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Resonant enhancement of optical third-harmonic generation in cesium vapor has been observed when

twice the energy of the fundamental photon becomes equal to the energy difFerence between the
91 'D3/2 level and the ground state of the cesium atom. The measured, effective coefFicient is 10 "
esu/atom, which is more than a factor 108 larger than the corresponding coefficient for the helium

atom. An efFective coef6cient is synthesized by first calculating the coefficient for a single cesium atom

at rest and then including the effects of Doppler broadening and the fundamental laser spectrum. The
calculated value is in satisfactory agreement with experiment.

I. INTRODUCTION

We wish to report the observation of resonant
optical third-harmonic generation in cesium va-
por. ' The resonance investigated here occurs
when twice the fundamental photon energy (2Am&v)

becomes equal to the energy difference between
the ed'D„, level and the ground state for a cesium
atom.

This resonance is conveniently discussed in
terms of a time-dependent perturbation-theoretic
expression for the third-harmonic coefficient
y(-3&v; ~, ~, &u}. A generalized definition of such
coefficients is given by the relation between
Fourier amplitudes of the applied electric fields
E ', E ~, . . . , and the resulting dipole moment
p~a.

p +( +a s +It +2| ' ' }X( +a } +lt +2t ' ' ' }.E-iE-2

where frequencies are indicated by superscripts

and satisfy

(do= A&+&2. . .

and X(-&u, ; &u„~„.. . ) is the (tensor) coefficient
for the process. K(-u, „&u„e„.. . ) is a number
of order unity and is discussed in Refs. 2 and 3,
together with other details of the conventions used
here. Time-dependent perturbation-theoretic
expressions for y(-u, ; u„&o„.. . ) are available
in the literature' and typical terms for polariza-
tions linear, second order, and third order in the
applied electric field may be written

Linear

Q„g —ca) i

Second order

)
„&girl &)«lrln)(nlrlg),

(Q„—(u, —(u, )(Q„,—&u, )
(4)

Third order
(gf rl )(llrfl )m( mlrl n)(nl rig)

(Q,g
—(u, —&u, —(u, )(Q, —(u, —(u, ) (Q„,—(u, )

where lg) is the ground state, lm) denotes an
intermediate state with energy hcv, and lifetime
I' ', and

Qm~= (~m —~r) —'2 f m .

A resonance occurs whenever an applied field
frequency is such that the real part of a resonance
denominator vanishes. For example,

Re(Q„~ —(u, }= 0,
Re(Q ~

—&u, —u, ) = 0,
Re(Q„—(o, —(u, —(u, ) = 0,

I

which are representative of one-, two-, and three-
photon resonances, respectively. The familiar
one-photon resonances in the linear polarizability
give rise to absorption and a region of "anoma-
lous" dispersion. Second- and third-order coef-
ficients become large and complex near a reso-
nance, but such resonances are usually accom-
panied by linear resonance (and therefore absorp-
tion) at either an applied field or polarization fre-
quency. This situation has been analyzed by a
number of authors. ' In the case of the two-photon
resonance in the third-order coefficient,
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ing, for example, from Im[y(-~„~„—~„~„)]do
accompany the other two-photon resonant third-
order processes, but these are much weaker than
linear absorption. Two-photon absorption has
been studied in various materials, ' including mea-
surements by Abella in cesium vapor. '

The resonant third-harmonic generation studied
here arises from a two-photon resonance and in
this particular case Eg. (5) becomes

Re(II„,—&u, —&u, ) = 0,

a new feature arises which is absent in lower-
order processes. Resonant enhancement of the
coefficient can occur without linear absorption at
any field or polarization frequency. This type of
resonance is involved in the stimulated Raman
effect and subsequent four-wave interactions. '
Nonlinear (two-photon) absorption processes aris-

)
&g ( r [ I&( I[ r ) m&&m [ r ( n)&n ] r /g&

(II(, —Sar)(Q, —2(u)(Q„, —&u)

of the third harmonic.
In Fig. 1(b) the process observed by Abella'

is indicated schematically. The solid lines indi-
cate population of the 9d'D„, level by two-photon
absorption. This process clearly has the same
resonant dependence on fundamental frequency as
third-harmonic generation. Dashed lines indicate
one of several fluorescent decay paths for the
excited 9d 'D„, level.

Simultaneous observation of the fluorescence
and third-harmonic generation which provides a
definitive signature for this resonance will be
described in Sec, II. In Sec. III we synthesize
an effective third-harmonic coefficient for com-
parison with the measured value. This synthesis
includes the effects of Doppler broadening and
the laser spectrum, and is based on a quantum-
mechanical calculation described in the Appendix
for a single cesium atom at rest.

The condition for the resonance is

Re(Q, —2u) = 0, (10)

and also the relevant matrix-element product must
not vanish—

&m (r(r&&n)r(g&~O;

thus if ~g& is an atomic S state, (m) must be an
S or D state, Both conditions can be met using
a ruby-laser source and cesium vapor as the res-
onant third-harmonic generator. Figure 1 shows
an energy-level diagram for cesium with the
9d 'D„, level accentuated. This level is 28818.90
cm ' above the ground state, and the ruby-laser
output can be tuned to half this value by cooling
the ruby rod to about 148 K. Vife were not able
to tune our ruby laser to achieve resonance with
the 9d'D, » level at 28836.06 cm ', and the nearest
S level (lls) is much further away at 29130 cm '.

It may be noted from Fig. 1(a) that the third
harmonic is beyond the ionization limit for cesium.
This does not have a dramatic effect on either the
third-harmonic coefficient or the linear absorption

II. EXPERIMENTAL

A schematic diagram of the apparatus is shown
in Fig. 2.
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FIG. 1. Energy-level dia-
gram for the cesium atom
showing schematically (a)
resonant third-harmonic
generation and (b) two-
photon absorption (solid
lines) followed by two-step
fluorescent decay (dashed
lines) . The resonant
Bd D& y2 level is shown
emphasized and ~ is the
frequency of the incident
light.
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The Q-switched ruby laser produces a 1-M%
25-nsec [full width at half-maximum (FWHM)]
light pulse. The rod temperature is controlled in
the range 293-125'K, which corresponds to an
output wavelength range' of 694.3-693.5 nm. The
laser output exhibits multi-transverse-mode
structure: The longitudinal mode structure is
discussed in Sec. III.

The cesium vapor is contained in an 18-cm-long
stainless-steel cell with sapphire windows. Heat-
ing tapes and cooling coils maintain a temperature
distribution along the cell, highest at the center,
falling to a minimum at 6 cm from the center, and
rising again at the windows. A typical temperature
at the center of the cell is 483 K, which corre-
sponds to a cesium-vapor pressure' of about 0.13
Torr. The cell is lined with copper felt, which
serves as a wick to return liquid cesium to the
center of the cell. About 1 Torr of neon was
introduced into the cell before sealing off prior to
the experiments. This buffer gas, together with
the temperature distribution, inhibits diffusion
of cesium vapor to the cell windows which, in the
presence of the laser beam, would lead to incan-
descence and window damage. The neon has no
other significant effect on the experiment, The
cell is provided with a third window to permit
observation of light emitted by the cesium vapor
in a direction perpendicular to the laser beam.

Third-harmonic and fluorescent radiation are
detected by photomultipliers after suitable spectral
filtering (see Fig. 2). The two photomultiplier
output pulses are shown sequentially on one beam
of a dual-beam oscilloscope with the other beam
displaying a fundamental intensity- monitor pulse.
Photographs of these oscilloscope traces yield
pulse heights proportional to fundamental power
6', third harmonic power 6", and fluorescent
signal power 6' .

A third-harmonic signal exhibiting the expected
pulse duration, wavelength, and polarization ap-

peared as the cesium cell was heated up from
room temperature. For these experiments the
laser beam was focused at the center of the cesium
cell and about 5 p.%' of harmonic was generated
with the fundamental attenuated to 120 k%'. The
dependence of harmonic generation on fundamental
frequency (ruby-rod temperature) was then in-
vestigated, with the cesium-cell temperature dis-
tribution maintained constant with the center at
483'K. The observed resonance is shown in Fig.
3(a). The error bars in Fig. 3 represent the
statistical uncertainty over a set of 15 laser shots.
The fundamental frequency scale was calibrated
to within +0.05 cm ' (as indicated in Fig. 3 by a
horizontal error flag) with respect to standard
cadmium lines using a grating spectrograph. The
vertical arrow indicates the expected position of
the resonance peak at ~(d» =14414.45 cm ' and

3/2
the agreement with experiment is excellent. Also
shown in Fig. 3(b) is the simultaneously observed
fluorescent light emitted through the side window
at 584.7 nm. This arises from the fluorescent decay
to the 6P 'P„, level from the 9d'D3/2 level populated
by two-photon absorption, which was studied in
detail by Abella. ' %e have also observed fluores-
cence at 566.6 nm from the transition 9d'D„,—

6P '&„„which, as expected, is five times as in-
tense as the 584.7-nm component. It can be seen
that this resonant effect also occurs at the pre-
dicted fundamental wavelength and is coincident
with the resonant third harmonic.

The linewidths of the two resonance curves are
comparable, being 0.30 and 0.20 cm ' (FWHM) for
third harmonic and fluorescence, respectively.
This feature and the line shape will be discussed
further in Sec. III.

The effective atomic third-harmonic coefficient
at the peak of the resonance was measured using
a collimated fundamental beam. In this case it
can be shown that the amount of harmonic gen-
erated depends only on the number of coherence
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FEG. 2. Schematic dia-
gram of the apparatus. d:
delay line; f& .. red trans-
mitting filter; f2.. aqueous
NiSO4 filter; f3. aqueous
CuSO4 filter; f4. inter-
ference filter 566.6 or 584.7
nm; pm: photomultiplier
RCA U'28; pc: photocell
RCA 922.



TWO- PHOTON RESONANT, OPTICAL THIHD-HARMONIC. . . 2443

(4' )' c'A'[a(s)) —a(3(a)]" (12)

where A is the cross-sectional area of the funda-

lengths of cesium vapor traversed by the beam,
and not on the cesium distribution. (Detailed con-
sideration of harmonic generation by focused
beams in inhomogeneous media will be presented
elsewhere. ) As the temperature at the center of
the cesium cell is raised the observed harmonic
signal increases to a maximum and then drops
to zero again (see Fig. 4}. The maximum can be
identified with the presence of one coherence length
of cesium vapor. [Calculations based on the cell
exterior temperature distribution, vapor-pressure
data, ' and calculated optical polarizabilities (see
Appendix), give the same result to within 20%%uo. ]
The effective coefficient (X) may be obtained from
the measured fundamental and harmonic powers
measured at one coherence length, according to
the relation

mental beam. o. (&u) and a(3&v) are the linea. r
atomic polarizabilities at the fundamental and
harmonic, respectively, for which we use calcu-
lated values (see Appendix}.

The sensitivity of the apparatus was calibrated
by observing third-harmonic generation in helium

gas and using a theoretical value for the helium
coefficient. " This yields

(X) = 10 3o esu/atom

with an estimated uncertainty of a factor of 5. Q)
is an effective coefficient in the sense that it de-
pends on the broadening processes taking place
in the cesium vapor and on the laser spectrum, as
well as on intrinsic properties of a cesium atom.
This will be discussed in detail in Sec. III.

III. SYNTHESIS OF EFFECTIVE COEFFICIENT (x&

In this section we present results of a quantum-
mechanical calculation for the resonant third-
order nonlinear coefficient of a single cesium atom
at rest. (The calculation is outlined in the Appen-
dix. ) The effects of Doppler broadening and laser
spectrum are then included to synthesize an ef-
fective coefficient for comparison with experi-
ment.

Near the resonance

.6-

.5-
Q

-' 2-
.1-

Be(Q„,—ru, —(u, ) = 0

the dominant resonant part of the nonlinear coef-
ficient y„„(-~„&u„~„&u,) may be written'

ssS 1 2

where I. .. indicates the average of all terms
obtained by permuting (d„&„&,. For the cesium
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FIG. 3. Third-harmonic generation (a), and 9d D3/2-

6p'I', &, fluorescence following two-photon population of
the 9d2DBy2 level (b), as a function of fundamental light
frequency. The vertical arrow indicates the expected
position of the resonance with horizontal error flag
showing the uncertainty in our frequency scale calibra-
tion. Vertical error flags indicate statistical uncertainty
over 15 laser shots.
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I"IG. 4. Third-harmonic generation by a collimated
fundamental beam, as a function of temperature at the
center of the cesium cell. The maximum corresponds
to the presence of one coherence length of cesium vapor.
A smooth curve has been drawn to fit the data points.



2444 LEUN ARD AND OR

and
have

sting the 9d 'D
3/2 state we 1'./1;)

erst note that th
q"antitative a„ 1

'tjon of
tdth y (F~HM

1 sis we

~ /c f
zed velocit

e dlstrthn
normal.

M) of th

r cesium at
y mponent s

T=483~ i . a oms of ma M
say

s given by
te mpe ratu

0 fft g
—2y I'

= (26618.90 —
& jx1.9x10-5

dl scussed

Xo= 8

»the APPendix) 8~T ln2
Mc'

(16)

6*4)x10 2v

should

een/ato

should be noted that

(1 t

a p ex linear
1 yin1

acorn l

or the third-h
ion, this is n

imaginar

ot the
oe icient. Real

components in
ve rise to two

contribute to
n phase quadra

o har-
rature which

e o onic power 6" so, so that6"

fficient.
e value

= 1.4x10

Using tabulated values s

(

function
e values p sma dispersio

coefficient Q

sion

c ' ' ~asafunct'
raged atomic

s own in F'
c ion of lase f q ency"5b ound that, at reso-

&x.) I
=

I x. l
(n' 1n2) "'

=6.3x10 "esu/atom (19)
A. Dopp er broaden'ening

and the width I" Fan
'

d (FWHM) of the re
ening is

curve

I ~=0.024 cm '
0

b D
xpe rimentalThe e

by oppler broaden'
reson

oa ening aris' f'ng rom thermal m-
i llyom ect is e

and reduce
d ( oPP

lntenslty by a f
h

ln '
y a factor close t

(2O)

B.. Laser spectrum

-5 -4 -3 -2

~r~tng)/~m

I

-5 3—4 5

FIG. 5. FFrequenc d

ge coefficients fge co 'ng atoms;
*

0 Invest'tigation of the laser s
abry- Perot '

pectrum usin

the presesence of sev
ometer indic

now calcul
eral longitudi

t th ff tec on the third-h
i

re which a ' s
mode

gitudinal m d

p

n1odes
erent ion-y incohe

5cm '
ower and seseparated by
esponds to the o t'

er rod. Conside, e
frequencies ~—

en different waere are te
nance

om this l ulta t
s in the

a l give
& to 3co+3 This

e detect

"th'
p ocesses cont '

tor bandwidth

onic" signal.
he observed

e of the ten
re rep esented by

n processes , for exam lmp e, can be

3(d - ((d + E) + ((d) + Id ) .+ (d) + Id —6).
& for th'ls process s

(21)

three reso
see Eq. (1) ls —,

' and th ere are

mgmg ~ ~mg ~ &n +~ (22)

is easil c
ening take

en ence of
nowing the fr

e X d. The single r
g 5(b) ] resolved into t

o of th in frequenc



HA~M ~ 0 ~

~ Q) ~

= 4.9 x 10 "eau/atom (22)

and a corresponding width for the resonance F
(FWHM),

by ae, respectively, as required by Eg. (22).
The frequency-dependent coefficients for the

other nine contributing processes are then con-
structed in an analogous fashion. The ten pro-
cesses are mutually incoherent, as we have as-

es o e mutuallysumed the three fundamental modes t b t
incoherent. Thus the absolute magnitude of the
over-all effective coefficient at a particular fre-
quency & is the square root of the sum of the
squares of the real and imagina, ry parts of the
coefficient for each of the ten processes at fre-
quency +. The resulting computed resonance
curve for three modes is shown in Fig. 6, along
with results for one, five, and seven modes. It
should be noted that the peak height is increased
by going from a single mode to three modes. This
is because the decrease due to broadening is more
than compensated for by the increase due to the
greater number of possible mixing processes,
Moreover, the penalty for increasing the number
of modes to five or seven is not severe. In fact,
the number of modes in the laser output decreases
from about seven to five as the laser frequency is
varied from 14414 to 14415 cm ' through the res-
onance. An appropriate interpolation to represent
this experimental situation is shown as a da, shed
curve in Fig. 6. Therefore, taking Doppler broad-
ening and our particular laser spectrum into ac-
count, we predict from Fig. 6 the effective co-
efficient

The predicted resonance curve is asym t '
dmme rlc ue

o e change in the number of modes as the laser
center frequency is varied, but the asymmetry is
slight for the simplified model of laser spectrum
discussed here,

) (X)~,»t = 10 "e su/atom . (26)

C, Comparison of experimental results
with predicted values

The experimental resonance curve is substan-
tially more asymmetric than the predicted curve C

This may arise from features of the temperature-
dependent mode structure not allowed f
model.

The observed resonance curve is about three
times as wide as predicted, and this is not, at
present, understood. We have considered pres-
sure-dependent broadening" due to Cs-Cs or
Cs-Ne collisions, but estimate this to be insig-
nificant. Moreover, peak harmonic signal is
found to be essentially constant, as cesium vapor
pressure is increased to give successively one,
three, five, and seven coherence lengths of cesium
in the cell, which implies that the resonance width
is not significantly dependent on pressure. "

We estimate the effective coefficient in the pres-
ence of the unknown broadening mecha ' b
assuming that the area under the resonance curve
remains unchanged, This yieLds finally

((X) (~,~ =3.0x10 "esu/atom, (25)

which is to be compared with the experimental
value

I"=0.11 cm '. (24) The estimated uncertainties are large (including

l

~44&4.25 .30 .35 .40 ')4414.45 .50

4) (CN )

.55

I

.60 14414.65

FIG. 6. Computed effect
of laser spectrum on the
effective resonant coeffi-
cient. Each curve is
labeled 1, 3, 5, 7 to indi-
cate the number of modes
with equal power, and
separated by 0.025 cm
for which the curve was
computed. The absolute
value of the coefficient,
squared and normalized to
a peak value of unity for
the single-mode case, is
plotted against ~, the fre-
quency of the center mode.
The dashed curve repre-
sents an interpolation ap-
propriate to the experi-
mental laser whose spec-
trum varied with ~ from
seven to five modes in the
resonance region.
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+50% in the quantum-mechanical calculation and
a factor of 5, in the experimental value), but we

find the consistency between theory and experi-
ment very satisfactory.

IV. CONCLUSIONS
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Ne have demonstrated enhancement of optical
third-harmonic generation in cesium vapor at a
two-photon resonance.

The measured resonant coefficient is in satis-
factory agreement with a value which we have eal-
eulated, starting from a quantum-mechanical cal-
culation for a cesium atom at rest and taking into
account Doppler broadening and the effect of the
laser spectrum. The presence of several longi-
tudinal modes in the fundamental laser beam does
not severely reduce the amount of third harmonic
generated.

The measured effective cesium coefficient is
about 100 times larger than that measured for
rubidium by Young el al. "and more than 10' times
larger than the corresponding coefficient for
helium. "" It is clear that two-photon resonant
enhancement will be an important feature in
schemes for efficient frequency conversion using
third-order nonlinearities.

APPENDIX: EVALUATION OF RESONANT

NONLINEAR COEFFICIENTS

In this Appendix we outline the evaluation of
the nonlinear optical coefficient }t, [Eq. (15)], de-
scribing third-harmonic generation for a cesium
atom at rest in the vicinity of a 9d'D -6s 'S two-
photon resonance. Although only the 9d Dqg. ,
-6s -'S„, resonance has been observable in the
above experiments, it is useful to estimate also
the coefficient for the adjacent 9d-D„, -6s 'S»,
resonance. The calculations involve term-by-
term summation of perturbation-theory formulas;
such an approach has been successfully applied
to resonant atomic hyperpolarizabilities for sodi-
um and lithium. "

The relevant nonlinear susceptibility' for a two-
photon resonance m -g may be obtained by ex-
tracting resonant terms from Eq. (43c) of Ref. 2:

y„„'(-(o,; (u„&u„(u,) = I, , 6„' ]6,'(g~ zi ll(lizim&(((u —(u„) '+((u, +~,} ']j, (ml ~In&(nl lg&

x(Q, —ur, —ur.,) ',

where the notation ~„, =Re(O„,}=~„—(d, is used and S„' denotes a summation over all discrete and contin-
uous intermediate states n, excluding the ground state g. Radiative damping has been retained only in the
resonant denominator (9, —~„-v, ).

In the ease of a cesium atom in the vicinity of the two 9d 'D,. -6s '5», resonances, where j = -',- or &, Eq,
(Al) reduces to

5~13133x —~B ' — + — Bi + B(E )de6~ "'22 6
(A2}

e' 12,', 3 5

L

Q B„—;—+ / B(c')de' (A3)

where p„denotes a summation over the principal
quantum number n for discrete intermediate states
inP'P, & and the integrals are over all values of the
energy ~' of the ionized electron in a continuum P
state, ie'P&. The quantities A and B are defined by

A„(j';j)=(ur„~., —&u, ) 'a(9dj;nPj')cr(nPj'';6s-, '), (A )

B.(j', j)=[(~„~,—&u„) '+(&u„, , +~„) ']

x o(6s —,'; nPj ')o(npj '; 9gg ), (A5)

A (e '}= (I«+ e ' —~, ) 'o(9d; e 'P )o(e 'P; 6s ), (A6 }

B(e') = [(I s+e' —(u, ) '+(I, +e'+(u.,) ']

x 0'(6s; 6 p)o(E p; 9d),



T%'0- PHOTON RESONANT, OPTICAL THIRD- HARMONIC. . . 2447

where cu„J, , is the frequency for the transitionJ'
nP'I'; -6s 'S„.and i,& is the ionization potential
of cesium in its 6s 'S„,ground level. The reduced
matrix elements c(n ' I —I j'; nl j) are related to the
radial parts, r 'A„„, of single-valence electron
states ~nfjm) by

ce

a(n'I —1j';nfj)=(4/-' —1) "'-J Jf„, „,R„„rdr.

(A8)

They are readily related to normal dipole-matrix
elements (n' I' j'm'iz }&Ijot) by means of angular-
momentum-vector coupling coefficients. " In view
of the strong spin-orbit coupling in cesium, it is
important to allow for the dependence of the bound-
bound reduced matrix elements a(n'/ —1 j'; nl j) on
the quantum numbers j and j' of the valence elec-
tron. No such allowance has been made in the
case of bound-free reduced matrix elements
cr(n I + 1; e'I}, since the spin-orbit interaction is
greatest in the lower-lying levels of an atomic
term series.

Estimates of io(6s; nPj'}i and
~ v(nPj', 9dj)i for

cesium with n = 6, . . . , 12 are obtainable from the
computed oscillator strengths of Stone. " These
include corrections for spin-orbit coupling, in-
dicating a particularly marked j' dependence of
v(6s; npj') for n =7, . . . , 12. They compare favor-
ably with estimates obtained by Coulomb-approxi-
mation methods, "from which relative signs of the
matrix elements have been estimated. The bound-
free matrix elements c(6s; e'p) and o(9d; e'p) have
been obtained from extrapolated quantum defects
and the tables of Peach, "and the integrals in Eqs.
(A2) and (A3) evaluated graphically. Transition
frequencies were obtained from appropriate spec-
troscopic table s. '-"

The final results are

~9D3&"& 6S gory( ~ . ~ ~ ~ )

=(8.8y4}x10 '-'I, , „~ ' ', (A9}
983)o 1 2

l

=(15+9)x10 "I,
(A10)

+ — C|',e') de ',
hc

C„(j }= 2~„~ (~,'p —(u "} 'o'-'(6s-,'; npj),"J 'J (A12)

(A13}

For the frequencies relevant to the above experi-
ments, namely, &'=~ and 3&, we obtain polar-
izabilities of (-115+5)xl0 "and (-4.3+0.5}
& 10 -' esu jatom, respectively. The sums over
discrete states converge rapidly, with all but the
n =6 contributions negligible, and the continuum
terms contribute -2.5 and -18/g of the total,
re spectively.

in units of esu/atom. The numerical coefficient
in (A9) may be identified with }I,of Eq. (15}. In
obtaining these results, the sums over A„equa-
tions (A2) and (A3} are found to converge rapidly
and the continuum contribution is small (-20% of

the total). However, severe cancellations in the
sums over B„allow the contribution of B(e') to
be dominant. This contribution is enhanced ap-
proximately twofold by a resonance in B(e') as
(I, z e+') approaches e„. The estimates of uncer-
tainty in Eqs. (A9) and (A10) reflect these cancel-
lations and the importance of continuum contribu-
tions.

It is of interest to note that the ratio of the nu-

merical coefficients in Eqs. (A10) and (A9) is
1.7+1.0, which differs only slightly from the ratio
of 1.5 predicted for negligible spin-orbit coupling.
This is because the major portions of the A - and
8-type contributions arise, respectively, from
6f. 'P and &'P intermediate states, neither of which
exhibits appreciable j dependence in its matrix
elements. Measurements of the above ratio could
provide an object for future study, with a laser
tunable through both 9d 'D -6s 'S resonances.

Similar computational procedures have been
used to calculate the polarizabilities o.(u) and
n(3&v} which appear in Eq. (12}. These are given
by the formulas
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