (Szz, ) = duuI, (u)(SP)(u) e»
oo

12 0 12

1/2
=Q "33,

2r12

(813b)

(Sp) = -K,(r„)x(2d) (811) (3z, ) is given by an expression similar to (89) sat-
isfying

with

ll (33)=-lz ")0.1333,
0

lim (SP) = — —0.03023 e
w 0.1318
2 ?

12

(812a}

(812b)

}'zz (3*.) =
3 I 3 *(33)( ))(,( ) =1',

r 12~0 0

(814a)

1/2 II

ll (3*,}=— — — „, It"',,")z '",
2 2 r212

(814b)
The corresponding chains are

(3zz, ) =(3z) =(3z,)

y" and 5" being finite quadratures analogous to y'
and 5' in Eq. (810).
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