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Calculation of helium photoionization in the random-phase approximation

using square-integrable basis functions*
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The photoionization cross section of helium is calculated by a numerical analytic continua-
tion of the frequency-dependent polarizability. Approximate values of the polarizability are
obtained by an application of the equations-of-motion method. The entire calculation is per-
formed without the use of continuum basis functions. The calculated cross sections agree
well with the observed values.

I. INTRODUCTION

There has been much interest recently in the
application of bound-state computational techniques
to problems associated with the continuous spec-
trum of an operator. The efforts of various work-
ers have shown that physical information can often
be extracted from the discrete representation ob-
tained by projection of the appropriate Hamilton-
ian onto a finite set of square-integrable basis
functions. Such techniques have been used by
Hazi and Taylor in the location of scattering res-
onances, ' by Schwartz and Schlessinger, ' by Nut-
tall and co-worker' in calculations of the T
matrix, and by Reinhardt and co-workers' in ap-
plications of the Fredholm method to electron-
atom scattering problems. Much of this work
has shown that the discrete representation of an
operator, while not directly useful at physical
energies in the continuum, often provides an
entirely adequate representation of the operator
for comp1ex values of the energy. The technique
of numerical analytic continuation' can then be
used to return to the real energy axis where
physical information is desired. The essential
point is that the L' methods completely obviate
the need for constructing continuum solutions of
the wave equation, which for heavier atoms and
even small mo1.ecules can be a formidable com-
putational undertaking.

Recent work by Broad and Reinhardte suggests
that numerical anaI. ytic continuation can also be
used to extract photoionization cross sections
from discrete representations of the frequency-
dependent polarizability calculated in the complex
plane. The Stieltjes imaging technique of Lang-
hoff' provides an alternative approach to con-
structing photoionization cross sections from a
discrete set of transition energies and oscillator
strengths. However, the justification for Lang-
hoff's simple prescription apparently depends on

satisfying 2& energy weighted sum rules when an
n-point discrete spectrum is used.

In this work we apply the method of Broad and
Reinhardt to the discrete representation of the
frequency-dependent polar izability of helium in
the random phase approximation (RPA). For
purposes of comparison we also compute the
photoionization cross section by Stieltjes imaging.
It is important to point out that unlike the RPA
calculations of photoionization by Amus'ya et al. ,

'
Jamieson, ' and Altick and Glassgold, "our calcu-
lation employs square-integrable basis functions
exclusive1y. Thus the techniques used here can
be easily extended to the molecular case.

The outline of this paper is as follows: in

Sec. II we briefly review the numerical method of
Broad and Reinhardt and the linearized equations
of motion method (RPA). In Sec. III we present
our numerical results and compare them with ex-
periment. Section IV contains a brief discussion.

II. THEORY

A. Photoionization

The frequency-dependent poiarizabiiity u(z) of
an atom or molecule is given by the formal ex-
pression"

f„"g(e)de.
~2 g2 e2 ~2

~ ~p p5

where u„,f«, and g(e) are the transition fre-
quencies and the bound and continuum oscillator
strengths, respectively, and e, is the first ioniza-
tion threshold of the system. Taking the limit
~- (d+iq in Eq. (1) yields

5&0 p5

and thus the result"
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47Hd
u(A) = lim Im [o.'(~ + 2)I)],

o

for the photoionization cross section.
In this work, the polarizability is first approx-

imated by a finite sum

n

~(z)= P „-,",.
L=1 0$

I10S/13P ]

f0$

[12S/8P]

TABLE I. Transition energies and oscillator strengths
for He in the [12S/8P) and fl0S/13Pj calculations. The
quantities in brackets refer to the number of Gaussian
basis functions used in solving the RPA equations. En-
ergies are given in atomic units.

Equation (4} can be viewed as a quadrature-like
approximation" to the frequency-dependent po-
larizabil. ity and might thus be expected to provide
an adequate representa. tion of a(z) for complex
values of ~ away from the poles ~„. This being
the case, we construct a low-order rational-
fraction representation' of the polarizability by
fitting it to the approximate expression (4) at a
number of points in the complex plane. The ra-
tional fraction can then be used to obtain smooth
values of o. (~), and hence o(~), for real energies
where the original finite approximation is invalid.
The rational-fraction representation

0.2520
0.0705
0.0288
0.0372
0.1290
0.3834
0.6525
0.3372
0.0873
0.0207
0.0018
0.0006
0,0

0.7970
0.8636
0.8874
0.9008
0.9429
1 ~ 089
1.628
3.247
6.936

16.29
44.73

135.0
431.5

0.2520
0.0705
0.0528
0.1338
0,3939
0.7080
0.3696
0.0210

0.7970
0.8636
0.8909
0.9369
1.086
1 ~ 661
4.214

13.72

N L5~= o P)z
N, z 1 gN qz1

of the polarizability is obtained by matching Eq.
(5) to o(z, ) at 2M+1 complex values of z;. In
actual computations, a continued fraction. repre-
sentation of A„~ is used, whose coefficients are
calculated recursively. '4

It is important to realize that a(z) in the form
of Eq. (4) is itself a rational fraction ft,„,,„.
Consequently, in fitting n(z) to a rational fraction
in the complex plane, it is essential to choose a
low-order rational fraction so as not to reproduce
the pole behavior of the finite-sum approximation
on the real axis. Since there is no a Prior rul. e
for choosing the order of the rational fraction or
the fitting points, it is important to vary both of
these in any numerical application to check that
the continued results are stable.

B. Equations-of-motion method

A finite set of oscillator strengths and transi-
tion frequencies, needed to obtain a discrete
representation of u(z), was generated by solving
the equations of motion for helium in the simplest
approximation, the usual random phase approx-
imation. The equations-of-motion method has
been discussed previously, "and only a brief
summary of the theory limited to the random
phase approximation will be given here. The
operator 0& which generates excited state l &)
from the ground state

l 0) can be shown to be ex-
actly a solution of the equation of motion"

(all». , &, 0']IO&= &Ol[50, o']Io) .

2[4,QC]= [[A,B],C]+ [A, [8, C]] .

If 0), is restricted to single particle-hole compo-
nents, it has the form"

(7)

0,'(sM) = P [1'„,()t)c', (sM) —z „(~)c,(sM)],

(8)

where C )(SM) and C )(SM) are spin-adapted
particle-hole creation and annihilation operators
corresponding to spin S and projection M. Equa-
tion (6) then becomes a matrix equation for the
ampiitudes (y, ()t)) and (Z„,()t))

The matrices A, B, and D are given elsewhere. "

TABLE II. Energy weighted oscillator strength sums
of He. The 8- and 13-term RPA results are compared
with the variational results of Chan and Dalgarno and
the accurate results of Pekeris (see Ref. 19). Atomic
units are used throughout. k refers to the power of
duo; in the sum Q; f0; ~~0; .

8-term RPA 1,'3-term RPA Chan and Dalgarno "Accurate"

1.730
1.:386
1.:)7"
1.478
'7.00'1

3.883
13.306

1,731
1.:386
1,.'32o

1.479
'7. 000
4, 171

30.:345

1.9840
1.5) 70
1:l788
1.5046
'7 0
.'3. 91

13;)'7

'7. 0672
1.5616
1.,"&912

1.5050
47 0
4.:35

:30.;3'7

In Eq. (6), u) is the excitation frequency, and the
double commutator is defined as
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FIG. 1. Photoionization cross section of helium in the
eight-pole BPA calculations. The curves show the re-
sults of three different choices of fitting points used for
construction of the rational fraction. Seven fitting points
were chosen in each case with He/;) = (co{)fy f + 'Moj) j2.
The choices for Im(z;) were: 2(('(„,g -~0)), solid curve;
3(~0;, &

—('o;), dashed curve; and 4(~0;+& —('0;), dotted
curve. Cross sections are given in units of Mb, and

wavelengths are in A ~

FIG. 2. Comparison of calculated photoionization
cross section of helium with the experimental results
of Samson (0}. The solid and dashed curves are the
results of the 13- and 8-pole H, PA calculations, respec-
tively. In each case, the fitting points for the rational
fraction were chosen as ~; = ((~0;+ &+ ~0;)/2, i2(~0;+,
—&uo, )). We have also plotted the Stieltjes-imaging
results (+) for the [10S/13/] RPA calculation. Cross
sections are in Mb and wavelengths are in A.

M ), =(0~ Q r;( A. )

= v2 g M'„(Y„,(A)'Z„„(x)) .
na'y

where ~V'& is the matrix element of the position
vector r between particle state m and hole state

The RPA provides a particularly convenient
method for constructing a finite representation
of the frequency-dependent polarizability. The
dipole length and velocity formulas for the oscil-
lator strength are equivalent in this approxima-
tion and the f -sum rule is satisfied. "

(10)

III. NUMERICAL RESULTS

The RPA etluations were solved using [12S/BP]
and [10S/ISP] sets of Gaussian basis functions
(see for example, Ref. 18). The transition ener-
gies and oscillator strengths from these calcula-
tions are given in Table I. In each case the oscil-
lator strengths of the tmo lowest bound solutions
of P symmetry agree with experiment to better
than 10%. We have also evaluated the energy
weighted sums S(k) =Q", ,fv,.(~af, ) for -6 « 4 ~ 2,
and these are shown in Table D along with the ac-
curate values of Pekeris and the calculated values

If
~ 0) is taken to be the Hartree-Pock ground

state, D becomes the unit matrix and the familiar
RPA matrix equation is obtained. In the RPA the
dipole transition moment between excited state

~
X)

and ground state
~
0) for an N-electron system is

given by

of Chan and Dalgarno (four-term variational cal-
culation). " Figure 1 shows photoionization cross
section for the eight-pole case for three different
choices of the fitting points. These curves dem-
onstrate that, over a fairly broad region in the
complex plane, the calculated cross sections are
relatively insensitive to the points used to con-
struct the rational fraction. A similar study of
the results in the 13-pole case led to cross sec-
tions which mere indistinguishable on the scale
of Fig. 1. Figure 2 compares the results of our
8- and 13-pole calculations with the experimental
cross sections of Samson. ." For comparison we
have also plotted the values of the photoionization
cross section obtained by Stieltjes-imaging' the
13-pole results.

IV. DISCUSSION

The results given here again indicate that it is
not necessary to employ continuum basis functions
in photoionization calculations. Preliminary re-
sults also indicate that this is true in the molecu-
lar case, although several. modifications of the
analytic-continuation method are necessary.
These developments will be discussed in future

publications.
We should l.ike to make a final point before con-

cluding. We have worked with the expression for
the full. polarizability

which, in the limit & - ~+ iq, has imaginary part
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proportional to the photoionization cross section.
One could work equally well with the positive fre-
quency contribution to the polarizability

1 g(e) de

2

The point is that the technique of numerical con-
tinuation allows one to make finite quadrature-
like approximations to these integrals and in-
directly pick up the residue on the real energy
axis. Bearing this in mind, one could, in principle,
substitute the generalized oscillator strengths"
in Eq. (1), and analytic continuation could then be

used to find values of the Born cross section in

the continuum. One could, in principle, construct
the entire Bethe surface" of an atom or molecule
in such a fashion. But in practice one would prob-
ably need larger basis sets than were used here,
since all angular momentum states would contrib-
ute to the generalization of Eq. (1}.
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