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Photodetachment cross sections of C and F are calculated by means of the many-body
perturbation theory with multiple basis sets. The V~ ~ basis set is defined to include the
intrachannel interaction. The V+ 2 basis set is introduced to describe the correlation in the
Hartree-Fock ground states of negative ions. The lowest-order cross sections agree very
well with experiment. The first-order corrections are calculated in the case of F, and a
large cancellation is found between the initial-state correlation and the final-state inter-
channel interactions. The importance of the use of the consistent energy relations in the
lower-order calculations is pointed out.

I. INTRODUCTION

In the past decade, the photodetachment of nega-
tive ions has been investigated, experimentally
and theoretically, by many a,uthors primarily be-
cause of the astrophysical interest. The effect of
core polarization, which is important in the
threshold behavior, ' has been taken into account
in most of the theoretical calculations. However,
the core-polarization effect alone does not explain
the shape of the cross section satisfactorily over
the energy range of measurements. ' '

Recently, the many-body perturbation theory
(MBPT) has been applied to the photoionization
of neutral atoms, ' ' taking into account the cor-
relation effects. It has also been applied' to the
photodetachment of Q . In this method, one can
give a simple physical interpretation to each con-
tributing term. We present, in this paper, a cal-
culation of the photodetachment cross section of

- and F using the MBPT with multiple basis
sets. '

On defining a basis set of MBPT expansion for
atomic problems, we usually use the Hartree-
Fock (HF) orbitals for the occupied states. This
may be a reasonable choice for the photodetaeh-
ment of negative ions, since it is essentia1. 1y a
single-particle process. There is a freedom for
excited orbitals to form a complete set together
with the HF ground-state orbitals, and we con-
struct them from the HF (V") complete set to
eliminate certain higher-order diagrams. A de-
scription of our method for the photoionization
problems was given elsewhere. ' In the following,
we shall neglect the contribution from the inner-

shell electrons. In terms of HF ( V") complete
sets, the following correction terms appear in
the first order. (i) Particle-hole interaction in
the final states. The diagonal interaction, in-
cluding higher-order ladders, transforms the V

complete set to the more physical V~ ' set. ' The
nondiagonal interactions include inter- and intra-
channel interactions described by Fano and Coo-
per. (ii) Virtual two-particle excitation in the
initial state. The effects of polarization and re-
arrangement of the core, including the correction
to the HF va, lues of electron affinities, appear a,s
the second-order processes.

In Sec. II, we define a V"-' complete set which
includes the intrachannel interaction. Also, the
calculated lowest-order (single-particle model)
cross sections of C- and F- are compared with
experimental mea, surements. We calculate, in
Sec. III, the cross section of F with the first-
order correction in both initial and final states.
Discussions on the second-order processes are
given in Sec. IV. We use atomic units throughout
this pa.per.

II. LOWESTARDER CROSS SECTIONS
OF PHOTODETACHMENT OF C AND F

' complete set

As we have mentioned in Sec. I, we take HF or-
bitals calculated by Clementi" as the ground-
state orbitals. The spin-orbit interaction is neg-
lected. The excited-state orbitals are defined as

eai. (r) = „Fi (~),pai (&)
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with the asymptotic form

P» (r) sin(kr —2l s+ 5, ),

(2)

(3)

where s~ = —,ks, V, is the HF (V") potential, and
U, can be chosen freely' and is defined below to
include the intrachannel interaction.

Our choice of U, is given diagrammatically in
Fig. 1, and is written explicitly for s and d states
as, in the usual notation,

0~ ( )
0( Pt P) P ( )

+C, ' '
Pss (r) + o.„P„(r)E', (2p, ks}

r

+o„P„(r),

where P»(r) satisfies the following equation

1 d' f(l +1)-2 d s
— „s +V&""+Ui Pa~(&) =&sPai(&»

In Eqs. (4) and (5), the first term on the right-
hand side refers to diagram (a) of Fig. I and re-
moves the Coulomb tail of VP(V"- V" '}, while
the second term refers to diagram (b) and repre
sents the intrachannel interactions. The last two
terms of Eq. (4) orthogonalize the excited s state
P» with P,s andP2, . With this complete set, the
intrachannel interactions are eliminated in our
perturbation expansion of the transition matrix.

B. Cross sections

photodetachment cross sections (dipole velocity
formula) for C- and F in the lowest order are
given by

o" = (5.1355x 10-"cm')—1
(dk

xO&ksl DI2P)l' C. +1(kdIDI2P) I'C, }, (V)

where

(n' I + 1 {D{nl )=

p ( )
Vo(2pl P)P ( ) C 1( P9 }P ( )

x —v P„, (y),
d 2l +1+1
dr 2r (8)

(5)
where (y„and (y„are given by

u„, =(ns, 2p{t,{ks, 2p) —C, (ns, 2p{n, {2p, ks) . (5) l6—

—,'(C ),
C

Il(F ),

Quadrupole and octopole interactions have been
neglected in Eq. (5).

~~s

r
d

UI

{b}

FIG. 1. Diagrammatic definition of U, . Summation
over all possible l, and spin states in the intermediate
state is intended in diagram (b): (a) is a direct particle-
hole interaction which removes the Coulomb tail of V I";
(b) is an intrachannel interaction which gives rise to a
short-range repulsion.

~t I I

0 0.02 0.04 0.06 0.08 O. l0 0.I2

k {a.u. )

FIG. 2. Photodetachment cross section of C in the
single-particle approximation. Vo and Lo are our ve-
locity and length cross sections, s and d are s- and d-
channel contributions to Vo ~ RG is the calculation of
Robinson and Geltman (Ref. 3), experimental results are
from Ref. 12.
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and the continuum wave functions are normalized
as Eq. (8). ~ =e, +e» is the photon energy with

e» being the electron affinity. In the lowest order,
i.e., the single-particle approximation, e& takes
the HF value~io e~ e~ O.OV68V for C and
0.j,8079 for F-. They are quite different from
experimental values, ""e»"v'=0.04594 (C-) and
0.126'I (F-). The correction to the HF electron
affinity wiii be discussed in Sec. IV.

The dipole-length formula for the lowest-order
cross section is given by"
o~ =(5.I355X 10 "cm')—()(ks)r ) 2p))'C,

kl

)(() k 1

"-P 0
q((), k I

(b) (c)

FIG. 4. Final-state correlation: (a) is the lomest-
order matrix element, (b) and (c) are the first- and
second-order corrections to it through interchannel
interaction. E,E' = 0 or 2. $' & l.

+I(hdl~l 2p&l'&g}. (9)

Equation (9) can be shown to be equivalent to Eq.
(7), assuming e» =e» and

(uI )(V","+V,)r -r Vs") 2p) =0.
The cross sections calculated by Eqs. (7) and (9)

are shown and compared with the experiments"'4
in Figs. 2 and 3 for C and F, respectively. The
agreement with experiment is very good. The
length-velocity difference comes from the neglect
of the left-hand side of Eq. (10) in the length for-
mula. In these figures, we plotted the cross sec-
tions calculated by Robinson and Geltman' for the
sake of comparison. They used the single-particle
model with the Herman-Skillman potential and the
polarization potential. The s- and d-state channel
contributions in our cross sections are also shown
in these figures.

III. FIRSTARDER CORRELATION

IN THE PHOTODETACHMKNT OF F

In the MBPT expansion of the transition matrix
in terms of our V" ' basis set, the first-order
correction in the final state is the interchannel
interaction shown in the diagram (b) of Fig. 4.
%e neglect the contribution from the inner-shell
electrons. The diagram (c) is the second-order
correction of this type while the diagram (a) is
the zero-order matrix element (hl)D)2P). The
contribution from the diagram (b) is given by

g, , g (kl2p)»(, )2ph'I')
a'

x . (h'I')D)2p),

which should be added to the matrix element
(hl)D)2p) in Eq. (7) where I and I' are 0 or 2 with
L'w L, and q=+O.

Diagrams (a) and (b) of Fig 5are the. correction
terms due to the first-order correlation in the
initial state. These diagrams include a virtual
two-particle excited state and our basis set may

E
CX)

»

b

2p kl

2p]'( ~yk I

I I

2 Ik
~ ~

d

I

0.05 O. IO

2
(o, u. )

O. I 5 0.20

FIG. 3. Photodetachment cross section of F in the
single-particle approximation. Vo and L,o are our ve-
locity and length cross sections, s and d are s- and @-
channel contributions to Vo. RG is the calculation of
Robinson and Geltman (Ref. 3), experimental results are
from Ref. 14.

(e)

FIG. 5. Initial-state correlation; (a) and {b) are the
first-order corrections, (c)-(f) are the related second-
order corrections.
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not give a good description of it. Reflecting this
fact, some related higher-order diagrams be-
come important, namely the diagrams (c}-(f),
etc. , for the diagram (a), and similar for the ex-
change diagram (b). The diagram (c) and its lad-
ders can be taken into account by the use of the

usual shifted energy denominator' in (a).
A particle-hole interaction, Fig. 5(d), and its

ladders can be included if we introduce a new

complete set (kl), which may be called V" ', and
replace Fig. 5(a) by Fig. 6(a). Where P„(r}is
defined by

1 d2 l(l + 1) jjF

2 d'Y
+Vj +Uj+Uj Pjjj(r) ejjjPjjj(r)

with

U, P„(r)=- ",' P„(r).P, (r),&(2p, 2p)—

E (jr) is to orthogonalize P» with the ground-state orbitals, and for s and d states,

(P„(r)(ls2p/ju /jks2p)+p„(r)(2s2p/ju fks2p), l =0
j

j 0 L =2.

In the above definition of U„we have neglected
the exchange and quadrupole interactions. The
potential in the above Schrodinger equation be-
haves asymptotically as (-1/r) and, therefore,
this V~ ' complete set includes bound excited
states. Similarly, we can add up Fig. 5(e} and
its ladders to give the diagram (c) of Fig. 6. Be-
cause of the sharp peak of the overlap integral'
(kl ~k"l'), the dominant contribution comes from
the diagram with (k"l) in continuum states of k" =k
and (k' l') in the lowest bound state in which the
particle-particle interaction may largely screen
the particle-hole interaction taken above in the
continuum state ~k" l). Thus, Fig. 5(a) together
with the important higher-order terms may be
given, in a good approximation, by a single dia-
gram, Fig. 6(a). Similarly, we have Fig. 6(b) for
the exchange diagram.

The contributions from these diagrams (a) and

(b) to be added to the matrix element (kl ~D~2p) in

Eq. ('7) are expressed as

l'=0. 2 Eo —~n'~' —~a

and

C(l, l ')(2piD(k'1')
7'=o, 2

(klk'l '(u ji 2p2p),

respectively. The angular factors in the latter
expression are given by

C (l, 0) = --,', C (0, 2) = --'„C(2, 2) = ——,'„

and

Z, =2~„-(2p2p~u, ~2p2p).

Figure 7 shows the F photodetachment cross
section of zeroth order (diagram 4-a only), with
the first-order final-state correlation (diagrams
4-a and 4-b) and with both initial- and final-state
correlations [diagrams 4(a), 4(b), 6(a), and 6(b)].
The second-order final-state correlation of Fig.
4(c) affects the cross section very little (-0.1
X10 "cm' over our energy range).

(a} (c}
IV. DISCUSSION AND CONCLUSIONS

FIG. 6. Initial-state correlation diagrams with mul-
tiple basis sets. Double lines stand for the V~ 2 com-
plete set, defined by Eq. (11). Dot in diagram (c) is
the overlap integral (kl (k "l) of two complete sets (Ref.
7).

We have shown, in Sec. II, the results of our
single-particle-model calculation of the photo-
detachment cross sections of C and F . They
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Eq. (f), without changing the wave functions are
given diagrammatically by the self-energy inser-
tion to the final-state hole line. Diagram (a) of
Fig. 8 is a lowest-order term of this kind. This
term has a zero-energy denominator and, in order
to get a. finite correction, we have to sum up a
series of diagrams with various numbers of the
same self-energy part in the hole line. This pro-
cedure changes e"," in Eq. (V) to the value with the
seco nd-o rde r correction.

The single-particle-model cross sections, by
Eqs. (7} and (9), of C and F using e.',."~' are
compared with those using e",." in Figs. 9 and 10.
We notice the cross sections with e',"~' are far
away from the experimental results. The reason
for the large length-velocity difference in this
case is that the assumption ~, =&",." for the equiva-
lence of Eqs. ('7) and (9) is violated. Without this
assumption, Eq. ("l) gives a factor (e, —e»)'/&uk

instead of ~/k in Eq. (9). These facts suggest to
us that there must be some other equally important
second-order processes which compensate for

the correction to the electron affinity. Typical
second-order processes, which we have not con-
sidered so far, are also shown in Fig. 8. Dia-
grams (b) and (c) are the effect of the core polar-
ization on the outgoing electron and on the initial-
state wave function, respectively. Diagram (d}
is the effect of the core rearrangement on the
outgoing electron. We feel that the large can-
cellation in the second-order processes may occur
generally for any systems.

The lower-order MBPT calculation based on the
Hartree-Pock orbitals may be useful to study the
photodetachment processes of negative ions, and
it is important in such calculations to use the con-
sistent single-particle energies in the energy-
conse rvation relation.
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