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Theory of hyperfine effects in the Zeeman splitting of the 2 P state of Li'
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The linked-cluster many-body perturbation theory is applied to the study of the one- and
two-electron contributions to the magnetic contact, dipolar, and orbital hyperfine interaction
in the 23P state of the 6Li and ~Li+ ions, The relative importance of one- and bvo-electron
contributions to the various hyperfine constants are discussed, and comparisons are made
between our theoretical results and recent experimental data obtained both by beam-foil
spectroscopy and by radio-frequency resonance techniques utilizing electron-impact excita-
tion.

I. INTRODUCTION

Because of the recent experimental work on the
measurement of the hyperfine splittings in the
2'P state of Li',"it has become desirable to
have an accurate theory for the .'ayperfine coupling
constants. The reasons for sucl'» a theory are two-
fold, one being the obvious comparison of theoret-
ical and experimental splittings, while the other
is to see if one can get accurate enough results
in this two-electron system to draw conclusions
about the role of relativistic and quantum electro-
dynamic corrections to the hyperfine constants.
Such an analysis has already been done for the
2'S state of 'He, and it is interesting to extend
it to the present isoelectronic system with a larger
nuclear charge. '

To calculate the hyperfine splittings one can
adopt one of two general approaches, the configu-
ration-interaction method" or a perturbative
scheme, ' " and with all of their ramifications
these two procedures should be equivalent. An

accurate theoretical analysis of the present sys-
tem requires a detailed treatment of many-body
(in the present case, two-body) eff'ects. Because
of past successes we made use of the linked-clus-
ter many-body perturbation method (LCMBPT)
for our calculation. e " %'ith this approach we ob-
tained the individual contributions from the con-
tact, dipolar, and orbital interactions to the en-
ergy levels, and as a byproduct of the calculation
from a theoretical point of view, information on the
convergence of the perturbation procedure and the
relative importance of one- and two-electron
contributions to the hyperfine constants.

Section Il contains a brief description of the
linked-cluster many-body method, a listing of
individual diagrams, their physical meaning, their

values, and the net contributions to the three hy-
perfine coupling constants from different orders of
perturbation in nonrelativistic theory. The mag-
netic-field dependence of the energy levels is
treated in Sec. III along with the comparison of
the theoretical splittings with experiment. The
contributions of the various corrections, both
relativistic and nonrelativistic, alluded to above
are discussed in Sec. IV with the results of the
calculation.

II. ZERO FIELD -HYPERFINE INTERACTION

Ne will present a brief summary of the theoret-
ical procedure to evaluate the hyperfine constants
in the absence of an external magnetic field. ' "
The total nonrelativistic Hamiltonian for an atomic
system of N electrons is

where T, represents the sum of the kinetic energy
and nuclear Coulomb potential of the ith electron
and p), , is the electrostatic interaction between
electrons i and j. One is interested in the solution
4, of the Schrodinger equation

In the perturbation procedure used here, one
replaces the Hamiltonian 3C by a one-electron
Hamiltonain X,:

and treats X' =BC -$C, as a perturbation. The
single-particle potential V,. is selected in such
a way that the one-electron equation

(T+v)y,. = ~,.@,
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can be solved conveniently for a complete set of
states with eigenvalues e, including the continuum.
A normalized zero-order determinantal wave func-
tion @, can then be formed out of N of these one-
electron states. 4, satisfies the unperturbed
Schrodinger equation

These basis functions were used to evaluate
the hyperfine structure (hfs) of the Li' ion. The
total hfs Hamiltonian 3C~, is composed of three
parts; namely, Fermi contact, dipole-dipole, and
magnetic orbital terms. These three terms are
given by

K 40= F-040,

with E, =Q,. ~, . Using the time-development-
operator technique, one can find a perturbation
expansion of 4„with @, as the zero-order ap-
proximation. Then the expectation value of an
operator 0:

16" p v) V~I. p 8 6(r )
3 Iaq

3(s, r &r, s.
$Q(f 2 3

2 PaP~ I.~ l~
'o Ig ~ r ~B s i

(9a)

(9c}

can be written as

(0) = Q &@ol[Z'(Eo-X,) 'I"

~ O[(E, -X,)-'X ]- I4,)„ (6)

d' l(l +1) 6 2$)Q.. dr' r' r r+ ———Y (ls Is'r)+2& n1

2
&P„,(r)+(2I 1} Y, (ls, nl;r)P„(r) =0,

(8)

where J. indicates that the summation is over
linked terms only.

Vfe can apply this procedure to the evaluation
of the hyperfine constants in the excited 2'P
(m~=2) states of the Li' ion. With the usual Y" '

potential in Eq. (4), one gets the following radial
equations for P„,(r) (r times radial wave function):

d 6 2)=0:, ——— ( v2v)i)tRa„)p„,( )dr r r

+—Y, (2p, ns; r)P„(r) =0, (7)
2

3r

and for

In the experimental determination of atomic hfs,
one uses the following spin Hamiltonian for these
terms:

~ sPI11 A I ~ Ja a (10)

where a stands for c, (f, or o. For the 2'P, (m~
=2) state of Li' (Is2p) ion, A, is given by

A„= (1/2I)&X )

x10

The evaluation of A thus involves a calculation
of the expectation value of & . This evaluation
of expectation values is carried out according
to Eq. (6).

Various terms in Eq. (6) can be represented by
diagrams similar to Feynman diagrams. These
diagrams are grouped according to the two integers
m and n appearing in the summation in Eq. (6).
Diagrams which belong to particular values of m

and n are referred to as (m, n) diagrams. In the
diagrams, we represent 2s,5(r), s,(3s' r'}(r', -
and 1,/r' as wiggly lines followed by letters c„d,
and 0, respectively. To obtain the contributions
to A in MHz from an individual diagram evaluated
in units of a~', one has to apply a multiplying fac-
tor

where in the Hartree notation

v, (.)'v;.)=.f;, ,)„,(. ) P. .. .(') dv.
0

for A, and a factor

Pa Pe x10 6

Equations (7) and (8) are solved self-consistently
for the 1s and 2p electrons. Higher excited orbit-
als are obtained with these ls and 2p wave func-
tions and the F~ functions. %'e have included in
our perturbation calculation one-particle excited
states up to l= 3. For each / we have generated
bound states up to n =10 and continuum states at
12 different points in k space in such a way that
we can use the Gauss-Laguerre quadrature tech-
nique for the k summation.

for A, and A, The numerical values of K, and

E~ for 'Li' are 164.244 and 39.21, respectively.
In the present calculation we have included all
the diagrams up to the second order in electron-
electron interaction. The more important diagrams
are shown in Figs. 1-4. All the numbers appearing
with these diagrams are given in MHz units and
refer to 'Li. To get the corresponding values for
'Li, one has to multiply the values for 'Li by the
ratio
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FIG. 1. Zero-order (0,0) diagrams for the hyperfine

coupling constants (MHz). FIG. 3. Second-order {1,1) and (0,2) diagrams for the
contact coupling constant A (MHz).

(g„/f)7„,/(g„/f)s~, = 2.641.

The zero-order diagrams are illustrated in Fig.
1. The orbital and dipole interactions together
contribute only 14.75 MHz, which is about 1$ of
the contact contribution of 1393.32 MHz. Figure 2

depicts the (0, 1) diagrams where these diagrams
exist only for A~. The net contribution is -0.04
MHz, which is about 1% of the zero-order dipole
contribution of -3.69 MHz. In Fig. 3 we have the
leading second-order contact diagrams. The four
diagrams in the first row are (1, 1) diagrams and

the four in the second row are (0, 2) diagrams. All
these diagrams represent the mutual polarization
effects of ls and 2p electrons. The contribution
to A, from each diagram is indicated under the
corresponding diagram. A similar set of diagrams
are shown in Fig. 4. These are the leading second-
order diagrams for the dipole and orbital opera-
tors. The first number under each diagram is the
contribution to A„and the second number is the
contribution to A, . We have summarized our final
result for the nonrelativistic calculation in Table
I. Final results of A„A„and A, for 'Li' are
1391.02, -3.74, and 18.42 MHz, respectively.

Correlation effects are found to be very small.
Thus, in the case of A„ the total correlation con-
tribution is -2.3 MHz, which is only 0.16% of
the (0, 0) contribution. Since we estimate the ac-
curacy of our correlation results to be about 5g,
the relativistic and radiative corrections are sig-
nificant in making comparisons with experiment.
In fact, the effect of these corrections turns out
to be about the same order of magnitude as the
correlation effects among electrons. The evalua-

tion of these corrections followed the prescriptions
and pertinent formulas in Rosner and Pipkin's
paper' on 'He and the results are summarized in
Table 11 in terms of ppm with respect to the (0, 0)
contribution of A, . We did not estimate such cor-
rections for A„and A„or for the higher-order
contributions to A„since these quantities them-
selves are orders of magnitude smaller than the
zero-order contribution to A, . The reduced mass
correction arises from the motion of the nucleus
which has finite mass. This correction is smaller
than in 'He because of the larger mass of 'Li and

is even smaller for 'Li. The relativistic correc-
tion is obtained" using a Dirac hydrogenic func-
tion for the 1s states with effective charge &=3.
The radiative correction arises mainly from the
anomalous magnetic moment of the electron, but
other smaller radiative corrections have also
been included using Eq. (13) of Ref. 3. Since the
estimations of the contributions of these effects
are based on a hydrogenic approximation for the
1s orbital, one should make some corrections for
this. However, these corrections are not expected
to be of an order greater than 10 ppm, the same
order as the correction due to neutron and proton
distributions which have not been included. In

our theoretical treatment, where we use the actual
hyperfine Hamiltonian, which is a sum over in-
dividual electrons, there is no adiabatic correc-
tion to be included. The final results for A„A„,
and A„ including the above-mentioned correc-
tions, are shown in Table III.
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FIG. 2. First-order (0,1) diagrams for the dipolar
coupling constant Az (MHz}.

FIG. 4. Second-order contributions to the orbital A,
and dipolar A„coupling constants (MHz). The first num-
ber refers to A~ and the second number to A, .
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TABLE I. Theoretical hyperfine coupling constants
(Mhz).

Diagrams

TABLE II. Radiative and relativistic corrections to
the hyperfine constant A, in ppm with respect to the

(0, 0) contribution to A~ .

(0, 0)
(0, 1)

Figs 3 and 4
Other diagraIns

Total

—2.20
-0.10

1391.02

—3.69
-0.04
—0.01

0.00
—3.74

III. HYPERFINE INTERACTION IN AN

EXTERNAL MAGNETIC FIELD

18.45

0.04
-0.07
18.42

Origin

Reduced Inass
Rel. wave function
Q.E.D.
Rel. reduced mass
Total

Li

—273 ~ 7
717.9
839.0
—6.2

1277 ~ 0
(1.78 MHE)

Li

-234.7

717.9
839.0

5 4
1316~ 8

(4.84 MHE)

In relating the predictions of the theory to Zee-
man splittings in a magnetic field, we have to
study the energy levels including fine-structure
and hyperfine-structure effects in a magnetic
field. In the presence of external magnetic fields,
the spin-dependent Hamiltonian of an atomic sys-
tem can be written

X Xf3 +3Chf3 +BCg (12)

The first term in Eq. (12) is the fine-structure
(fs) Hamiltonian, which is given by

Zl, r„xP, 2r„xP,

g 2 r2l xp2 2r21 x Pl+ 3
—

3 +
+12

, s, ~ s, 3(s, r„)(82 r„)+& 3
—

5
+12 +12

(13)

The second term in Eg. (12) is the hfs Hamiltonian
and is defined in Eq. (9). The last term represents
the Zeeman interaction and is given by

=g,p S ~ 8+ p, L ~ B -gag„l ~ B. (14}

Various Zeeman sublevels can then be found by
diagonalizing 3C, in the basis of ]I 'p;FM~) .

First we consider the fine-structure Hamiltonian
X„. Its diagonal matrix elements are given by

W, =(I 'P„FM, jX„~I'P„FM,)

2 2

a=
2L(L+1) 2r'„

K= ,'[J(J+-1)—L(L+1) —S(S+1)],

I, ,,=[(r„.&&(P,. —P,.)], .

The numerical values of 8'» have been obtained
from the theoretical calculation of Shiff e1 al."
With the following splittings

W, —W, =5.19443 cm ',
W, —W, = -2.08988 cm ',

and the relation

+35', +58', =0,

we find

W, = 3.45623 cm ' = 103.6152 GHz,

8', =-1.73820 cm '= -52.1099 GHz,

W2 = 0.35168 cm ' = 10.5431 GHz .

(16)

The matrix elements of the hfs Hamiltonian can
be written in terms of the contact, dipolar, and
orbital hyperfine constants A„A„, and A, , which
have been evaluated theoretically in Sec. II:

(I'P, ; FM, ~JI:, ~1'P, ; FM, )

= [4, +AD —,'- [16 —3J(J + 1)]A~) I ~ J
(I'P~„;FM~ )X~, )I'P~; FM~)

where

=AIf+a[3ls(2@+1) —4I.(L, +1)],

2

(15}

where

(A, -A, ——,'[3J(J 2) —5]A~},

(17)

(F +j+I+2)(j+I +1 —F)(F +j+1 —I)(F +I —J)(j +4)(J +1)'(2 —j)
J'+1, » (2j+1)(2J+3)

1 J= —,'[F(F+1)—j(J+1)—I(I+1)].
lf one had ignored correlation effects in the evaluation of A~ and A, , that is, assumed the same (1jr'),„
factor for both of these quantities, "then these matrix elements would be equivalent to those given by
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TABLE IH. Net hyperfine coupling constants {MHz).

A

TABLE IV. Number of matrices for the hyperfine in-
teraction in an external magnetic field.

'Li'
7Li

1392.80
3678.40

-3.74
-9.86

18.42
48.62

Li {I=1)
Submatrices

One 7x 7

two 6X6
two 3x3
two 1x1

1
2
3
2

+—52
+7

Li {I=2)
Submatrices

two 8x 8
two 6x 6
two 3x 3
two 1x 1

I urio, Mandel, and Novick in the Russell-Saunders limit. " Note that X„„is diagonal with respect to I
and M~.

Finally, the matrix elements of 3C~ are given by

(I'P„FM, I x, I
I'p, ; FM, ) =g,q,II~, ,

g '+g

] (F +1)' Mz)(F-+8+I+2)(F +1+1—I)(F+I +1 —J)(4 +I —F}
(2F + 1)(2F + 3)

3 2 . I B+WJIMJ+S, F(I Pg+» FM(21&zlI PJ, FME) = (gs —1)4(J 1)F(E 1) (18)

(I'P, ; F 1M' IXz I
I'Pz; FME) = (g, —1)

[(F 1)' —I)f' [(J I —F —1)(J+I—F)(E I+1 —J)(F I 2 —J)(J 2)J'(2 —J)}'I'
(2F +1}(2F+3)(u -1)(2J +1}

9 a&g(I'P „'»M, l&, II'P;FM )=-(g. -1)4( 1)(F 1)

[(F 1}'—M')(E 2+I+2}(F J I S)(E 2+1 —I)(F+J 2 —Il(J 4}(J+1}'(2—J))'I'
(24+1)(24 +3)(2F +1)(2F+3}

In these equations we have used the following
symbols:

g, = y (F +1)]-' [gP J -g, ,F 1],
gE=-,'(gz+1) for I.= S=1,

TABLE V. Energy levels in zero magnetic field {MHz).

Iev)

I666 ——2 P
2

3 10455 crn
3.01275 crn '

013766
0 09532
1.90629
009608
004382

Level

8Li+

Energy Level
7Li+

Energy

)(, =5485A

J=2 F=3
J=2 F=2
J=2 F=1
J=1 F=2
J=l F=1
J=1 F =0

103, 678

13,358

9, 231

6, 374

-50, 776

-53, 656

-54, 970

F ——7

2

J=2
J=2
J=1
J=1

F -2-
2

2

J=1 F =y

104, 428

21, 695

9, 925

-5, 885

-47, 686

-57, 627

-61,850

I

644 2 S[ '1

I +
539 ——1 So, Li Li

0 2 S}I2 Li GrOund State2

0.20002
O. 10001

FIG. 5. Energy levels of Li in zero magnetic field.
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(eV)
0

F
5/2

2.75969 cm '

IOCO
Jal

& I/2 ~
F 3/2, M -I/2

66.6--2 P3 2
T/2
5/2
5/$

5.t9445 cm '
I.39433

.140B7

l0000

F~3/2, M=-I/2

Xa 5485A

644 ——2'S
I

5/2

I/2
0.396I9

CL
uJ

LLJ

9800

F=3/2, M= I/2

F=3/2, M~3/2

Fa3/2, M=I/2

5.39 --t So, Li
I , +

Li

F=3/2, M=-I/2

0 ——2 Sl/2, Li Ground State2

l00 200
Mognetic Field (G)

J=l
2-F=3/2N -3/2

FIG. 6. Energy levels of 7Li+ in zero magnetic field.
FIG. 8. Some transition frequencies for the 23P state

of 7Li' in an external magnetic field.

3300

3200

3100

Z

(3

LLI

3000

=I, M=O

2900

=I, M=0

2800

6 . +
LI

I I I

l00 l50 200
Magnet ic Fie ld (G)

I I

250 300

FIG. 7. Some transition frequencies for the 23P state
of 6Li' in an external magnetic field. Experimental
points indicated are for the J= 1, F = 2, M = 1 J= 1,
E =1, I=0 transition. The points labeled J-e-f are from
Ref. l, while the points labled g are extrapolated from
the data of Ref. 2 (see text).

Ar' =A'r (Ws/Its) ~

g, = 2.002 319313,

the value of g, being taken from a recent analysis. "
These matrix elements are equivalent to those
derived for the hydrogen molecule in the c 'II„
(ls, 2p) state if one replaces N by L and the ro-
tational factor g~ by 1 in the molecular expres-
sions. " " All other nondiagonal matrix elements
can be obtained by using the Hermitean character
of the operators involved. Furthermore, these
matrix elements are seen to be diagonal in M~.
This enables one to reduce the total Hamiltonian
matrix to direct sums of several smaller-size
matrices for each case as shown in Table IV.
These matrices are then diagonalized for each
value of the magnetic field to give the energy lev-
els.

In Table V, we list the energy levels in zero
magnetic field. In Figs. 5 and 6, we summarize
fine and hyperfine structures of 'Li' and 'Li'.
The electronic energy levels were taken from
Herzberg and Moore. " In these figures, the re-
sults for the fine-structure splittings are from
Schiff et al. ,

"and the hyperfine splitting for the
2 Sl state was obtained from Breit-Doermann's
formula" with the (1 +e) factor calculated by
Luke e1 a/. " For a nonzero magnetic field, we
have plotted transition frequencies versus mag-
netic field. These are shown in Figs. 7 and 8 for
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TABLE VI, Comparison of the theoretical hyperfine
splittings with the calculated and observed splittings of
Berry et al . {Ref. 2) {MHz) .

Hyperf inc
transition This paper

JF O' F'

Ref. 2

Calc.

12 11

23 22

12 10

4127

4194

7Li 6 1—3
2

, 3

2—5
2

1-5
2

2—7
2

1—5
2

2—5
2

1—i
2

2—
2

32—
2

31-
2

55

2 2

11—
2

2—
2

6204

9606

9941

11770

14 164

15 810

6010 5984

9255

9462

11320 11347

13 700 13 427

15000 15 233

'Li' and 'Li', respectively. In the case of 'Li',
we have also shown the experimenta. l results. ' '"'

iV. OlSCUSS&OX

The agreement between theory and the experi-
mental results of Adler et al, ' is very good as
seen in Fig. 7. However, the agreement with the
energy levels obtained from the beam-foil experi-
ments by Berry et a/. ' for the 2'p states of 'I.i'
and 'Li' is not good as evidenced in Table VI. The
disagreement varies from O'Po to 3'Po. Some of the
variance between our theoretical hyperfine split-
tings and the calculated values of Berry et al. can
be attributed to their fitting the experimental data
to just the contact part of the spin Hamiltonian
[Eq. (10)] which comp1etely ignores the influence
of the 2P electron. Since the contact interaction

is so large, this approximation cannot account for
more than 2/o. What is more disconcerting is the
differences between our theoretical hyperfine
splittings and their observed splittings for 'Li',
which vary from 5/p to 3/0, whereas they claim that
their frequencies are accurate to I. They do not
report similarly observed splittings for 'Li' with
which we can compare. The theoretical splittings
are expected to be of a high precision, since we
have included all the important corrections due
to many-body, radiative, relativistic, mass-mo-
tion and other important corrections. Since these
corrections are themselves much smaller than
the difference between the predictions of our
theory and the beam-foil experiments, this dis-
agreement is quite serious. Berry is now engaged
in a more accurate experimental determination of
the hyperfine splittings in the 2'P state of Li'."

As regards to a comparison between the two
sets of experimental results themselves, this
cannot be done directly, since Adler et al. did
their measurements at 136 and 168 G. However,
with the methods outlined in Sec. III, we can take
the zero-field splittings of Berry et al. and ex-
trapolate them to these magnetic fields. In Fig.
7 we have also plotted these points and it is seen
that the results of the two experiments differ by
4%. In contrast, our theory and the experimental
results of Adler et al. are in excell. ent a.greement.

From Table I we see that the correlation effects
are very small and the coupling constants are
predominantly determined by the one-electron
terms, which is not surprising for this two-elec-
tron system where the tightly bound unpaired 1s
electron makes the major contribution to hyperfine
structure. The relativistic corrections (Table II)
are of the same magnitude as the correlation
terms. This work represents a very precise cal-
culation of the hyperfine splittings as a function
of an external magnetic field, and it is hoped that
it will be some utility in resolving the differences
between the two experimental measurements.
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