
PHYSICA L REVI E% A VOLUME 9, NUMBER 1 JANUARY 1974
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An exact closed expression for the form factor (and hence the generalized oscillator strength) for
bound-free transitions of the hydrogen atom in highly excited states is derived by use of the Coulomb
Green's function. The calculated densities of the generalized oscillator strength of the excited hydrogen

atom with an initial principal quantum number n p
= 10 are 10.9(—5.0), 13.6(—4.0), 22.7(—3.0),

55.3 (—2.0), 96.2(—1,0), 42.1(0.0), and 4.63 (1.0) in Ry ' near the ionization threshold I'for E/I(n p)
= 1.0001]. Here a figure in parentheses denotes the value of ln(n 2~'), where q is the magnitude of
the momentum transfer, E the excitation energy measured from the state n p and I(N p) the ionization

potential. Using these results, we draw the Bethe surface, i.e., a three-dimensional plot of the density of
the generalized oscillator strength as a function of E and lnq'. This surface gives a quantitative

understanding for the entirety of the inelastic process of this excited atom by charged particles. The
validity of the binary-encounter theory is quantitatively discussed. The Born cross sections for
excitations (n p n p+ 1, n p n p+ 2, n p 2n p transitions) and ionization are evaluated for the case
of n p = 10 and 20. Finally, an application of this form factor to the colhsional ionization of the highly

excited atom with a molecule is briefly mentioned.

I. INTRODUCTION

Collisions of a charged particle with an initially
excited atom may result in deexcitation to a lower
level, in excitation to a higher level, or in ioniza-
tion. Quantitative knowledge of such collisions,
particularly with an atom in highly excited states,
is meager at present, while there has been an in-
creasing demand for it from many applications,
such as physics of gaseous discharges, plasma
physics, astrophysics, and radiation physics.

In inelastic processes of highly excited states of
an atom there are two major points different from
those of the ground state, namely, (i) transition
energies may be very small, and (ii) level spac-
ings between adjacent levels are very close.
Under condition (i) the first Born approximation
seems to be valid even at velocities of an incident
particle which are considered to be slow for colli-
sions of an atom in the ground or lower excited
states. Qn the other hand, condition (ii) means
that states other than the initial and final ones may
be important in the collision process because of
their close coupling with the initial and final states.
This appears to be an unfavorable condition for a
two-state approximation such as the Born approxi-
mation. To my knowledge, ho~ever, there has
been no clear-cut conclusion about the range of
validity of the first Born approximation for the
transitions between highly excited states. We do
not consider this problem further.

If we restrict our discussions to the case where
t:he first Born approximation is adequate (at least
where the incident charged particle is much faster
than the atomic electron to be affected in the colli-

sion), the essential part of the calculations is that
of form factors, or equivalently of generalized
oscillator strengths, for pertinent transitions.

The form factor of the hydrogen atom in excited
states is, of course, a very important quantity in
atomic physics. Indeed, this gives a starting point
for a general study of some dynamical properties
of an atom or molecule in highly excited states,
where effects of a nonhydrogenic core may be
incorporated by use of the quantum defect theory. '

Even for the hydrogen atom, where all eigen-
functions are known, we find only fragmentary
numerical data on its form factor. The reason for
this is that explicit computation of the hydrogen
form factor as an integral meets formidable diffi-
culties in actual numerical evaluation because of
rapidly varying wave functions, particularly when
the initial state has a high principal quantum num-
ber np.

From group-theoretical considerations, Barut
and Kleinert' obtained the exact form factors of
the hydrogen atom between any two excited states.
These expressions, however, seem to be incon-
venient for numerical evaluation, especially
for high np. Milford and co-workers' and later
Omidvar' calculated the Born cross sections for
excitation of the hydrogen atoms in excited states
with n, » '7. For higher mp, there have been some
studies which give approximate formulas for cross
sections. ' Recently, Beigman et al. ' derived an
exact closed expression for the form factor for
bound-bound transitions of the hydrogen atom in
excited states summed over initial (l„m,) and
final (f, m) substates, which is convenient for
numerical computation. These authors, however,
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gave little numerical results.
As for the ionization of the hydrogen atom in the

excited states by electron impact, Omidvar" cal-
culated the Born cross sections for all partial
waves with n, ~ 5 and for a limited number of sub-
states with 6 - n, ~ 10. There has been, however,
no calculation for ionization of the hydrogen atom
in excited states with higher n, except for some
approximate treatments. ' Practically no data on
the angular distribution (or the form factor itself)
for excitation and ionization are found in the litera-
ture.

The major purposes of the present paper are as
follows: (i) to derive an exact closed expression
of the form factors for bound-free transitions of
excited hydrogen atoms; (ii} to present extensive
numerical results (in the form of a contour map
of the Bethe surface") for excitation and ioniza-
tion of the hydrogen atom in excited states, in-
cluding information on the angular distribution of
a scattered electron; and (iii) to assess the valid-
ity of the binary-encounter theory for these excited
states quantitatively.

Another motivation of the present work stems
from a theory of the collisional ionization of a
highly excited noble-gas atom A** with a polar
molecule given by the present author. " At room
temperature, the molecule is likely to be in a
rotationally excited state. An electron in a high
Hydberg state becomes ionized by energy gain
from the deexcitation of the rotationally excited
polar molecule, namely,

A**(ng +M(Z, ) —A'+M(Z) + e, (1.1)

where J, and J are the rotational quantum numbers
of the polar molecule for initial and final states,
respectively. %'ithin the hydrogenic approximation
to the highly excited noble-gas atom, the cross
section for process (1.1) can be expressed in
terms of the form factor or the generalized oscil-
lator strength for the hydrogen atom in highly
excited states. The detailed treatment of process
(1.1) using the results of the present calculation
will be published elsewhere.

II. DENSITIES OF THE FORM FACTORS FOR
BOUND-FREE TRANSrrlONS OF THE HYDRO-

GEN ATOM IN EXCITED STATES

%ithin the Born approximation, the differential
ionization cross section do„gdE of excited hydro-
gen atoms with +0 by electron impact per unit
range of excitation energy can be expressed in
terms of the density of the form factor dF„,(q, E)/
dE, namely,

dE k'] )~ „) dE (2.1)

and

dE„,(q, E)
=n ' dO EQ

where the plus and minus denote the boundary con-
ditions for an outgoing wave and an incoming wave
for the ejected electron, respectively. Here we
must take the ingoing-wave boundary condition" in
the final continuum state in Eq. (2.2).

If the density of generalized oscillator strength
per unit range of energy df„,(q, E)/dE is used, the
differential cross section der„gdE has the formdo» df (n E)f„(q„

din[(n~)'], (2.3)
&n

o~mm

df„,(q, E) dE„,(q, E)

dE q dE

=
I kg -ky I, q = k~ + ky,

(2.4)

kj JPf +El

In order to evaluate the squared matrix element
of e "summed over (Z„nlo} and integrated over
0, we use the spectral representation of the Cou-
lomb Green function Gv(r, r'),

f nZm&(n Zm/
ws&c

+ dS"dQ . , with ~ &0,
iE G'&qE'G'i

J S'~ a~ —S"
(2.5)

similarly to the procedure in Ref. 6, ~here
W„(= —1/n') and W' are the eigenvalues of Hamil-
tonian of the hydrogen atom. Here we have the re-

(2.2)

where E is the excitation energy of the ionization
process measured from the initial state, 0 is the
direction of the ejected electron, /, and m, are the
orbital angular momentum and the magnetic quan-
tum number of the initial state, respectively, k&

and k& are the wave vectors of an incident electron
and a scattered one, respectively, and q is the
momentum transfer. [Atomic units (m = e = g= 1),
together with the rydberg as the unit of energy,
are used unless otherwise stated. ] The final con-
tinuum state is normalized as follows:

(EG'i EG "&= o(E-E')5(G-G'),
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lation F.' = 8"-5„',. %e can relate the squared
matrix element of e"' summed over l0, m0 and
integrated over 0 to the gap of the Coulomb Green
function at a branch cut of a real positive 5'. As
shown in the Appendix, we get

g fee}I&« le'" '
I }ee }I'

10 ec0

= Q J«l(« le" I .e.}egei'
0~y

O'= 8', Imk &0, (2.8}

and %'&~,~, and M& ~,y, are the W'hittaker functions. '
The limiting process of Eq. (2.6} leads to the

calculation of a residue of a pole of Gw(r, r') for a
real negative value Wand of a gap of Gw(r, r'} at
a branch cut for a real positive 8', namely, we
have

=+w ' itm (W'-W„} G„(r, r')
W) ~W 0

ll0
t ~+0

xe '~'&' ' & imGw, (, (r'e r)dr dr'. (2.6)

Integration over 0 gives the same result for both
the boundary condition of the ingoing wave and that
of the outgoing wave. (For obtaining the correct
angular distribution for the ejected electron, we
must use the incoming-wave boundary condition. )
The Coulomb Green function in configurational
space has the closed form"

Gw(r, r') = —I'(1 i/k)[-2wi(x-y)k]

XL[~„,„,(- ikx~„, ,k(-iky)], {2.7)

where

lim (W'-W„)Gw. (r, r') =-[n,w(x-y)] 'P„(2.9)
W' W

0

—w
' lim Gw„, (r, r') =(2wk') ' (I-e '"') '

where

x(x-y) 'P(s, (2.10)

P„=Z, [M„,),(x/X)M, ,&(y/X)].

The former relation can easily be obtained from
the calculation of the residue of the I' function as
shown in Ref. 6. In order to derive Eq. (2.10) we

use the closed form of the Coulomb Green function,
and write

-w 'ImGw„, =-[4w'(x-y)] 'L([i'(1 i/k, )/k-, ]W~g, ,)( ik, x)-M, (, ,),( ik, y)-

[I(1 -i/k ')/-k ]Wl/, ,@( ik x)M, -), ,),( ik y)j, -

lim argk, =0.
0

(2.11}

This ensures that the domain of the Coulomb Green
function is limited to the first "physical" sheet in
a complex W plane. Using Eq. (2.11) and proper-
ties of the Whittaker function, "we can obtain Eq.
(2.10), where we have put

k= lim k, (e).
+ 0

Laurenzi" calculated the same quantity. However,
his result seems to be incorrect. (Apparently that
result stems from a con5xsion as to the choice of
the appropriate branch of the Coulomb Green func-
tion. )

Substitution of Eqs. (2.9) and (2.10) into (2.2)

where

k', = 8'~i&, & &0, argS'=0.

The condition (2.8} gives a unique relation between
k, and k, namely,

lim k =e'" lim k, ,

Holt" has pointed out that the form factor F„&(q}
for excitation to the final bound state with e can be
obtained as

dF„(q, k)

F„&(q}= —2wi residue of at k= 8-
(2.13}

Using the expression of Eq. (2.12) and relation
dF„(q, k)/dk=2kdF„(q, E)/dE, we can easily get

«'.e(e}=e 'e, 'e ' fe "" ''(e-y} *

(2.14)x P„&„drdr'.
0

This is equivalent to the result of Ref. 6, which
corroborates the correctness of Eq. (2.12). The

yields

dF„(q, E)

dE
=-(2A 'k )-'(I-e-2'")-'

X
I 8 (x-y) Pee P(k dr dr

(2.12)
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right-hand side of Eq. (2.12) can be calculated in
a way similar to Ref. 6. Therefore, we give be-
low only the final result, "

dE„(q, E)
= —+0 lg A) g dQ

0
and

(2.15)

A;(q)=(96,k') '(1- "~') 'f fe "' +~'(*'+4' O'IP, P, ~d*dy.
0

(2.16)

The last integral can be written in terms of hypergeometric functions as follows:

A, (q) =(2n20k} '[1-e "'] 'Im] [I„'(-n,+1, i/-k+1)I„'(-n„i/ -0+1)*-I„'(-n,+1, i/k-}l„'( n„-i/k-}*]

82
—~6 —,[I„(-n,+1, i/k+1-)I~(-n„- i/k+1)'- I(-n, +1, I/k)I„(-n„i/-k}-'] .

(2.17)

Here I„(o, o.") is given by

l„(o., a')= f "'E(, 1;P*)F( ', 1P'sldx

=u" '(~-P) (V-0') "F(~, o', 1; &),

(2.16)
where

P =1/n, P' = ik, p-=(P+P'+iq)/2,

g=PP'(g-P} '(p-P') ', and I'= —.8I

III. RESULTS AND DISCUSSION

A. Density of the generalized oscillator

strength and the Bethe surface

Numerical values of F„„(q)and dE„(q, E)/dE
0

can be obtained from expressions (2.f5), (2.17),
and (2.18), together with the results of Ref. 6.
Numerical integrations are done by means of the
Simpson quadrature. Our coded program is
numerically checked by available data for the
cases of excitation and ionization for n, = 1 (Ref.
19), n, = 2 (Ref. 1V), and n, = 5 (Refs. 4 and 8), and
for the optical oscillator strength f„&(0) for n,
~ 14 (Ref. 20). Up to n, = 20, this program can
give us accurate results for almost all final states
except for extremely high n and for a very low
energy W of the ejected electron. For example,
for the case n, = 25, our program does not work
for transitions for jn, —n( =1 because of underflow
and overflow in the course of numerical computa-
tion (in our computer, the magnitude of a real
constant is limited to the range between 10 "and
10"), but gives accurate results for almost all
other transitions.

The generalized oscillator strength is a quantity
which is suitable for the understanding of the
inelastic scattering of an atom by charged parti-
cles. Typical numerical results for df„,(q, E)/dE

are shown for the cases of n, =10 and 20 in Figs. 1
and 2." In these figures, for the case of excitation
and deexcitation, we plot the quantities f„&(q)(s'/2)
instead of f„&(q}. One can see that the continuity
relation"

df.,(q, E)

dE (3.1)iim f.~(q) (&'/2) =
k =I(no

is numerically satisfied where I(&,) is the ioniza-
tion potential of the initial state, namely, I(n, )
= (W„~ . To test the consistency of these numerical
values of f„&(q) and df„,(q, E)/dE, we have calcu-
lated the sum S(q} of the generalized oscillator
strength,

df. (q, E)
&(e) gf (e) ~ =...„z }«,

0

(3.2)

which must be equal to unity according to the Bethe
sum rule. " TaMe I shows a typical example in
which the Bethe sum rule is satisfied within 1% for
no =10.

The Bethe surface, "'"namely, a three-dimen-
sional plot of df'„,(q, E)/dE as a function of EI/(n )o
and ln(@2~'), can be drawn using the calculated re-
sults of f„,,(q) and df„,(q, E)/dE. Figure 3 shows
a contour map of the Bethe surface for no=10. This
figure gives a comprehensive picture of the inelas-
tic scattering.

In the Bethe surface of the hydrogen atom in ex-
cited states, there appear some new features that
are distinct from the surface of the ground state, "
namely, (i} the emergence of a negative-valued
region corresponding to deexcitation, (ii) an ex-
treme concentration of df„(q, E)/dE on a very
small / E( I)sfor a small Inoq)' (note that the scale
of contours in Fig. 3 is logarithmic), (iii) the con-
spicuous appearance of the Bethe ridge for lower
E, and (iv) the appearance of a fine structure in

df„,(q, E)/dE. A commentary will be made below
on each of these points.
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Because of point (i), the generalized oscillator
strength f„,„(q) can exceed unity for some s, a
property vrhich cannot occur for the ground state
because of the Bethe sum rule.

Point (ii) means that there are a very limited
number of bound-bound transitions in which soft
collisions, i.e., small-angle scatterings, are
important. In bound-bound transitions, vrhere the
binding of the electron is strong in the final state,
namely, deexcitation to the final state with + ~ j.,

l.5x 10

soft collisions are also important. In these boo
types of bound-bound transitions, the dipole prop-
erty plays an important role. However, the latter
type transitions occur only with a very small
probability.

For high-energy transfer E and high (&~~'), the
Bethe ridge is common to all atoms and molecules.
Hence, point (iii) states that the hydrogen atom
loses its o~ character and the bound electron
behaves more and more like a free one as it be-
comes more and more highly excited. Further,
for the case of deexcitation, there should occur
the situation similar to the case of excitation if

I.O l.5xlO

N
C
o 0.5
C
O

C

I.O

~~ 0.5

C
O
C

-0.5
-0.5

I I I I l I I !
-7 % -5 -4 -3 -2 -I 0 I

In ~no~q~j 9.0

1.5xlo I- n=20

I I I

-7 -6 -5 -4 -5 -2 -I 0 I

ln(n& q )

1.0

0.5

o

0

-7 4 -5 -4 -3 -2 -I 0 I 2 3 4
In(no q )

4J

0cW4
V

4.0
= 6.0
j = II.O

FIG. 1. Densities of the generalized oscillator strength
df„(q+)/dE for the hydrogen atom with no =10. For the
cases of excitation or deexcitation f„o„(q)(ne/2) is
plotted. The notation n is the principal quantum number
of the AFi~3 discrete state, and E/I (np represents the
excitation energy in units of the ionization potential of
the initial state.

-7 4 -5 4 -3 -2 -
I 0 I 2 3 4

ln (n&2q2)

FIG. 2. Densities of the generalized oscillator strength
df„o(q,E)/dE for the hydrogen atom with no =20. As for
notations n and E/I (no), see the caption to Fig. 1.



MICHIO MATSUZANA

the conditions

~n-na(»1, n»1, n, »I (3.3)

are satis e .fi d. In this case, we have a "valley"
ed b thealong the trajectory which is determine y e

'=,E~ in the negative-valued region ofrelation q =
~~ zn

ut in the re-th 8 the surface. This valley dies oue e
n thegion where e nth binding of the bound electron in t

uss thisfinal state becomes strong. %e shaB diseuse s
point in further detail.

In the region where the Bethe ridge appears
conspicuously, the binary-encounter theory is
likely to va1 t be valid. ""There have been many
studies on inelastic processes of the hydrogen
t in excited states by impact of charged par-

unter theory. " Soticles based on the binary-encounter y.
far, we have found only qualitative discussions
ab t the validity of this theory to highly excitedou
states. " According to the binary-encoun ter
theory, the density of the generalized oscillator
strength is written as

df.,(q, E) S.E 3

dE Ssso [(q'-E)'+4q'/s', ]' ' (3.4)

where use has been made of the momentum distri-
with n averaged

over /, „m, obtained by Pock.~ For the bound-
bound transitions dg„(q, E)/dE should be inter-
preted as f ( )(s'/35. Further, E should be
taken to be E(s„s)=W„-W„. Figure s ows a
contour map o ef the relative difference between

r & =10. Thedf„(q, E)/dE and the correct one for &,= . e
0

generalized oscillator strengt hdf (q, E)/dE
agrees mell with the correct one along the Bethe
rid e and in the region II [and along the valley in
the negative-valued region, ifif the conditions (3.3)

ti fied]. In region I, this theory fails «
express soft collisions with small ln(s20q . One
can quantitatively see how the extent of the agree-

f E . (3.4) with the correct one changes in
the transition region from the Bethe r e o
gion I. reF~w 5 shows the dependence of the con-
tour of 10% relative difference between Eq. ( .
and the correct one on &, . This figure imme-
diately indicates the widening of the region where
th b ary-encounter theory is valid on the
In(&',q') -E/I(s, ) plane, which originates from

bi ding of an electron with higher +0.
sess theFurther, this figure enables us to assess e

or or of thevalidity of the binary-encounter theory
impulse approximation applied to various prob-
lems.

a arsPoint (iv), namely, the fine structure, appe
in df„(q, E)/dE for higher excited states at E

Cl
C

LU

TABLE I. Test of the Bethe sum rule fle for the 10th ex-
cited state.

ln{n 2oq 2) 0.0

—1.757 —0.962 —0.113

-O.I

J
-I 0 I 2 '3-5 -4 -3 -2
in{no q )

2.704 1.834 0.189

0.057

1.004

0.128

1.000

0.928

1.004

a The quantities in ein th third row have been calculated
by the folio@ring approximate formula:

i9

I- 0+4
f gog (q) f go, (q) +kf ga, 20 (q)

e= i

+ f io„{q){n3/2)dE.
.. S(&O, IO)

FIG. 3. Contour map of the Bethe sure surface for the hy-
drogen atom with n& =10. The ege r iona E/I {no) ~ 1,

& 0 and 0 &E/I{no) represent ionization,

tached to each contour denote the value „0q,
n3& 2, . In the regions of excitation and de-

b the smoothcitation the contour lines are drawn yexc on
s. This f' re shows theconnnnection of discrete points. xs igu

rtion of the surface, name y, —
and -1.2 &E/I {no) & 3,6. The dotted line shows the lo-

tion n~~2 = E/I {no) of the Bethe ridge. Note that theca ion nag =
0

Bethe ridge is a universal curve on the ln n' ') -E I{n,
plane.
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IO- 3
I
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I
I
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IO

P

LLI

I

IO

O

b

I I

-5 -4 -3 -2

In(n 2q~}

O I

I

2 3

FIG. 4. Comparison with the binary-encounter theory
for the densities of the generalized oscillator strength
of the hydrogen atom with np =10. Each line represents
the contour. Figure attached to each line denotes rela-
tive difference between the binary-encounter theory and
the correct one in percentage. The dotted line shows
the location of the Bethe ridge. Note that the value on
the straight line, E =0, has no mean&~~ for the densities
of the generalized oscillator strength.

IO—
I

I
I
I
I
I
I

P
C"

M

4J
I

I I

-5 -4 -3 -2 -I

In(no~q~}

FIG. 5. Dependence of contour of 10+ relative differ-
ence between the binary-encounter theory and the correct
one for the densities of the generalized oscillator
strength on ep. Figure attached to each contour denotes
the principal quantum number n, p of the highly excited
state. See also caption to Fig. 4.

io'
0 I

FIG. 6. Born ionization cross sections for the?l pth

highly excited hydrogen atom. Here t stands for 7/l(np).

= I(n,). For the generalized oscillator strengths
for ionization of the hydrogen atom in the 2s and
Ss excited states, Nikolaev and Kruglova" found
some minima which can be related to the nodes of
the momentum-space wave function. However,
after averaging over initial substates, these
minima vanish. Unfortunately, our method cannot
give us the generalized oscillator strength for
each initial and final substate. At present, it is
not understood which combinations of initial and
final states are responsible for the fine structure.

B. Born cross sections for ionization and excitation

Using Eq. (2.8), total ionization can be easily
obtained after the integration over E, namely,

dno.„=f,'
az,

l(no)

where I' is the kinetic energy of an incident elec-
tron. For the case of &,= 5, our calculated re-
sults are found to agree with those of Omidvar'
within a few percent. The ionization cross sec-
tions for the excited states with n, = 10 and 20
are given in Fig. 6. In order to calculate the
Born excitation cross section e„„.one has only
to replace df„(q, E)/dE by f„,„(q( and E by E(sp)
in formula (2.8). For the case where s, = 5, our
calculated results agree well with those of Omid-



MICHIO MA TSUZA%A

var. ' Calculated excitation cross sections for
+p +p + 1 transitions are shown in Fig. V.

For sufficiently high velocity, as pointed out by
Fano, "a plot of ter vs lnt becomes a straight
line, namely,

ter = a lnt + 5 (o in va', ), (3.5)

10sbra )-

where i = T/E(n„&) for excitation, and t = T/I (n,)

for ionization. The values of a and b in the Bethe
asymptotic formula obtained by fitting the cal-
culated results to Eg. (3.5) are shown in Tables II
and III for no-no+1, no-"o+2, and ~o-~o exci
tation and ionization. For the transitions with
small E, the first term in the right-hand side of
Eq. (3.5) plays a dominant role„which means that
the dipole property ofthe hydrogen atom in excited
states governs this inelastic process. As 8 be-
comes larger, the second term of the right-hand
side in Eq. (3.5) becomes more important, and
the region where the asymptotic formula (3.5) is
valid shifts to the higher-incident-energy region.
One can qualitatively understand these trends
from Tables II and III.

There have been some approximate evaluations
of a and 5 in Eq. (3.5) for n, no+ -I and n, -n, +3,
given by Saraph"'i and by Kingston et aL" "d'
Comparisons of these results with the present
calculations are given in Table IV. As for the

TABLE II. The values of parameters in the asymptot-
ic formula forn0=10.

Excitation Ionization

1Q 11 10 12 10 20
a 286x 106 ] 55x10 385x102 193x10
b -0.76 x 10~ 3.20 x 105 5.45 x 10~ 6.52 x 104

parameter a, these values agree with our values
within a few percent; on the other hand, the
parameters b from their work, especially those
by Saraph, are not in agreement with ours. These
numerical discrepancies may have come from the
procedure of extrapolating the values of b for
lower s, (s„» 5) into higher &, used by them.

Johnson" measured the population densities of
neutral helium in plasmas and adjusted a param-
eter in an assumed cross-section formula for
transitions between highly excited states of helium
from this measurement. This formula may be
applied to a highly excited 8 atom. For np so+1
transitions, the values given by Johnson„ together
with those based on the classical treatment by
Flannery, "'"are also shown in Fig. V. In the
high-energy region where the Born approximation
is adequate, our result agrees better with that of
Johnson than the classical treatment. However,
even within this region, there is a definite dis-
crepancy between Johnson's and our data. This is
due to the fact that he used the assumed form of
the cross-section formula to reproduce Saraph's
result"" for np- no+1 transitions in the high-
energy region.

Our approach gives only the squared matrix
elements of ei&'y summed over (l„m,) and in-
tegrated over 0 or summed over (I, m). Hence,
from our results, one cannot get any information
on each initial (no, I 0, mo) or final (n, I, m) and on
the angular distribution of the ejected electron for
higher N„which remains to deserve further de-
tailed quantitative evaluation.
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TABLE III. The values of parameters in the asymp-
totic formula forn0=20.
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FIG. 7. Born excitation cross sections for no no+1
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20 21
a 3.01 x 10
b -2.89 x 10
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20 4Q
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4.68 x 104
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1.09 x 1Q6
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TABLE IV. Comparison of the parameters a and b with those from other work.

no+ 1 excitation

Present
no= 10

Ref. 5 (a) Ref. 5 (c)
no ——2Q

Ref. 5 (a) Ref. 5(c)

a 2.86 x 108
b -0.76 x 10

2.91 x 10'
-4.91 x 106

2.91 x 106
—1.06x 10

3.01 x 108
-2.89 x 108

3.05 x 108
-7.46x 10

3.04 x108
-3.12 x 10'

n() no+ 2 excitation

Present
so= 10

Ref. 5(d) Present Ref. 5(d)

1.55 x 10~

3.20 x 10~
1.46 x 10'
3.76 x 105

1.32 x 10'
2.44 x 107

1.29 x 107

2.85 x lQ
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on the absolute value of q; namely, we get

I, (q) =1,(-q). (A4)

APPENDIX

In the first place, we consider the following
quantities:

f, (q) = Q (nolomJe'~'Gs„, (r, r')
)ps stp

xe"' [n,l,m, ). (Ai)

Further, if we take into account the symmetry
property of the Green function, G~(r, r')
=G~(r', r}, we have

I (q)*=I,(-q). (A5)

Then Eqs. (A4) and (A5) yield the following rela-
tion:

&mf, (q) =(~, (q) —f, (q))/(»)

using the relations

(AS}

Substitution of the spectral representation of the
Green function (2.5) into (Al) yields

~ ~ [(nfm[e" /n. l„m„)['
1~(q = Z

I sl I IIIo 0
O' —W„

„„f(Z'O'[ e"' [n„l„m„&f'
%+i~ -W'

g m

(A2)

Then we obtain

lm &,(q) =+s 2 &&I «&'le"' lnj.m. ) I',

= Q(nolom pe 'q''ImG~„, (r, r')

xe« ")n,l,m, ),
where use has been made of the relation

G~„„(r,r') =[G~ „(r,r')] *.

From Eqs. (AS) and (A6), we obtain

Q (nolomo~e '~'rmG~„, (r, r') e'~' ~nolomo)

lotto

g J anl(zo'le"'l, t,
'o o

Further, using the relation for a negative real
w',

, =p, +is5(W —W').

We can easily see from Eq. (A2) that i, (q) depend

g tnolomo)(nolom) = lim (W' —W„)G~. (r, r'),
e'~I0 p no

0

we get Eq. (2.6).
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