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Anisotroyic susceptibilities and NMR shifts in superfluid 'He ~
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The effect of terms describing the anisotropic susceptibilities on the NMR shifts observed in superfluid
'He is discussed. It is shown that they are such that the isotropic susceptibility in the expressions of
Leggett is replaced by the correct temperature-dependent susceptibilities. The anisotropy energies of the

Balian-%'erthamer (B~ state are calculated and shown to be of order (yH/T, )' times those pinning

the spin and orbit coordinates in either the 8% or Anderson-Brinkman-Morel state.

I. INTRODUCTION

Since the discovery of the new phases in 'He by

Osheroff, Richardson, and Lee," considerable
interest has been focused on the shifts observed in
the NMR experiments. ' That such shifts could oc-
cur in an anisotropic superfluid phase was first
pointed out by Leggett' and by Anderson and
Varma. ' An attempt to give a more complete ac-
count of the resonances was published by Ander-
son, ' where although the dipole interaction was
used, the anisotropy in the susceptibility played
a central role. Recently, Leggett' has calculated
the resonance shifts and in his calculations the
shifts arise from quadratic dependences of the
dipolar energy on the angles between the coordi-
nate systems specifying the spin and orbital com-
ponents of the condensed pairs. Leggett showed
that the spin axes are forced to rotate in a reso-
nance experiment since the spin operators are
generators of rotations in spin space. The non-
existence of shifts in the Balian-Werthamer
(BW)' state is due to the fact that there is no

quadratic dependence on the angles involved in
transverse resonance.

In his calculations, Leggett did not take into
account the anisotropic nature of the susceptibility.
It is the purpose of this paper to introduce into the
phenomenological Hamiltonian used by Leggett
additional terms which describe the anisotropy in
the susceptibility and to estimate the importance
of these terms on the resonance frequencies. '
%e show that the corrections are equivalent to in-
troducing the proper anisotropic susceptibilities
into the expressions for the frequency shifts.

The terms describing the anisotropic suscepti-
bilities ean also be used to calculate the anisotropy
energies, briefly mentioned by Leggett, which
tend to orient the various axes with respect to the
external field in the B% state. The energies for
orienting the axes relative to the external field in
such a way that there are no transverse resonance
shifts is shown to be equal to (y H/T, )' times the

anisotropy energies involved in the orientation of
the spin and orbital systems with respect to one
another. Therefore, in a 1-ko field, these en-
ergies are 10 times the spin-orbit interaction
energy, and one might suppose that if one can
break the orientation between the field and the
spin-orbit axes, one could also break the relation
between the spin and orbit coordinates. Resonance
under these circumstances should indeed be un-
usual.

II. CORRECTIONS TO RESONANCE FREQUENCIES

Our general approach to the nuclear magnetic
resonance problem in 'He will parallel that used
by Leggett. ' The starting phenomenological
Hamiltonian is

y2
H = — — M2-yX' ' M+ H p

~n

= H, +Hp,

where y is the nuclear magnetic moment of a 'He

atom, y„ is the normal isotropic susceptibility of
liquid 'He, X is the external magnetic field, M
the total magnetization and H~ is the dipolar in-
teraction which breaks the invariance of the Hamil-
tonian under separate space and spin rotations,

30 ' s(+)p s(r-)1'

p= Ir-r' I, &(p) = &/p'.

~e will work with the spin densities S(r), rather
than with the gap operators T(n) used by Leggett.
It is only at the last stage when one evaluates the
resonance matrix that the nature of the superfluid
state is taken into account.

In addition to the above Hamiltonian, we will con-
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sider additional terms which must enter a phenom-
enological treatment of the superfluid state, These
may be written in terms of the gap matrix oper-
ators d, used by Brinkman and Anderson':

dQ)
Y,(k)a «„(cr,g, }„„a«„

appropriate to the Anderson-Brinkman-Morel
(ABM) state" corresponding to the A phase and the
BW' state corresponding to the B phase.

In the ABM state the only nonvanishing expecta-
tion values of d are

where Y„(k) = Y„(-k) is the oth component of the
real spherical harmonics corresponding to a gap
function having unit orbital angular momentum;
o; represents the ith Pauli matrix.

The gap operator introduced in Eq. (3) and its
Hermitian adjoint have nonvanishing expection
values in the superfluid state.

The additional terms in the Hamiltonian are
written as

For the BW state we will only use the unitarity
condition on the expectation value

We obtain in the ABM state

hH = c,Mg d ) d ~, M) + t c«e ()„d ) d «M«
*

—= c, ~M ~ d„~ '-ic,M (d, xd, ) .

Whereas in the isotropic BW state

x « = xo
' + ~(ci/y') a'

That both these types of terms may enter on sym-
metry grounds is fairly obvious. That a term of
the form

~ d« ~
'M& does not occur is a result of

microscopic theory and not true in general. Qne
of the most important effects of the first term
(with coefficient c,) is that it leads to the aniso-
tropic susceptibility in the A phase of superfluid
'He, and the reduction of the isotropic suscepti-
bility in the B phase. Since we are expanding the
energy in powers of both the magnetization and the
order parameter, the r „ in Eq. (1) is the normal
susceptibility. This approach differs from Leggett
in that he introduces a "thermal dynamic suscepti-
bility" as X, and does not take into account the
higher-order terms. The second term (with co-
efficient ic,) leads to the description of the linear
dependence of the gap function on the magnetic
field. The order of magnitude of c, may be ob-
tained using a calculation of Brinkman, " or from
the linear splitting of the transition in a, magnetic
field. " As we will show this second term does
not affect the resonance frequency and so we will
not review the calculation of c,.

To obtain the coefficient c, we calculate the sus-
ceptibility g 8 using the total Hamiltonian H + &H:

Thus as mentioned previously c, determines the
anisotropy of the susceptibility in the A. phase and
the reduction in the susceptibility in the B phase.

To determine the resonance frequencies, we
will need the equation of motion for the magnetiza-
tion

fe „, =[NfH+r H] . (10 )

The terms in AH will not contribute to this equa-
tion of motion because of their invariance under
rotations in spin space. This follows mathemati-
cally making use of the commutation properties

[S(r),M) ] = f ke&, «S,«(r)

which is also easily derived. The resulting equa-
tion of motion is

[M, , d„, ] =Ne(, «d~«, [M , d )] =No;;. «d~'

(11)

which is easily derived using (3}. To find the
effect of the dipolar term, we need the commuta-
tor

=y(1Vf xX}

subject to the condition -3y' drdr' $(p)[pxS(r)], [f) ~ S(r')] .

e(H+r H)
BM]

The expectation values we will consider are those
To obtain the resonance frequencies, we go to

the second-order differential equation:
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d'M, dM= y -3y' dry'X) p

x a, „(a,&r()„„e '"'q, (r)

~ dS r'
(!xv(.)(, (",', " ( 14)

or using the Fourier transform of the spin density
operator

The shifts of the resonance frequencies from the
I.armor frequency are determined by the equation
of motion for the spin density 8(r) which appears
in the dipolar interaction. We assume that the
time-dependent part of S, (r} is slowly varying on
the scale of a coherence length so that we can use
the phenomenological Hamiltonian to describe its
motion. The additional terms of the Hamiltonian
(4) require us to introduce a new operator which
results from the commutator of the spin density
with the gap operator

dQq
[Si (q} dpi I =+&i!! 1'a(&)

x a-((,(((oy&! )((va!(+ v, v

ill eif! d !(q}

As long as we neglect the dispersion in the reso-
nance frequency, corresponding to q- 0, we may
approximate d~( (r) = d» .

We work to first order in the dipolar inter- .
action and so may neglect H~ when calculating 8 (r)

=y —M g x 8 (r},+ c,[[d8xS(r)], (d(! ~ M)+(M d8)[dsx8(r)],

+ [Mxdt((r)), (1(! M)- (M d8)[d(((r) xM), )

ic,{[(p~sxds}xs(r)] [(18(r}x(gxM)]( [(dt(xM)xB, (r)], j . (17)

Now if we use only the first term of (17)(with coefficient y ) in the dipolar part of (14), we obtain the
results of Leggett' for the matrix giving the shift in resonance frequency squared

dr dr' g (p)([f(;& (f( ~ S(r)p ~ g(r' }-p~ g(r' )f!& S, (r)-[ f!x 8(r)], [p xg(r' )) & ] ) . ( 18)

The normal-state terms in this expectation value
cancel to give zero shift of the resonance frequency
due to the dipolar interactions. To obtain the anom-
alous contribution in the superfluid states, we may
replace the 8(r) by the expectation values of the

gap function moments T(n) as in the final results
of Leggett. The results predicted by Leggett are
that in the ABM state there is a longitudinal reso-
nance at

e2 = -02
E 5 g

in addition to a single transverse resonance shifted
from the Larmor frequency (dl:

and there is still a longitudinal resonance at a
frequency

CO2= -02
0 ~

To see the effects of the extra terms in (17), we
first concentrate on the terms with coefficient c2.
We first note that for both the ABM and the BW
states d~&&de = 0, when we take the expectation
value. If as we mentioned previously, we replace
18(r) by d corresponding to the q = 0 limit, the
combination

[d,(r) x(d8x lyl}], + [(18 xM) x ds(r)],

4)
E

= & I + 5 Boo
2 = 2 (20)

=[(d((xd8) xM],

cv, = u)12= 2 (21)

In the BW state, which is most favorable for the
dipolar interaction, the transverse resonance is
unshifted from the Larmor frequency

so that the expectation values of all of the terms
with coefficient c, vanish in both the states of in-
terest.

The only extra terms which give a nonvanishing
shift to the resonance frequency are the fir st two
terms with coefficient c, in (17).
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We write this out explicitly as

&~ (&)=c,I[d xS(~)li(ds M)

+(M ds)[ds&&S(&)lit (23)

Substituting this in the dipolar term of (14), we

have

&M, =6y' c, drdr'' X) p)

~(d«[f S(.))(ds ~ NI)f} ~ S('}

-~; (r) (P ' d s) (d s M )P ' S(r' }

-[t}&&S(&)];(ds'[P&&8(&')])(ds Mk

(24)

We take the expectation value in the 8% state us-
ing

dsg dsy g4 Gag

We then find we have added to the resonance
matrix (0')„a shift due to the extra terms of
identical form to (0')„of (18):

(a*,«*)""=a, '—'.—' ~ al f'"'"'"'
Xo

x(f, [fl S(~)] [P 8(r')]

3v'(r'/X. .-'c,a') =»'/x .

If we look at the shift in (24) for the ABM state,
ds; ds, is nonzero only for i =j = y [Eq. (6)].
the only correction to (0'},, is for i =j =y and pro
portional to the matrix (0'},&. However, as cal-
culated by Leggett, (0')„„=0for the ABM state.
Thus there is no shift of the resonance frequency
due to the extra terms in the ABM state. For the
last two terms of (17) with coefficient c, which
would lead to a field-dependent shift in resonance
frequency if they were nonzero, we obtain zero
directly in the BW state using (7}after these terms
are substituted in (14). These terms give zero con-
tribution in the ABM state on the basis of symmetry
considerations. The only possible nonvanishing
component of (&0')„ is

t~~ I..-J«.a(~)t~.*~.(~I-g~, t~)1 =0

-p, ~, ( )I p ~ s(r')1

-[0 s( )1;[i s( ')1 } (»}
Going back to our evaluation of c, for the BW

state (9), we see that we may identify the co-
efficient

Thus the effects of these somewhat complex terms
appears in the physically simple effect of using the
true susceptibility in the expression for the shift.
This agrees w'ith Leggett's work in that his thermo-
dynamic susceptibility is the true susceptibility in

the 8 phase.

ill. ESTIMATES OF ANISOTROPY ENERGIES

The terms coupling the magnetization and the
superconducting order parameter are useful in
estimating the anisotropy energies discussed by
Leggett for the BW state. In the BW state the
dipole interaction gives rise to a unique axis in
that the minimum dipolar energy is obtained when

the spin and space coordinate systems describing
the order parameter are rotated relative to one
another by cos '(-1/4). The axis of rotation then
is a unique direction in the BW state. This axis
which we will call n was assumed to be along
the external field in the calculations by Leggett
because with that alignment the combination of
the field dependence of the gap and the dipolar
energy can be minimized. Leggett argued that
this orientational energy should be quite small
and the n axis could easily become disoriented
with respect to the field in which case the reso-
nance modes transverse to the field would be
shifted in frequency. In order to have some idea
when one can expect n to be out of equilibrium
with the field, it is useful to have a quantitative
number for the anisotropy energy. We can calcu-
late the anisotropy energy by calculating the
change in the gap function in the presence of a
field and then calculate the field dependence of
the dipolar energy. In order to do this we must
have explicit values of c, and c,. The value of
c, can be obtained from the expressions for the
susceptibility and the microscopic results of BW
and Leggett including Fermi-liquid effects:

c, =——&(3)
y' 7 1 1

4 (sz )' I+z,/4

The value of c, is more difficult to estimate. It
describes the change in T, for spin pairs aligned
parallel and antiparallel to the external field, that
is near T, we substitute M =X,H and find

ic,~.,d'„d, M, =-'sc, x,((att(k)P —(a()(k)['}a,

where the braces mean angular averages over k.
This form was used by Ambegaokar and Mermin"
to predict the linear field splitting of 7', . The
difficulty in estimating c, theoretically is that it
describes the change in the effective coupling
constant for up- and down-spin pairs in the
presence of a field. In the work of Ambegaokar
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and Mermin the only change with field was as-
sumed to be the change in the density of states
at the up- and down-spin Fermi surfaces. In
spin-fluctuation theory the part of the effective
interaction due to spin fluctuations is expected
to have an almost cancelling dependence on field.
In any case c, can eventually be obtained from the
experimental splitting. If we use the Ambegaokar-
Mermin result we find that

(28)

Here N(eF) is the density of states at the Fermi
energy e~ and ~,« is the effective coupling con-
stant -~. The c, term being linear in field is
larger than c, in fields of less than 500 G. How-

ever, in calculating the anisotropy energy the
c, term enters quadratically so that its contri-
bution is always of the order of (T,/eF)' com-
pared to c, . [The exception to this statement
being when T is very close to T, (T —T, —10 ' 'K)
where the c, term causes the splitting of the tran-
sition. ] Therefore, we only take into account the

c, term in the free energy. In order to calculate
the change in the order parameter, we consider
the free-energy expansion used in Ref. 9 in the
absence of a, field

—,'v 15(1- —,"P) 0

0 (33)

Here p=v 3d,', /h. Substituting into Eq. (32), we
find

I'
. = —

g
I'6 ( ~ —4I8) .

dipoie (34)

If n is along the x axis then performing the same
calculation gives that

(32)

where previously we had not specified the rela-
tionship between the spin and space coordinates
but in Eq. (32) the coordinate system specifying
d must be the same. The value of I can be ob-
tained from the shifted resonance frequency.
Since we have assumed that the dipole energy has
been minimized in the absence of the field, the
two coordinate systems can differ only by a ro-
tation through cos '(- 1/4) about some axis
n. If we assume n is along z then

+2a| Zdn

+ a&2~g]d8gd~r ~ g+ a&3~f)f] dsi~ )~8

The tota, l anistropy energy can be written as

= 25 I'&'ciXo - "2F„=-+— ' '(n H)'
12 ao

(35)

+ 2Q4 Cfoj + gQSQ 'd8g do(g d6' (29) Using the result that

and add to it the term involving c, with M=g, H.
If we then assume that d„, =(6/v 3)5„;+d'; where
d',. ~H' and minimize the free energy with respect
to d;, we find that with H along the z axis

5I'a'/}i =f1'(o' =-5'(u'(T —T)/T

is the square of the longitudinal frequency shift
in the BW state, we find

xx 3l 3I (A 28) Ez

dzg =— cigar 6
v 3[A+8 —28 /(A+28)] '

where

A =a, +6'(a, +a, +a, +a, +a,),
8 = 3S'(a, + a, ) .

35 g(3)
192 w' (I+z /4)' ' ' ksT,

The approximate experimental value' of (&u )'
=2x10" (Hz)'

S~o) yH n

(37)

(38)

In weak-coupling theory with 4' chosen to mini-
mize the zero-field energy A = —4ao/5 and 8
= —2a, /5 where a, = X(0)[(T —T, )/T, ] so that

d,', =+c,y2ff'6/y 3a, . (31)

The dipolar energy can be written to order (d, )'
as

Therefore in a 1-kG field the anisotropy energy is

F= 1x10 "'K/atom. (39)

This means that domains in He must be large com-
pared to 10 "cm' in order for thermal fluctuations
not to act to randomize the spin axes with respect
to field. The anisotropy energy in a 1-kQ field is
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only 10 ' times smaller than the anisotropy ener-
gies which keep the spin and space axes aligned.
Therefore, if the heat-pulse experiments of
Osheroff' are to be explained as being due to the
breaking away of n from H and as a consequence
the resonance shifts, it should also be possible
to break the correlation between the spin and space

coordinates. One would get very unusual reso-
nance behaviors under these circumstances.
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