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We analyze elastic electron-atom scattering at intermediate and high energies by using a
second-order optical-model potential together with the eikonal approximation. We devote
particular attention to the role of long-range forces and formulate the theory in a way suit-
able for generalizations to complex target atoms. We also study the relationship between
the optical eikonal model and the Born series, and include exchange effects to leading order
in the inverse power of the energy. Our optical-model theory is then illustrated by a detailed
analysis of elastic electron-helium scattering for incident-electron energies ranging from
100 to 500 eV. We find excellent agreement with experimental data without using any pheno-
menological parameter.

I. INTRODUCTION

Optical-model calculations of electron-atom
elastic scattering have attracted considerable in-
terest in the past few years. ' " Although earlier
applications mostly dealt with low-energy scat-
tering, the case of intermediate- and high-energy
collisions has also been considered recently. ' "
In this paper we shall be concerned precisely with
this energy region, which we shall analyze by
means of an eikonal" version of the optical-model
formalism. Our aim is twofold. First, we want
to formulate the optical eikonal model'" in a form
suitable for application to scattering by complex
atoms, using a minimum number of phenomeno-
logical parameters. Second, we want to pursue
our investigations" ' of the connection between
eikonal methods and the Born series. In particular,
we wish to elucidate the relationships between the
optical eikonal model and the eikonal-Born-series
(EBS) approach which we recently proposed. "
This will be done below for the case of electron-
helium scattering, where all the calculations can
be performed from first principles and absolute
measurements of differential cross sections are
available. ""

%e begin in Sec. II by recalling the basic equa-
tions of the optical eikonal model. '0 After dis-
cussing briefly the static and absorption contribu-
tions to the eikonal phase, we analyze in detail
the role of the long-range part of the interaction.
The corresponding polarization-phase-shift func-
tion is written down for an arbitrary atom in terms
of an average excitation energy (already used for
the absorption part) and other known quantities.

Hence the generalization of the model to complex
target atoms is made by using only owe phenomeno-
logical parameter. Moreover, an important de-
ficiency of the eikonal method, analyzed in our
previous work, "'"is remedied by using second-
order perturbation theory. Exchange effects are
also considered.

Section III is devoted to the applications of our
method to the case of elastic e1.ectron-helium scat-
tering at incident-electron energies ranging be-
tween 100 and 500 eV. In this case the average
excitation energy 6 may be determined a Priori
by using accurate sum rules for the first-Born-
approximation total cross section, "so that our
optical-eikonal-model calculations do not con-
tain any phenomenological parameter. Our re-
sults are in excellent agreement with the recent
experimental data at small angles. Ne also com-
pare our calculations with those which we have
performed recently by using the EBS method. "
Furthermore, we discuss higher-order terms and
analyze the situation at larger angles, where the
static potential dominates the scattering. " Finally,
we compare our results for the real part of the
scattering amplitude in the forward direction with
calculations based on dispersion relations" and
with the values given by our EBS method. "

II. OPTICAL-MODEL THEORY

A. Basic equations

I.et us consider the nonrelativistic elastic scat-
tering of an electron by a neutral atom having Z
electrons. Ne assume that the center of mass of
the atom coincides with its nucleus and choose it
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We will also make use of the Born series for the
direct part f~ of the scattering amplitude. That
18,

fd pfBns
ft =g

(2.2)

where fs„ is the term of the Born series which
is of order n in the interaction potential V [see
Eq. (2.12) of II].

We begin by writing the equivalent one-body
Schrodinger equation for elastic scattering, name-
ly,

as the origin of our coordinate system. We label
by r and F, , respectively (f =1, 2, . . . , Z), the
positions of the incident and atomic electrons and
we shall also use the symbol X to denote all the
target coordinates including (if necessary) spin
variables. Since we are concerned with the scat-
tering of fast electrons (i.e., the region of inter-
mediate and high energies), we shall first neglect
exchange effects between the incident electron
and the electrons initially bound in the target. Ex-
change effects will be taken into account separately
below by using perturbation theory. The initial
and final wave vectors of the electron will be de-
noted by R& and Rz, respectively, with k = lk& l

All quantities will be expressed in atomic
units. "

The notation which we adopt is that of II.'~ Thus
we denote the kinetic-energy operator of the pro-
jectile by K = —2V'y, while h is the internal target
Hamiltonian with eigenkets

l n& and eigenenergies
w„(we use the symbols l0& and w, for the ground
state). The full interaction V between the pro-
jectile and the target is given by

~ & ol vis& & nl vl o&

2k —K —(K„—No) +SE
flv P (2.6)

& rl v ' lr' &
= Go')(k', F, r')A(r, r'),

where G,")(k', r, r') is the free single-particle
Green's function, with k" = 0' —2A and

(2.7)

A(r, F') =(Ol V(F, X)V(r', X)lO)

-&ol v(r, x)lo&&ol v(r', x)lo&.
(2.8)

The resulting Schrodinger equation, obtained by
substituting the above expressions in Eq. (2.3),
then reads

Here the summation runs over all the intermediate
states of the target, the ground state being ex-
cluded.

The static potential V ' may be readily evalu-
ated for simple atoms, or when an independent-
particle model such as the Hartree-Fock method
is used to describe the ground state

l 0& of the
target. We recall that since this potential is real
and of short range it does not take into account
absorption or polarization effects which play an
important role at intermediate and high energies.
However, we have shown recently" in a study of
the elastic scattering of fast electrons by helium
that intermediate- and large-angle collisions are
dominated by the static potential V~'~.

We now examine the second-order potential V~'.
Since we are dealing with the region of intermedi-
ate and high energies we shall follow the method of
Joachain and Mittleman'" and replace the dif-
ferences w„-w, in Eq. (2.6) by an average ex-
citation energy ~. The sum on n which appears
on the right-hand side of Eq. (2.6) can then be
done by closure. Using the coordinate representa-
tion, we obtain for V~' the nonlocal complex
expression'p

(@+1).„-—.'k')iC,"= 0, (2 2)

where the first order or static potential is such
that

v&" =(ol vl o&, (2.5)

while the second-order part V ' is given by

where g,
' is the elastic-scattering wave function

describing the motion of the projectile in the op-
tical potential U„,. Neglecting for the moment
exchange effects between the incident and target
electrons, we may write the optical potential U, ,
to second order in a multiple scattering expansion
(in terms of the interaction V) as

—v(x) + v(2)

B.Optical eikonal theory

The above equation is still very complicated be-
cause of the structure of A(r, r'). Since, as we
have already mentioned, the static potential gov-
erns intermediate- and large-angle collisions, we
shall only be interested in solving this equation for
small-angle scattering, w here absorption and
polarization effects are the most important. There-
fore, following the work of Joachain and Mittle-
man, "we solve Eq. (2.9) in the eikonal approxi-
mation to write the optical eikonal elastic-scat-
tering amplitude in the form
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where K = K, - Q is the momentum transfer and
the optical eikonal phase is given by"'"

expect X„, mhich represents the effect of the
ground state, to dominate in all orders of perturba-
tion theory at large angles.

Now let us look at the real part of the second
term in Eq. (2.11), which we write as

V"&(5, z)dz+ ', 4z

Z

e "&' "'A. z. z'

(2.11)

with f, =k —k' =6/k. We shall also use below the
optica/ Ham scattering amplitude

(2.12)

obta. ined by expanding the bracket in Eq. (2.10)
and keeping the term linear in X

The first term in Eq. (2.11) is simply the result
one would expect from potential scattering eikonal
studies, namely, the average charge-cloud
potential which mill be iterated to all orders of
perturbation theory via Eq. (2.10). We will write
this term as

y„„(6)= —— V~'l(b, z) dz . (2.13)

The second term is more interesting; it is of
order 1/k relative to the term in VI'l and has
both a real and an imaginary part. The imaginary
part represents the leading contribution due to
open channels. %'e will write this term as

g.„(5)= „', J deaf
d*' os(( -*'')A(6, *;6, )

x sinF(z —z')A(b, z; 6, z'} . (2.15)

It might be thought that as k becomes large (so
that g is small) }(,will become of order I/k2
relative to X„and hence contribute corrections
or order 1/k' to the first Born approximation.
This, however, is not the case since if one ex-
pands the factor aint(z —z') the resulting integrals
for the scattering amplitude are divergent. To see
what is happening in this case, it is instructive
to look at the contribution of X„, to the optical
Bornamplitude of Eq. (2.12). The quantity }(
is in general very complicated, but if we are in-
terested in the small-momentum-transfer be-
havior of fos we need primarily the large-b be-
havior of A(b, z; 5, z'). This is readily done by
expanding the potentials in Eq. (2.8} and keeping
only the leading powers in 1/r and I/r'. A simple
calculation gives

zz' +b'
t t I } (52 + z2)3/2(k2 + I 2)3/2

X (0[ a'[ 0},
where 8 denotes the sum of all the z coordinates
of the bound electrons. Putting this expression
into Eq. (2.15), we find

&0[s2[0&
kk'5'

dz dz' e "&' "&A. b, z; b, z',

(2.14)

where the fact that A is real symmetric has been
used. Employing methods discussed in Ref. 10„
this multiple integral (recall that a multidimen-
sional integration is concealed in A) can be re-
duced to a single integral fox any case in which
the wave function of the target ground state can be
represented as a sum of products of single-parti-
cle orbitals.

We expect the contribution of y„(6) to be most
important at small angles where the amplitudes
for transitions into optically allowed channels are
very large. At mider angles, the optically allowed
amplitudes diminish rapidly, as do all other
amplitudes except the elastic amplitude; thus we

xy+1
(1 + z2)3/2(I + g)$/2

x Jo —q
K sing(z —y} d'g .

0
(2.18)

It is clear that for values of K such that Z & (n /k) ~

fos' is of order 0 '. Infact, the integral involving
the Bessel function can be evaluated analytically"
to give

xy+1x
( I pp/2(I g)3/ sin2g(x —y), (2.17)

where g = )b. If we now insert this into expression
(2.12) it will give a contribution to foz, which we
may denote by f~~~. It is given by

d'5""x (5)
2m pol
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xy+1
(I+~)2) 2(I +g)2s2 (x- &) . (2.20)

so we may write

(2.19)
Integrating by parts and making a change of vari-
ables, we find

(oj s'Io& sin8
(1+x')'", ] 1 +[x- (K/() sine]'j"'

(oj s'Io&
4.k

gK. , Ka
[(Ka)2 + I ]

'

(oj s2jo& s

input'

1 —
1 ~y2 Q'd(I(| (2.24)

where (2 is given by Eq. (2.22) and p=r/a. Inte-
grating by parts twice, we have

This last integral can be done analytically with
some difficulty to yield

v(oj a'Io&, Ks) —
(( ), )„,) (0.0))

where

a=k/2S . (2.22)
When K becomes larger than s ' =2m/k, i.e., when
8&2 4/k', this term is of order k 'K ' and is
small compared to second-order static corrections
to the real part of the amplitude, which are of
order k 'K '. However, for angles less than
2 6/k2 the contribution of Eq. (2.21) will provide
the leading correction to the first Born approxi-
mation. It is interesting to note that in II we have
evaluated the second Born scattering amplitude
for atomic hydrogen and found [see Eq. (2.40a} of
II]

K+8 1 Kf B2 (K2 +4)2 k (k2K2 + 4n2)ll2

(2.23)

For large k and small angles this expression re-
duces to

g Ka
0 [(» )* ~ ))"*) '

which is in exact agreement with'Eq. (2.21}, since
«» hydrogen (ojs'I o& =1.

In order to gain some physical insight into Eq.
(2.21), let us use that equation to provide us with
an effective potential V~((r), whose first Born
term is given by Eq. (2.21). We have

v, (~)=- „,, (ojs'Io&1
ka p

slnpgx 3 15g2dq—

Integrals of this type can be evaluated analytical-
ly." One finds

V,. ( ) = -
2k",,

(),(0) —0.(0)) ——(),(0) —& (0))),
1

(2.25)

6a~ 135a4
»,„,(rl= —0, ) ~ ~ ~, + ~ ), (2.00)

where

2( ol a'Io&

is precisely the polarizability which would be ob-
tained in the closure approximation.

The function V,„)(r) clearly has the polarization
form, which we anticipated in our choice of nota-
tion. However, we note that at large 2 V„„(r) lies
below the asymptotic form —l2/22 0. This is just
the opposite of what would be obtained from a
Buckingham polarization potential of the form
—o. /2(r2+a')2. We may also remark that since
a is proportional to 4 the correction term of
relative order r ' can be quite important, even
for rather large values of r. Thus, for the case
of helium at 500eV, wherea"—"2.4, the correction
is more than 30/~ at r =10.

The quantity of direct interest to us is I(„„)(b),
which can be determined from V2„) (r) by

(2.27)

where I„ is a modified Bessel function and I„
is a modified Struve function. Tables of Io —I.o
and I, -I., are available in the literature. " From
V~„(2 ), &t,„)(b) can be obtained by numerical in-
tegration. Using the asymptotic expansions'4 of
I, —I., and I, —l., the large rbeha-vior of V„„)(r)
is readily obtained:
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00

)t,„,(b) = —— V,„,(b, z) dz . (2.28)

This is readily obtained by using either Eq. (2.24)
or (2.25) for V„„~(r). En either case, a simple
numerical integration yields Xp

Finally, with the phases X„, X,b„and X~, de-
termined according to the above discussion, we
use Eq. (2.11) to write

Xopt Xst + Xabg + Xpo) ~ (2.29)

d 0 (a.u. )
dg

This enables us to evaluate the optical eikonal and
optical Born amplitudes given by Eqs. (2.10) and
(2.12), respectively. The phases y„„and )t~, are
dominant in correcting the first Born approxima-
tion at small angles where virtual excitation chan-
nels have very large amplitudes. The static phase
X„plays the dominant role at larger angles as
the inelastic channels become unimportant com-
pared to the elastic channel.

As we have already indicated in Eq. (2.23), the
quantity Refz, contains terms of order k~ which
a full wave treatment of the optical potential would

give by the iteration of the static potential V ' to
second order. However, as we have pointed out
elsewhere, "'"this contribution is not present in
an eikonal treatment. Fortunately, at least for
ground-state wave functions ~0) of the Hartree-
Fock type, it is a sim~le matter to obtain the
second Born term Ref s, corresponding to the
static potential V ' . Therefore we may add this
term to the real part of our optical eikonal scat-
tering amplitude (2.10). This gives us the d&««
amplitude for elastic scattering

fz =foe 'Ref a2 (2.30)

C. Exchange scattering

As in II, we will treat exchange corrections only
through leading order in 0 '. Therefore, we shall
approximate the exchange amplitude g by go,„, the
Ochkur" approximation to it. For example, in
the case of electron-helium scattering discussed
in Sec. III we write the full optical elastic scat-
tering amplitude as

With fz determined in this way, and keeping in
mind that 0 is large, it is clear that an expansion
of f~ in powers of V will duplicate the Born series
through second order. It will also give approxima-
tions to higher terms of the Born series (fz„
fz„.. .). The third-order contribution will be
discussed in detail below for the case of electron-
helium scattering.

fopt fd gOch s (2.31)

so that the differential cross section for elastic
scattering is given by do„„/dQ=

~ f„„~'.

(a.u. )
dA

8(deg)

10 20 30

I IG. 1. Differential cross section (in a.u.) for elastic
electron scattering by helium at 100 eV. The curve rep-
resents the results of this paper, using the optical
eikonal method. Triangles are the experimental results
of Vriens et al. (Ref. 26); solid circles are the same
results renormalized by Chamberlain eg g). (Ref. 16);
squares shower the data of Crooks and Rudd {Ref. 17);
crosses display the results of Vuskovic (Ref. 18); open
circles are the data of Jost et al. (Ref. 27).

8(deg)

10 15 20 25 30

FIG. 2. Same as Fig. 1, but at an energy of 200 eV.



F. BYRON, JR., AND C. JOACHAIN

III. ELECTRON-HELIUM ELASTIC SCATTERING

A. Results and comparison with experiment

As an illustration of the theory presented in
Sec. II, we now discuss in detail the case of elec-
tron-helium elastic scattering at incident energies
between 100 and 500 eV, where recent absolute&5 '8

and relative"'" experimental data are available.
The ground-state wave function used in performing
our calculations is the same as that used in II.
With the quantity 6 determined (as in II) to be
1.3 a.u. , we emphasize that this optical eikonal
calculation contains no adjustable parameters. In

a more complicated atom 6 should be regarded
as a phenomenological parameter.

Our results are summarized in Figs. 1-4 and in
Tables I and II. The former display small-angle
results, while the tables give a picture of the
scattering over the full angular range. These
tables also contain a comparison with previous
theoretical results of II and III. We note that the
agreement between our results and the experi-
mental data at angles such that 0' &8 +30' is
excellent. The tables, however, reveal that at
larger angles the optical-eikonal-model results
are not so reliable. In particular, the static
results of III, which are just a full wave treat-
ment of the lowest-order (static) optical potential
together with the leading (Ochkur) exchange cor-
rection, but with absorption and polarization terms

omitted, agree much better with experiment than
do the present optical eikonal results, which con-
tain static, absorption, and polarization effects.
The reason for this is twofold. First, one expects
that at wide angles the effects of polarization and

absorption will be small; second, as we noted in
I-III the eikonal method is seriously deficient in

dealing with higher-order terms in the Born se-
ries, which terms have their greatest importance
precisely at large angles. In fact, the eikonal
method omits at each order in k ' a term of the same
order in k as the one which it includes. This omis-
sion is unimportant in strong-coupling cases, but in

an intermediate-coupling regime such as that with
which we are dealing here this omission can be
serious. It is just this defect which made it nec-
essary for us to add the term Ref s~ to the am-
plitude f o[ ese Eq. (2.80)j. Such an addition would

not of course be necessary in a full wave treat-
ment. We should remark here that Tables I and

II suggest that in more complicated atoms a wave
treatment of 9'l alone should give a good picture
of elastic scattering outside the small-angle re-
gion.

In order to see when y„, g,b„and g~„play their
important roles, let us consider in more detail

—o(a.u.)
dA

do (a.u. )

1.5

1.0

0.5

0.5

10 15 20 30

10

8(deg)

20 30

FIG, 3. Same as Fig. 1, but at an energy of 400 eV.

FIG. 4. Differential cross section (in a.u. ) for elastic
electron scattering by helium at 500 eV. The curve rep-
resents the result of this paper, using the optical
eikonal method. Solid circles are the results of Brom-
berg (Ref. 15); open circles are the data of Jost et al.
(B,ef. 27).
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TABLE I. Comparison of various theoretical and experimental differential cross sections for elastic electron-heli-
um scattering at an incident-electron energy of 200 eV. All results are in units of ao/ster.

Theoretical Values Experimental Values

(deg)

Eikonal
Born series

(Ref. 14)

Static plus
exchange Optical
(Ref. 20} eikonal

Vriens et al.
(Ref. 26)

Chamber l,ain Crooks
et al. and Rudd Vuskovic Jost et al .

(Ref. 16) {Ref. 17) (Ref. 18} (Ref. 27)

0
5

10
15
20
25
30
50
70
90

110
130
150
180

3.16
2.12
1.34
8 ~ 65 (-1)
5.8S (-1)
4.oe (-1)
2.88 (-1)
8.ve (-2)
s.e1 (-2)
1.9V (-2)
1.32 (-2)
1.01 (-2)
8.60 {-3)
v.88 (-3}

8 ~ 54 {-1)
8.22 (-1)
7.37 (-1)
6.21 (-1)
5.01 (-1)
3.9O (-1)
2,99 (-1)
1.os (-1)

2.17 (-2)
1.34 (-2)
9.64 (-3)
7.81 (—3)
e.9v (—s}

2, 97
2.03
1.28
8.50 (-1)
5.81 {-1)
4.08 {-1)
2.90 (-1)
8.42 (-2)
s.o8 (-2)
1.41 (-2)
v.85 (-s)
5.17 (-3)
3.95 {-3)
3.41 (—3)

2.04
1.28
8.36 (—1)
5.61 (-1)
3,99 (-1)
2.75 (-1)

1.64
1.04
6.81 (—1)
4.58 (-1)
S,25 (-1)
2.24 (-1)

7.13 (—1)

3.25 (-1)
1.03 {-1)
4.23 (-2}
2.33 (-2}
1.41 (-2)
1.05 (-2)
8.43 (-3)

1.72
9.63 (-1)
6.38 (-1)
3.63 (-1)
2.e4 (-1)
1.41 (-1)
6.08 (-2}
2,39 (-2)
1.45 {-2)
9.4v (-3)
7,37 (-3)
6.43 {-3)

2.36
1.50
9.65 (-1)
6.07 (-1)
4.45 (—1)
3.20 (-1)
1.oo (-1)
4.11 (-2}
2.oo (-2)
1.21 (-2)
8.5v (-s)

the importance of various contributions to that
part of the optical eikonal amplitude which is
quadratic in V[see Eq. (2.1)] and which we denote
by fi'„We rem. ind the reader that Vi' is linear
in V and V ' is quadratic in V, so that f,'„comes
from X„acting in second-order perturbation
theory (f,), from y,„, and )I „acting in first-
order perturbation theory (fob' and fop;,', respec-
tively) and from Ref s'„which we have added in
Eq. (2.20). This Amplitude should be nearly equal
to the second Born amplitude fs„which is just
that part of the exact direct scattering amplitude
which is quadratic in V; it is riot the same as
foE» which is the term in the optical eikonal am-
plitude quadratic in U», .

Table III shows the real part of fI'I, along with

the separate contributions of fo"„' (which is purely
real) and Ref" at an energy of 200 eV. Also in-
cluded for comparison is Ref+, as calculated in
II. %e see that for angles less than about 20' the
part of Refi2I coming from fg, ' dominates, but
at larger angles Ref/, controls the behavior of
the second-order amplitude. Table IV illustrates
a similar situation for Imfi2lt. It shows the sep-
arate contributionsof imfoa andlmf;~2„and we see
that the absorption part dominates at angles less
than about 20', whereas Imf;,', controls Imf PI
at larger angles. Ne may remark that the angle
at which f~'I becomes dominated by fo'g and f,";„'

depends on energy and varies roughly as F.' '.
We also note that for both Refi2I and lmfial the
agreement with Refs, and Imfa, is quite good.

TABLE II. Same as Table I, but for an incident-electron energy of 400 eV.

Theoretical Values Experimental Values

8

(deg)

Eikonal
Born series

{Ref. 14)

Static plus
exchange
{Ref. 20)

Optical
eikonal

Vriens et al.
{Ref. 26)

Chamberlain Crooks
et al . and Rudd

{Ref. 16) (Ref. 17)
Jost et al.
(Ref. 27)

0

10
15
20
25
30
50
70
90

110
130
150
180

2.24
1.18
6.89 (-1)
4.30 (-1)
2.85 (-1)
1,84 (-1)
1.23 (-1)
2.96 (-2)
1.O9 (-2)
5.45 (-s)
3.37 {-3)
2.44 (-3)
2.oo (-s)
1.8o (-s)

7.39 (-1)
6.8e {-1)
5.5V (-1)
4,11 (-1)
2.85 (-1)
1.93 (-1)
1.30 (-1)
3.22 (-2)
1.14 (-2)
5.S4 (-3}
s.1o (-s)
2.12 (-3)
1.ev (-3)
1.34 (-S)

2.15
1.14
e.v5 (-1)
4.35 (-1)
2.82 {-1)
1.83 (-1)
1.20 (-1)
2, 78 (-2)
9 ~ 29 (-3)
4.16 (-3)
2 33 (-3)
1.55 (-3)
1.2o {-s)
1.04 (-3)

1.15
e.88 (-1)
4.2O {-1)
2.62 (-1)
1.65 {-1)
1.05 (-1)

1.04
e.22 (-1)
s.8o {-1)
2.37 (-1)
1.49 (-1)
9.48 ( 2)

v.e1 (-1)

3.17 {-1}

1.41 {-1)
3.34 (-2)
1.17 {-2)
e.eo (-3)
3.33 (-3)
2.32 (-3)
1.8s (-3)

1.39
8.9S (-1)
5.82 {-1)
s.e4 (-1)
2.35 (-1)
1.55 (—1)
3.57 {-2)
1.21 (-2)
5 ~ 18 (-3)
3.00 (-3)
1.96 (-3)
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TABLE III. Contributions to the real part of the opti-
cal eikonal amplitude which are proportional to V2. The
real part of the second Born term is included for com-
parison. The incident-electron energy is 200 eV.

TABLE V. Comparison of the quantities Ref~&3&,

Ref &, , Ref,~, , and f~z for electron-helium scattering
at an incident energy of 200 eV.

(deg) (pQ) Reg,",
Ref {"

Ol-..

fP ~Ref bt
opt Red)

0
5

10
15
20
30
40
50
60
90

120
150
180

6.48 (-1}
3.72 (-1)
1.90 (-1)
1.13 (-1}
7.03 (-2)
3.49 (-2)
2.OS (-2)
1.38 (-2)
9.82 (-3)
4.9O (-3)
3.30 (—3}
2.52 (—3)
2.45 (-3)

6.31 (—2)
6.27 {-2}
6.19 {-2)
6.03 (-2}
5.84 (-2)
5.34 (-2)
4.78 {—2)
4.22 (—2)
3.70 (—2)
2.55 (—2)
1.92 (-2)
1.62 (—2)
1.53 (-2)

7.11 {-1)
4.35 {-1)
2.52 (-1)
1.73 (-1)
1.29 (-1)
8.83 (-2}
6.86 (-2)
5.60 (-2)
4.68 (-2)
3.O4 (-2)
2.25 (-2)
1.sv (-2)
1.vv (-2)

7.31 (-1)
4.34 (-1)
2.4V (-1)
1.55 (-1)
1.11 (-1)
7.79 (-2)
6.42 (-2)
5.43 (—2)
4.62 (-2)
2.95 (-2)
2.13 (-2)
1.75 (-2)
1.65 (—2)

RefPI =Ref;„', +Ref,". . .
where we have set

3

(3. I)

(3.2)

8. Discussion of higher-order terms

Let us now compare the term in our amplitude,

f„~„rpoproti noalto V' with the corresponding
term in the Born series. By using an analysis
similar to that of II it can be shown that for 4
large the dominant part of the V' contribution
to that amplitude is the real part, namely,

(deg)

0
10
20
30
60
90

120
150
1H0

Ref;p',

-9.6H (-2)
-9.64 (-2)
—9.52 (—2)
-9.33 (-2)
—H. so (-2)
-V.63 (-2)
-6.es (-2)
-6.S4 {-2)
-6.41 (-2)

Ref »pi

-1.os (-1)
-1.O1 (-1)
-9.09 {—2)
-7.79 (-2)
-4.43 (-2)
—2.70 (—2)
-1.go (-2)
—1.56 {-2)
-1.46 (-2)

-2.02 (-1)
-1.97 (-1)
-1.86 (-1)
-1.71 (-1)
-1.29 (-1)
-1.O3 (-1)
-8.86 {-2)
-8.10 (-2)
-v.sv (-2)

Ref~)

-1.1V (-1}
-1.3e (-1)
-1.54 (-1}
-1.53 (-1)
-1.23 (—1)
-9.92 (-2)
-8.4s (—2)
-7.77 (-2)
-7.56 {-2)

and Reft'I together with the real part of the third
Born term Ref» (as obtained" in II) for various
scattering angles and an incident-electron energy
of 200 eV. The agreement between Ref~",, and

Ref» is excellent for angles greater than about
30' and is seen to be poorest in the forward direc-
tion. It is worth noting that at all angles the term
Ref,"„makes a significant contribution to Reft, 'I .
This contribution brings Refi3I into good agree-
ment with Ref» outside the small-angle region.
Thus the iteration of the second-order optical
potential produces an important part of the third-
order contribution to the scattering amplitude,
with both static and absorption parts playing a
significant role. The difficulties at small angles

and

Ref,"p, =
2 7g

iK ~ b
& XSt Xabx (3.3) (a) (b)

We show in Table V the quantities Ref,'~„Ref,"„
TABLE IV. Contributions to the imaginary part of the

optical eikonal amplitude which are proportional to V2.
The imaginary part of the second Born term is included
for comparison. The incident-electron energy is 200 eV.

(deg) Im pabs
OB Imf„p2,

Im) '.»=
Opi

Im toj Imf ~ 0 0 fA 0

0
5

10
15
20
30
40
50
60
90

120
150
180

v.vo (-1)
6.69 (—1}
4.78 (—1)
3.19 (—1)
2.08 (-1)
e.oo (—2)
4.21 (-2)
2.2O (—2)
1.27 (-2)
3.92 (-3)
1.89 (—3)
1.23 (-'3)
1.08 (-3)

2.29 {-1)
2.28 (—1)
2.26 (-1)
2.22 (-1)
2.17 (-1}
2.OS (-1.}
1.90 (-1)
1.75 {-1)
1.60 (—1)
1.25 {—1}
1.03 (-1)
9.16 {—2}
8.81 (-2)

e.ee (-1)
8.97 (-1)
7.O4 {-1}
5.41 (-1)
4.25 (-1)
2.95 (-1)
2.32 (-1}
1.95 (—1)
1.73 (-1)
1,2e (-1)
1.O5 (-1)
9.2S (-2)
H, 92 (-2)

H. S4 (—1)
v. ev (-1)
6.28 {-1)
4.V9 (-1)

(—1)
2.sv (-1}
2.O5 (-1)
1.vs (-1)
1.6O (—1)
1.24 (—1)
1.03 (-1)
9.15 (-2)
8.81 (-2)

(e)

FIG. 5. Typical third-order diagrams contributing to
the scattering amplitude. Figures 5(a) and 5(b) show,
respectively, a connected and a disconnected part which
contribute to Bef;&&. Figures 5(c) and 5(d) display,
respectively, a connected and a disconnected term con-
tributing to Be f,p, . Figure 5(e) is a disconnected dia-
gram in which the target experiences two virtual excita-
tions. Diagrams of the type (e) are not included in a
second-order optical model. The indices o, n, and nz

refer to single-particle orbitals.
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TABLE VL Comparison of the real part of the scat-
tering amplitude as calculated by three different ap-
proaches: the optical eikonal method, the eikonal Born
series and dispersion relations.

(eV) Refopt (0)
R'fleas"'
(Ref. 14)

Re@R (0)
(Ref. 21)

100
150
200
300
400
500

1.68
1.54
1.44
1.32
1.25
1.21

1.91
1.67
1.54
1.39
1.30
1.24

1.91
1.81
1.71
1.48
1.36
1.29

with the third-order term are not surprising,
in view of the fact that no second-order optical
model can produce long-range forces in third
order. Such effects can only arise by including
a third-order contribution to the optical potential,
i.e., by writing

V(&) + y(2) + y(&) (3.4)

In order to analyze in more detail the structure
of the optical eikonal third-order term Ref/I,
let us consider separately its components Ref;,',
and Ref,"„, given, respectively, by Eqs. (3.2)
and (3.3). The term Ref;3i accounts for contribu-
tions in which the target remains in its ground
state during all interactions. In fact, using a
single-particle picture to describe the target,
this term may be considered as a sum of con-
nected and disconnected parts of the type shown
in Figs. 5(a) and (b). On the other hand, the term
Ref,", takes into account the contributions in which
the target experiences a single virtual excitation
during all interactions. This term also contains
connected and disconnected parts, of the type
shown in Figs. 5(c) and (d). We note that the con-
tributions in which the target experiences two
virtual excitations are not included in our model.
These contributions come entirely from discon-

nected parts, typified by Fig. 5(c). In higher
orders of perturbation theory it is clear from
this analysis that the second-order optical model
will miss all terms containing two virtual excita-
tions. Among such missing contributions are those
due to elastic scattering in virtual excited states,
which are responsible for long-range forces in
higher orders.

Finally, let us remark that the optical Born re-
sults, obtained by using the quantity fo„[Eq. (2.12)j
instead of f~s, do not contain terms of higher than
second order (in the coupling constant) and are
distinctly inferior to the values obtained from the
optical eikonal theory.

C. Comparison with dispersion relations

As a final test of our optical eikonal calculations,
let us compare the real part of our full amplitude

f,~, [given by Eq. (2.31)j in the forward direction
with the values obtained by Bransden and Mc-
Dowell" using experimental data and dispersion
relations. This comparison is made in Table VI,
where we also display the results of our EBS cal-
culations. '4 Vfe note that our results agree well
with the dispersion-relation calculations, the
optical eikonal va.lues being smaller than those of
Bransden and McDowell by about 15% at the lowest
energies and less than 7% at the higher energies.
As we already pointed out in Sec. IIIB, the optical
eikonal results for Ref, , (8=0) lie consistently
below the corresponding EBS values, but the dis-
agreement in this case is smaller, being only of
the order of 4% or less at energies above 300 eV.
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