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The “subcritical” exponent A, for corrections to asymptotic scaling in the renormaliza-
tion-group theory of critical phenomena, has been calculated for the continuous-spin ver-
sions of the classical, d=3 Ising, X-Y, and Heisenberg models by numerical integrations
of Wilson’s approximate recursion formula. The results are A,y (Ising) =—0.640, A, (X-Y)
=-0.644, and A, (Heisenberg) =—0.647. Comparison is made with results from perturbation
expansions in €=4 —d (d being the dimensionality), high-temperature series expansions, and

experimental measurements.

Wegner has shown' that the presence of irrele-
vant operators, and their conjugate fields, in the
renormalization-group theory of critical phenom-
ena implies that near criticality the singular part
of the free-energy density will be a generalized
homogeneous function of an infinite set of scaling
fields (py, Moy Mgy - . ) ¢

Fo(iby, Moy fgy o) = UOF(Pryy, P2y, P3pg, .. .

(1)
The scaling fields are all expected to be analytic
functions of the thermodynamic fields. For ordi-
nary critical points only two of the fields, u, and
U, are relevant (y,>y,>0>y,>y,*+*) and must
vanish at criticality. Thus, Widom’s well-known
scaling hypothesis is regained as [~ =, u, and
Bo=0.

The irrelevant fields are manifested in terms of
a nonanalytic background for the leading critical-
point anomalies. For the isotropic spin models?®
which are often used to describe the critical phe-
nomena in many real systems, including fluids,
superfluid “He and isotropic ferro- and antiferro-
magnets, the dominant contribution to this non-
analytic background comes from the “2s” operator,
the first irrelevant operator with full spin rota-
tional symmetry. Thus, for example, one expects
the isothermal susceptibility of a ferromagnet at
H=0 to display a critical anomaly of the form'

X7 =T “V(A + BT "%2s ++++) (2)

while the density difference of the liquid-gas co-
existence curve is expected to vanish near criti-
cality as®

pr = Pc=TBla+bT %25 +--+), (3)

where ¢ =(T-T.)/T,., the coefficients A, a, B,

and b are analytic functions of 7, the A, is equal
to y,s¥, and the *+* represent less pronounced
background anomalies from the other irrelevant
fields with y; <y,s.

Under favorable circumstances it may be possi-
ble to obtain quantitative information about the
nonanalytic background terms, either experimen-
tally® or from the analysis of series-expansion
data.® Such information would offer a useful test
of the renormalization-group theory for correc-
tions to scaling. It is also possible that the back-
ground terms may be significant in the analysis
of experimental data for the accurate determina-
tion of the form of the leading critical-point sin-
gularity. Therefore it seems important to attempt
to calculate the exponent A, directly from the
renormalization-group theory.

Thus far, the only systematic investigations of
this problem have been based on the very elegant
method of perturbation expansions in € =4 -4,
where d is the dimensionality.® This scheme has
been carried out to third order”® in € for n-di-
mensional spins in d =4 — € space dimensions.

The numerical results for d =3 (€ =1) are given

at orders €, €2, and €® in the first three data
columns of Table I. It can be seen that the pres-
ently available € expansion for A, is very erratic.
This type of behavior, although especially pro-
nounced in the present case, is a commonly ob-
served feature of the e-expansion approach.®

An alternative general method for calculating
critical and subcritical exponents in the renormal-
ization group theory may be based upon numerical
investigations of Wilson’s n=0 recursion rela-
tion.'° This approach offers, in effect, an approx-
imate resummation of the € expansion, which in-
cludes contributions from all orders in € by in-
troducing simplifying assumptions in the evalua-
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tion of terms of order € and higher.® A major
defect of the approximate recursion relation is
apparently the constraint that the critical exponent
n must vanish, whereas one typically finds n<0.05
for d=3. The n=0 recursion formula has been
used in the past to calculate critical exponents and
other critical parameters for the classical d=3
Ising, !° X-Y, ' and Heisenberg models.'? We re-
port here on the calculation of the subcritical
exponent A, for these models.

J

Wilson’s formulation in the n=0 approximation
leads to an effective Hamiltonian for spin fluctua-
tions of wave vector |k|<2~*, p an integer, of the
form

BE@)=- [ [I766)1* +QGEN]d% @)

Hamiltonians for different wave-vector, or wave-
length, cutoffs are related by a nonlinear integral
recursion operator @,.,(Z) =R[Q,(Z)] where

RQ®]=-241n (| dvexpl—-3- to /549 -10@ 5=/ [ deml-5 5-a]). &)

At the critical point the correlation length for
spin fluctuations becomes infinite and the sequence
{Q,(Z)} of effective Hamiltonians of longer and
longer minimum wavelength, generated by itera-
tion of R, is found to go to a limit, or fixed point,
Q*(z).

The scaling exponents {y;} are determined by
the stability properties of @*(Z). Linearization
of R about @*(Z) defines a spectrum of eigenfunc-
tions {4;(Z)} and eigenvalues {1;=2%}. The scaling
fields {u;} of (1) are defined by the decomposition

Z pidi(Z (6)

with some normalization for the {§;(Z)}. For iso-
tropic @*(Z) the eigenfunctions may be classified, ’
like hydrogenic orbitals, according to the irre-
ducible representations of the spin rotation group.
This leads to the notation y; =y, withn=0,1,2,...
and l=s,p,d,

In performing the calculations with (5), one
represents the recursion operator by an approx-
imate numerical algorithm, and the fixed point
and stability properties of this algorithm are then
determined by iteration ona computer. The functions
Q(|Z|) are specified for 0 < |Z| <4.0 on a 41-point
mesh. Lagrange interpolationis usedbetween the
mesh points and a | Z| ® extrapolation is assumed for
|Z]|>4.0. The Ising and X-Y model integrals are
performed by Simpson’s rule and the Heisenberg
model by trapezoidal rule. For the Ising model
the integration variable y is varied from 0.0 to
4.0 with a 41-point mesh. For the X-Y model the

Q4(Z)=Q*(Z) +

TABLE I. Predictions for A,,.

Model O(e€) 0 (€?) 0(€?) This work
Ising -0.5 -0.269 -1.068 —0.640
X-Y -0.5 -0.300 -1.014 —0.644
Heisenberg -0.5 -0.329 -0.969 —0.647

r

variable || is varied in the same manner and
6=arccos(z*¥)/|Z| - |¥| is varied from 0.0 to
3™ on a 32-point mesh. For the Heisenberg model
the integration variables are essentially |Z/V 2
+%| and |Z/V2-F| on a mesh of spacing A=0.1
and going out to |Z|, |¥|=4.0. This choice of
variables reduces the three-dimensional integra-
tion to a pair of one-dimensional integrals.
Starting with a function Q,(», Z)=7|%|%+0.5|Z]| ",
one obtains an estimate, 1%, of the relevant s-
type eigenvalue and, QX(Z), of the fixed point by
constructing a series {r,} such that Q,(r,, Z)
=R*[Q,(r,, Z)] has a specified value, zero, at some
value of Z, | Z| =1.5. Then {r,} tends to a limit as
r,=vr +arf and Q,(r., Z) tends to @*(Z) for large
p. This procedure does not converge rapidly in
practice and an improved estimate of Q*(Z) is
obtained from the elimination, for /~5,6

S (2) -R'[QF(2)]+

e )
-R'[Qx(2)]}. (7)

The effects of small errors in the estimate of
Q*(2) is further reduced in practice by numerically
constructing the linearization of (5) for small per-
turbations, ¥(Z), about @*(Z) in the form ¢,,,(Z)
= £y, (%) with

LY(Z) =R[Qs(2) + ¥(Z)] - R[Qz (3)]. 8)

Given an s-type starting function [y(Z)=y|Z|)
~107*], repeated operation of £ and division by
A%s eventually yields an estimate, %,(Z), of the
1s eigenfunction. With each further iteration of £
this function becomes multiplied by a factor of
A5, thus allowing a more accurate determination
of the eigenvalue. This improved estimate of A
may then be used to further improve the estimate
QX(Z) through the elimination procedure (7). The
process is iterated until an estimate of Q*(Z) is
obtained which changes by less than one part in
10° (in the worst case, X-Y model) with each
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iteration. It should be emphasized that this type

of accuracy in the determination of @*(Z), and
elsewhere, is necessary in order to be able to
study the 2s eigenfunction, which would otherwise
be obscured by rapidly growing 1s-type errors.
The estimates of ), obtained are A, (Ising) ~3.1203,
Xo(X-Y)=>2.9321, and A (Heisenberg) =~ 2.7796,
implying y,(Ising) ~1.642, y (X-Y)~1.552,and
v,s(Heisenberg) =~ 1.475.

Using the best estimates for @*(Z) and A, re-
peatedly operating by £, and dividing the result
by A, yields an estimate of the 1s contribution to
any starting s-type function ¢(|Z|)~107%. This
estimate is subtracted from (| Z|) to obtain a new
starting function $(|Z|), and the entire process
is repeated as many times as necessary to yield
a result which is, for all practical purposes,
orthogonal to ¥,5(|Z|). The value of A, is then
determined by repeatedly operating on this new
function with the linearized recursion £. One
observes, with the first few iterations, an erratic
behavior due to the other more rapidly decaying
irrelevant perturbations. This is followed by a
period of regular behavior during which the iterat-
ed function is simply scaled by a factor of A,
from each iteration of £. This behavior then
breaks down due to the rapidly growing, small
1s -type errors present.

The values of A, obtained in this manner are
Xos(Ising) =0.483, X, (X-Y)=~0.499, and X,;(Heisen-
berg) ~0.516. This yields y,,(Ising) ~-1.05,
v,5(X-Y)=~-=1.00, and y,,(Heisenberg)~-0.955.
Finally for A,s=9,,/9,s= Vs one obtains A,(Ising)
~_-0.640, A, (X-Y)=~-0.644 and A,(Heisenberg)
~—-0.647. These values are listed in the fourth

data column of Table I.

It is interesting to note that both y,; and A, are
found to depend only weakly upon the dimension-
ality of the spin vector. This is also a prediction
of the first-order € expansion which always gives
A,s==0.5. The calculated values for y,s; are also
quite close to the universal value, y,s=-1.0,
obtained at O(¢); however, the predictions for
A,s are substantially different, as the relation
A, =Y,sv involves, at O(e), the mean field value
v=3%. There is no obvious relation between our
numerical results and the higher-order € expan-
sions. We finally mention that by the same tech-
niques we have also been able to obtain an estimate
of the eigenvalue X, (Ising), corresponding to the
first irrelevant operator with p-type symmetry.
Our result is X,,(Ising) ~0.1 to 0.2. This is in
qualitative agreement with Wegner’s calculation
to first order in € which gives \,,(Ising) = 5 for
d=3.

There is presently very little known from other
sources concerning the value of A,;. From the
analysis of Ising-model series data, > Wortis has
predicted A,;~~-0.5. From experimental data on
the superfluid transition in ‘He, Ahlers has esti-
mated® -0.5> A,;> -0.9. It is our hope that the
results of the calculations described here will
offer more reliable estimates of the quantity A,
which will be of value in the future in connection
with the detailed analysis of experimental and
series-expansion data for critical-point anomalies.
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