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The static approximation, which neglects the distortion of the (complex} target, that is, virtual

excitations, during the collision of a particle with the target, was shown previously to give an upper
bound on the scattering length when the number of bound states supported by the static and true
Hamiltonians are the same. It repreilents an unchmuijustment of the target to the field of the scattering
particle. It is perhaps then to be expected that the adiabatic approximation, in which the target wave

function. is calculated for each value of the incident particle coordinate as if the incident particle were
6xed at the given point and which represents therefore an overadjustment of the target to the field of
the incident particle, mifrbt provide the opposite bound, the lower bound, on the scattering length. This
possibiTity is explored for the detergrii~~tion of scattering lengths. The bound property is shown to hold
in cases where both the true and adiabatic Mtrii&tonians support the same number of bound states;
some (reasonable) subsidiary conditions must also be satisfied. Possible extensions of the formulation to
scattering with noiuero energy and with exchange are briefly mentioned. The theory is then apphed to
e+H and e+He scattering at zero incident energy; a reasonably accurate bound for the latter system is
obtained, but the adiabatic approximation gives only a very crude, though rigorous, bound on the e+H
scattering length. A connection between the generalized optical potential and the adiabatic potential is
derived using projection-operator techniques, thus further clarifying the physical content of the adiabatic
picture. Bounds are also obtained for atom-atom and ion-atom collisions; they are interesting only if the
electron-proton mass ratio is not thought of as vanishingly small. Some consideration is given to p H
scattering. Lower bounds on electron-atom scattering lengths are morc difficult to obtain.

I. INTRODUCTION

The reason that it is possible to so readily ob-
tain a (Rayleigh-Ritz) variational upper bound on
the lowest (discrete) energy eigenvalue of a sys-
tem is precisely because it is the lowest state of
the total Hamiltonian H. Similarly, the possibil-
ity of developing such a simple form' for the vari-
ational upper bound on the scattering length A for
the scattering of system C by system D, when
C +D cannot form a composite bound state, is
precisely because me are then once again con-
cerned with the lowest eigenvalue of H, even if
it is here at the edge of the continuum spectrum.
The determination of an upper bound on A when
bound states of C +D exist, "and the determina-
tion of one boy on the phase shift~ and, more
generally, on certain elements of the reaction
matrix' proceeds by reformulating the problem
in such a way that H is replaced by an effective
Hamiltonian whose eigenvalues all lie above the
total energy of the incident particle plus target
in the scattering problem under consideration.
[ft is clear that the bound on the ground-state
energy mill be an upper bound, since the trial
function is necessarily a superposition of states
with the correct and with higher energies. The

nature of the bound on scattering lengths, phase
shifts, and scattering parameters in general,
that is, whether the bound on a given scattering
parameter is an upper or lower one, is a matter
of convention, depending upon the definition of
that scattering parameter. %'ith the standard def-
initions, it follows from comparing the effective
range theory expansions of k "cotgL„where L
is the angular momentum, q~ is the phase shift,
and k is the wave number, that

1/A = +a+

this assumes that there exists one or more bound
states of 0, one of whichis averyweaklybound state
with energy —)r'~'/2m. Since the Rayleigh-Ritz
method provides a lower bound on ~ & 0, it follows
that the "analogous" bound on A mill be an upper
bound. Furthermore, for very small A, , the
standard definitions —there is some lack of con-
formity here —lead to

The analogous bound on q mill therefore be a
lower bound, and the bound on cot g mill be an
upper bound. j

From the above discussion, it is to be expected
that the determination of the other bound on dis-
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crete eigenvalues or on scattering parameters
will be a rather more difficult matter, since the
spectrum of H is not bounded from above. This
is indeed the case; results for the other bound
that have been obtained' I are either very com-
plicated because they depend upon the operator H',
or they are rather specialized, requiring for ex-
ample that various potentials be everywhere re-
pulsive. ' In this paper we mill explore an ap-
proach which will be much more general than
the latter approaches and which can be much
simpler to apply than the former.

We begin by noting that there is an alternative
way of viewing the usual bound, the upper bound
on the energy or the scattering length, and the
lower bound on the phase shift, for example.
Thus, for both bound states and scattering prob-
lems, the objective is to make the potential as
effective as possible, that is, in the first case to
lower the energy and in the second to draw in the
wave function and thereby increase the phase
shift. Consider for example the scattering of a
distinguishable particle by a target under condi-
tions such that only elastic (single-channel) scat-
tering is possible; we assume that the target
ground-state wave function is known. Then it has
been shown that the (exact numerically obtainable)
static-approximation phase shift q„„representsa
bound on the true phase shift q. In the static ap-
proximation, the target is assumed to be frozen
in its ground state during the scattering process,
that is, the incident particle does not affect the
target though it is itself affected by, and thereby
scattered by, the target. More generally, the
close-coupling approximation, a direct extension
of the static approximation, in which the target
is allowed to be in its ground state or in one of a
finite and specified set of excited states, also pro-
vides a numerically obtainable bound on q. Fur-
thermore, as the set is expanded, the phase shift
estimate monotonically approaches the correct

The formal proof proceeds ' by comparing
the effective one-body potentials that the particle
sees in the static approximation, in successive
close-coupling approximations, and in the exact
case. Though some of the effective one-body po-
tentials can only be obtained formally, it is still
possible to prove rigorously that they decrease
monotonica11y as the true problem is approached.
The "physical" interpretation of these results is
that we are allowing more and more of the effect
of the interaction to be properly taken into account,
that is, that we are enabling the target to adapt
itself better and better to the effects of the field
generated by the incident particle.

In the light of the above remarks, it is natural
to ask whether one can introduce an approxima-

TABLE I. Quantities to be bounded, and theoretical
approaches that generate upper and lovrer bounds, and
upper and lovrer variational bounds (minimum and max-
imum principles). Quantities to be bounded, defined so
that a given approach leads to the same kind (upper or
lower} of bound or variational bound: (1) binding energy:
E~; (2) scattering length: Az, {3)negative of scattering
length phase: -y =tan ~A; (4) negative of phase shift:
-g&, (5) k ~+' coty&,. {6)negative of eigenphase shifts:
-q{'& (i is the channel index); (7) diagonal elements of the
inverse reactance matrixb: {X ')&&, (8) Linear combi-
nations of the inverse reactance matrix: Q &&a&K&& s&,
(a& specifies the initial condition in channel i).

Upper bounds and
minimum principles

Static approx.
Close-coupling approx. ~

QHQ operator ~

H~-type operators & "
V & 0 case ~

tt Reference 13.
b Reference 5.' References 2-4.
d Present paper.
'Reference 26.

Lovrer bounds and
maximum principles

Adiabatic approx. d

Adiabatic close-coupling approx. ~

QBQ)2 operator ~

H -type operators ~ "
V&0 case&

f References 8-10.
& Reference 6.
"Reference 7.
' Reference 8.
j Reference ll.

tion in which the adaptation of the target is greater
than that which actually occurs, and whether such
an approximation would provide the other bound
on the various scattering parameters under con-
sideration. The adiabatic approximation is one
such candidate. " In an actual problem, the re-
sponse of the target to the particle stimulus is
effectively determined by a time-dependent re-
sponse function, since the particle is in motion;
in the adiabatic approximation the response of the
target for the projectile particle at a particular
position is calculated as if the particle were fixed
at the given position, and the target is allowed to
possibly overadapt to the effect of the particle.
The effective potentials generated in this way may
then provide opposite bounds on scattering param-
eters and binding energies. Various quantities
which are being bounded are listed in Table I.

It must be emphasized that a bound provided by
the adiabatic approximation need by no means be
a purely formal result, since the adiabatic ap-
proximation can provide a much simpler scatter-
ing problem than the original one. We formulate
the procedure for obtaining bounds on A in Sec. II
in the adiabatic approximation. Section III con-
tains additional discussions on the adiabatic pic-
ture based on two slightly different choices of
the adiabatic Hamiltonian. Although the basic
structure of the operators involved is quite dif-
ferent, the resulting amplitudes are essentially
the same as those derived in Sec. II. A brief
discussion on the explicit angular momentum de-
composition is given in Sec. IV, and Sec. V con-
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tains several applications of the bounds. Appen-
dix A contains some formal results on the adia-
batic potential, and Appendix 8 contains a discus-
sion of some of the effects of symmetry, partic-
ularly mith regard to proton-hydrogen scattering.
Much of the material in Sec. V can be understood
after having read through Sec. IIA.

H(r, R) =Hr(r)+ T(R)+V(r, R), (2.1)

where r denotes the internal variables of the tar-
get system and R denotes the coordinate of the in-
cident particle with respect to the atomic nucleus.
(Here we ignore corrections of the order of m, /M~,
wherem, is the electron mass and. M&is the nuclear
mass. ) The target Hamiltonian Hr has eigenfunc-
tions g&„and eigenvalues E&„,mhere

(2.3)

(In the following, we omit the subscript L on
4 z„~and Hr„,~ whenever no ambiguity arises. ) The
scattering process to be studied is defined by

{H—Ero) 4'(r, R) = 0; (2.4)

only for purposes of discussion, me will assume
here and later that the target ground-state wave
function has zero total angular momentum /=0.
The boundary conditions on I' are then given by

X/2

, R)-( 2 ~, g, (r)

H' „,'„)I',(ft i), H--

~(r, R)-O,

(2.5)

where M,~ is the reduced mass, the incident mo-
mentum kk is along the z axis, and 4 is regular
at r =O and at R = O. We are concerned here with
scattering in a state of total angular momentum
L. The subscript L w'ill often be understood and
we mill from now on often simply write A rather
than A.~; as noted above, the subscript L will

II. LONER BOUNDS ON SCATTERING LENGTH

%e restrict our consideration to scattering
problems for which the incident relative kinetic
energy is zero and for which elastic scattering is
the only possible process. To simplify the dis-
cussion, we mill talk of the scattering of an inci-
dent particle with no internal structure by a neu-
tral target; prototype problems include, for
example, positrons on hydrogen or helium atoms.
(We ignore the possibility of annihilation. ) With
T(R) the kinetic-energy operator of relative mo-
tion and V(r, R) the target-incident-particle in-
teraction, the Hamiltonian H of the system is
given by

also often be understood in connection with various
wave functions and Hamiltonians.

In seeking a lower bound on A, it mill be useful
to consider a different scattering system defined
by a Hamiltonian H„to be specified in detail
later, with the continuum threshold also at 8~p.
The associated zero-incident-energy wave function
4, is defined, for a given value of L, by

(H, —Ero)4, = 0, {2.6}

(2.8)

The form (2.7) was used earlier" to deriv.
bounds and variational bounds on A; for example,
by choosing H, to be the static Hamiltonian

H, =H,„,(r, R)=H, (r)+T{H)+V„{H),

where

(2.9a)

Vpp+) cf r g&„r 'V r, R

and assuming that the incident particle and the
target cannot form a bound state, that is, that H
cannot support a bound state, it was found that

(2.9b)

(2.10)

where A,f,t is the scattering length associated with
T+V«. [More generally, ' Eq. (2.10) is valid if
H and H,1„support the same number of bound
states. ]

Since we are nom seeking the opposite lower
bound on A, it will not be unnatural to interchange
the roles of H and H, , and consequently of 0 and
4', and of A and A, , and rewrite Eq. (2.7) as

A, =A +(4, (H, —E,)4') —(5q, (H, —E,)5% } .

(2.11)

%'e now have 64' =4' -4, , but since 64' appears
quadratically in Eq. (2.11) the change in sign has
no effect and we mill continue to use Eq. (2.8).
Further, in utilizing {2.11), we expect it to be
useful to associate H& with the adiabatic approxi-
mation. The adiabatic picture of the scattering
process as described in Sec. I may be formulated
in terms of the distorted target states generated
for each value of R by H~+ V,

[H, (r)+V(r, R)]y„(r;R)=$„{H)4„(r;R).(2.12)

The eigenfunctions Q„satisfy the orthonormality

and by the boundary condition (2.5) but with A re-
placed by A, . A simple manipulation of Eqs.
(2.4) and (2.6) and use of the boundary conditions
gives, for any L,

A ~A, +(4„(H Era)4',-) —{54,(H —Ero}5+),

(2.7)
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conditions

J~~
P„*(r;R}P(r;R)dr=5 for each R, (2.13a)

and the boundary conditions

y„(r;R)- gr„(r), ft —~ . (2.13b)

(A given p„does not have a well-defined value of
the angular momentum. In Sec. IV, we consider
an alternate approach in which the analogue of
(II) „doeshave a mell-defined value of the angular
momentum. ) The eigenvaiues $„(R)satisfy

$„{R}=Er„-+'0„(R}-Er„,ft-~; (2.13c)

Eq. (2.13c) defines 'Q„(R). Some detailed proper
ties of 0„and P„aredescribed in Appendix
A. In particular, we note here that 'Vo(R} repre-
sents the lowest energy of interaction of the tar-
get and the projectile for the projectile fixed at
R and the target adjusting itself to this fixed ex-
ternal perturbation. The Pauli principle is to be
fully accounted for. For e+-He scattering, for
example, P„(r;R} would have to be antisymmetric
under the interchange of the coordinates of the
electrons. (Section VI contains a brief comment
on the possibility of obtaining lower bounds on
e -atom scattering lengths, a possibility that is
not considered in the present section. )

The above discussion suggests that a good can-
didate for H, is

8 ~ 8

2M,~R~ &R ~R
(2.16c)

This inequality suggests that we are on the right
track. %e define the scattering wave function in
the adiabatic approximation 4„asthe solution of

[H, ~(r,R) —Z»]%', ~(r, R}=0, (2.17}

subject to the boundary condition

@„-(M,~/2vt ')'i'g»(r)

x [H' (A. ../H"')]P, (ft k), (2.18)

%'e then have

4', , (r, R) = g»(r)u, , (R)Pr, (R k),

where

(2.19)

(te+[L(L+1)k /(2ilf + )] +00(R)jl,„(H)=0.

This inequality remains valid if we project onto
the subspace of given total angular momentum L
We then have, for quadratically integrable func-
tions of r,

H,(r,R) o- H, „{r,R)

ts + ~ +'Uo(H) +E» 5(r —r '),L(L+1)t'
2M,~

(2.16b)

H, =H, ~
= (7.'+'Uo+E~o)1 (2.14a) (2.20)

or

H, (r, R) = H, „(r,R}

-=[T(R)+V,(tt)+Z»] 5(r —r'). (2.14b)

This choice is by no means unique. In fact,
though it is in some senses the simplest choice
there are some difficulties associated with the
presence of the unit operator 1 and the consequent
lack of specification of the state of the target.
Alternative choices of H,

„

that do not suffer from
this last defect are discussed in Sec. III.

We nom consider the consequences of the choice
(2.14). By (2.12) we have

Hr(r) +V(r, R) —8,(R) ~ 0 for all ft (2.15)

H(r, R) ~ ~H{r, ),Rfor all R. (2.16a)

for quadratically integrable functions of r. (In
all operator inequalities, quadratic integrability
in the appropriate variables will be understood. }
It follows from the definitions (2.1) of H and

(2.14) of H~, using (2.13c) and (2.15), that, for
functions of r and R that are quadratically integra-
ble in r,

A, ~ ~A —(54, {H,~ —Ezo)54') . (2.24)

%e mill have to make some specific assumptions
to proceed further.

Note that there are solutions of (2.17) of the form
pr„(r)u„(R)P~(R.k)for NWO, but that these solu-
tions must be discarded because of the boundary
conditions (2.18). A slightly different and some-
mhat less artificial formulation of the problem in
which this complication —the appearance of un-
wanted solutions which must be discarded-does
not appear is presented in Appendix A and Sec.III.

With the choice (2.14), Eq. (2.11) becomes

A, „=A+{i,(H„—E»)q)-(54, (H„-E»)54),
(2.21)

where, by (2.8),

(2.22)

Equation (2.21) represents one starting point in
an attempt to obtain a lower bound on A. Vfe be-
gin by using {2.4) and (2.16) to give

(4, (H„E»)4'} =(4-, (H„—H)4 ) ~ 0. (2.23)

It follows that
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A. H,z cannot support a bound state

(54', [H, ~
—E»] 54) ~ 0. (2.26)

{Note that 4' is neither quadratically integrable
nor the limit of a quadratically integrable function
and it does not follow that (q', [H„-E»]4') is
positive; on the contrary, as we saw in (2.23), it
is negative. } The use of Eq. (2.26) in (2.24} gives
the sought for /ower bound

AI, ~ «A~ (2.27}

if Hl, „cannot support a bound state. Note that
we have obtained this result without the use of the
difficult operator H' which arose previously' "
in lower-bound studies.

The knowledge that H, ~ cannot support a bound

state would necessarily have to be arrived at
theoretically. Note that H cannot support a bound

state if H, „cannot.

We assume that H, ~ is not strong enough to
support a bound state. Formally, we then have

H, „—Ego ~ 0,

vrith respect to any quadratically integrable func-
tion of 8 and r, or, ' with respect to functions
which can be thought of as the limits of quadrati-
cally integrable functions. One example of the
latter class of functions is 54 for J =0, which

behaves asymptotically as

6e-(~,„/2va')"i{„(r)g-W., )/ft, E-
(2.25)

[For I.&0, the 54 that corresponds to (2.2&)

falls off as 8 ' and thus is always square inte-
grable. ] We therefore have

the last step follows from (2.16).
We now go further and write

(P4's, (H, ~
—E»)P4's) ~(P+s, (H —Era)P&s) &0,

(2.30a)

where P= g»)(g» is the projection operator on to
the target ground state. The first inequality fol-
lows from the fact that H, „&H for functions of r
and H w'hich, for fixed R, are quadratically inte-
grable in ri a property of P+~. The second in-
equality is an assumption.

Choosing H, to be given not by Eq. (2.14}but by

(2.31a,)H, E„=—P(H„-Z „)P,
and noting that 4, ~ (r, R) defined by Eqs. (2.17)
-(2.20) satisfies

P(H, ~
—Era)P@,~ =0 (2.31b}

and the necessary boundary conditions, (2.11) be-
comes

A. ,~ ~A +(O', P[H, ~
—E ro] P4')

(6q, p[H.-, z„]p64-) .

[The choice (2.14) for H, also gives (2.32) after a
cancellationof terms involving Q%', where Q=1 P.]-
Since H,&- 8&, can support one and only one bound

state in 8 space, with eigenfunction and eigen-
value to be denoted by as, ,„(R)and Es, ,~, re-
spectively, it follows that P[H„E&&]Pca-n sup-
port one and only one bound state in H and r space
(with eigenvalue Es„,and eigenfunction P»as, „}.
It follows' from (2.30a) that PCs is good enough

to effectively "extract" the effect of the bound state
of P(H, , —E»)P and to enable us to construct the

positive definite operator

H4's Eels, (4's, 4q-) = 1 . {2,2S)

By assumption, we have E&,& 0 and FJ, &E&,, the
latter inequality is just the statement of the ex-
istence of a composite bound state. %'e therefore
have

0 &E»)zs = (4's, H4"~) ~ (4's, H, „4's); (2.29)

B. H and H,d can each support one and only one
bound state

We now assume that H, ~ can support one and

only one bound state, that is, in 8 space only,
T(R) +'U, (R) has one and only one negative eigen-
value. It follows that H can support at most one
bound state (in the full r and R space). We as-
sume that H can in fact support one bound state;
a knowledge of the number of bound states sup-
ported by H could be arrived at theoretically or
experimentally. I et the true bound-state wave
function be q s(r, R), where

(Pe„(H., —E„}Pe,)

(2.33)
In arriving at this last result, we used the fact
that since P operates in r space and therefore
commutes with H, ~

-8~0, we have

P{H„E,) =P(H-. , E,)P = (H.„z-,)P.

We now insert (2.33) into the last term of (2.32);
note that the presence of the decaying function
P4~ enables us to transfer when necessary H~
—E» so that it operates on &4'. %'e use

(H„—Er, )6+ = —{H„—Z r,}+ = (H —H, ~}4',

a consequence of (2.22), (2.17), and (2.4).
We also use the relationship

P(H„-E~,)4 = —(H-H, „)++Q(E,—H„)@
= —(H- H„}4+Q(E„-H. ,)Q@

in the second term of (2.32).
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W'e then arrive at

where

)
(H —H, ~)P4's) (P4's(H- H, ~)

(P%'e, (Ero —H, ~)P%'s)

(Q4, (H„-E„,)Q%') -0,
we obtain the desi@ed result, namely,

(2.30b)

As a consequence of (2.30a) we have

(H H-~)P4's) (P+s(H- H, ~)
(P%'s, (H —H, ~)P+s)

(2.34}

Since H- H, ~
«0 for fixed R and for functions

quadratically integrable in r, as + is, the Schwarz
inequality gives (q, 4'4')~0. Furthermore, since
H —E~p has only one bound state, there cannot be
two normalizable orthogonal functions each of
which generates a negative expectation value of
H —E~p; we will use this result in a moment.

Finally, by assuming the inequality

V, (r }~ V, (r) does not necessarily imply that
A, ~A, . V, (r) ~ V,(r) will imply A, ~A, if A, and

A, have passed through infinity the same number
of times.

D. Bound on the "scattering-length phase"

Just as we have a monotonicity theorem for q
but not for tang, so we have a monotonicity theo-
rem for y but not for A, where y is the "scatter-
ing-length phase" defined" by

A = —tany. (2.37)

Whereas A(X) can pass discontinuously from +~ to
-~ or from -~ to +~, y(X) can be defined to be
a continuous function of the strength X of the po-
tential XV. y therefore plays a role for k =0 very
similar to the role played by q for k&0. Since
H, „«H,we have

passed through infinity the same number of times.
Correspondingly, since

(2.36)

A, ~ «A. (2.35) y, g «y, (2.38}

It follows from (2.30a) that Q(H —Er, )Q & 0, and
thus (2.30b) is expected to be valid when the effect
of Q(Hr+V —8,)4) is small.

The result (2.35) can be generalized; by assum-
ing the generalization of the second inequality in
(2.30a), one can show that A, ~ ~A if H and H, ~

support the same number of bound states. Apart
from the need for the assumed inequality, the re-
sult is analogous to the inequality relating A and

A,„,quoted above. ' Further, the result is not un-
expected from the physical picture; this should be
clearer after the discussion of Sec. HC. We sus-
pect that the assumed inequality, the second in-
equality in (2.30a), is not necessary for the proof
of (2.35), but we have been unable to prove (2.35)
without having assumed the inequality.

C. H,d can support more bound states than H can

If H cannot support as many bound states as H, ~

can, the inequality A, „«Aneed not be true. The
situation is very similar to that which obtains in
elastic scattering at nonzero incident energies.
There, for potential scattering, one knows from
the monotonicity theorem that V, (r) ~ V,(r) implies
that q, «q„where g; is the phase shift for some
given angular momentum associated with V, (r);
with appropriate definitions of q, the result can
often be extended to scattering by compound sys-
tems. However, V,(r}~V,(r) does not necessarily
imply that tanq, «tang, ; this latter relationship
will be true if tang, /)t'~" and tang, /h'~" have

where y, ~ is defined by

A, ~
= —tany, ~ . (2.39)

Equation (2.38) is valid whether or not H and H,
„

support the same number of bound states. Of
course, (2.38}is less meaningful than (2.27) or
(2.35) or their generalization if H and H„support
the same number of bound states and if Eqs. (2.30)
are valid, since the cross section is related to
sin q and not directly to q.

+(IIr+V —So) . (3.1)

The validity of Eq. (3.1}follows immediately on
noting that both P = Pr, ) ( Pr, and Q = 1 —P commute
with ++@p +pp The first term in (3.1}must
surely be retained in any H, —ETp which is to be
used to study adiabaticlike approximations; it rep-
resents the scattering of a particle by the adiabat-
ic potential Q,(R). This suggests three possibil-
ities as our choice for H, —E», the first and

III. FURTHER STUDY OF ADIABATIC PICTURE:
EQUIVALENT ADIABATIC HAMILTONIAN

As indicated earlier, the choice H, =H, ~ as
given by Eq. (2.14) is not the only choice that pro-
vides a mathematical framework within which
adiabaticlike approximations can be studied. To
obtain other such Hamiltonians, we begin by re-
cording the identity

H —Ero=P(T+So-Er )P+Q(T+ho —Ero}Q
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second terms of (3.1), the first term alone, or
the first and third terms. Since Sp Epp Qp our
three choices are therefore

H, En—,
= T + Uo =H,—'~~ —E ro,

H, —E ra = P ( T + 'U0)P =—H,'~ —E ro, (3.3)

H, —Ero=P(T+'Uo)P+(Hr+V —80) =H3~~ ——Era.
(3.4)

H,", is of course just the H, ~ of Sec. II. (The first
two of the above choices for H& were used in
Sec. II.) From the above definitions and from
(3.1), it follows immediately that

H -N.",=H, +V -h„
H —H~g~~ = Q(T V+}Q0H+rV+- 80,

H H,'~~ = Q(—T +'Uo)Q .

(Q4, (T+Q, )Q4') «0.
Since H z + V —8p is non-negative, a derivation
identical in form to that used in arriving at (2.24)
leads to

W".,'-W -(5m&", (W,'-E„)5+~')
for p=1, 2, or 3; we have 54~~~=4'~~»~-4', where
4 ~„' is defined by (H,~~ —E r,}4~', = 0 and by the
usual boundary conditions. A~~„appears in the
asymptotic form of 4'~d~.

Since 54' ~' is also quadratically integrable,
Eq. (3.5) reduces immediately to

(3.5)

(3.6)

a result of the desired form. The three bounds
provided by Eq. (3.6) are in reality only one bound,
which is written

We will assume throughout this section that 'U,

cannot support a bound state, that is, that T+V,
is non-negative with respect to quadratically
integrable functions. [The generalization to the
case where the true and adiabaticlike Hamiltonians
support the same number of bound states and
where Eqs. (2.30) are valid would proceed as in
Sec. II.] Since Q%' is quadrat' ally integrable,
it follows that

y„(r)u„(R),n e 0 (3.10)

involving the same function u„that appears in
(2.19), are not allowed. Furthermore, as opposed
to the use of (3.2}, the use of (3.3), because of
the elimination of terms of the form given by
{3.10), enables us to derive a monotonicity theo-
rem on the scattering-length phase y of (2.35).
Thus, let q'(X) be defined as the solution for
0~&~ 1 of

[H(~}-E„]e(Z)=-[H&,",+~(H -H',",) -E„]e(X)=0,
4 (~)- (V,+Sva')"y, (r)[H' g(~)/H"'], E-~.
With 4'(X) the trial function in a study of the de-
termination of A(X+dA}, we obtain the identity

A(~+dc) =A(x)

+ 4 A. +dA. H A. +dA, -E~p% A. drdR,

With

=A(X} + dxj 4 (A. +dX){H -Htyg)e(A. )dr dR .

ad od

is a little more difficult. We have

(3.9)

H,", , defined by Eq. (3.4), is a rather complicated
operator, and it would be extremely difficult to
obtain 4,'„.In fact, however, we do not need to
know 4,'„to evaluate A~,'»; we need only know
I'4 3». But using the results of Appendix A, we
can immediately convert (3.9) into

P(T +U,)P4",,' = 0 .

Since P4'~,'d and I'4,'~ satisfy the same equation
and the same boundary condition, we have PC ~3»

=Pe~,"d and therefore A~, »~ =A~,'» .
We comment now on the relative merits of the

different forms of approximate Hamiltonians.
Equation (3.2) is the simplest form, but there are
some ambiguities in its use. In particular, the
boundary condition (2.18) seems somewhat forced.
In (3.3), on the other hand, the boundary condi-
tion (2.18) is built into the operator, and solutions
of the form

A„~A.
To see that

(3.7)

this becomes
(3.8)A =A' =Aad ad ad

note that H,", and H,'~ differ only in the Q term of
(3.1), and effects of the Q term play no role in
the determination of A"d because of the boundary
conditions (2.5} and (2.18); this constitutes the
proof of Eq. (3.8). To see that

= —cos'y(X) JI 4 (X)(H H~,"„)@(X)dr d-H ~0.

It follows that y(0) «y(1), that is, that

~ad
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Much more significant is the probability that the
use of (3.3) will enable us to extend the approach
to obtain bounds on scattering parameters in the
positive energy region, that is, for E &E». (Note
that the identity (3.1) remains valid with En, re-
placed by E throughout. )

The primary interest of H,'~ is the fact that it
seems to be the best starting point from the
physical point of view for the determination of
bounds; the neglect of Q(T+ '0, )Q is perhaps the
most natural mathematical formulation of the
adiabatic approximation.

H,'~ and H,'„have the very great advantage over
0,'„,for E &E», that they are the usual adiabatic
approximation. Any theorems deduced from

H,'„andH,'„giveadditional significance to the
numerical results obtained in the usual adiabatic
calculations. The use of H,'~ for E &E~, would

require a more difficult calculation.
Bounds on the binding energy E~ of the system

can be obtained using any of the operators H, ~,
as was done earlier' '" using H,'q. %'e will
elaborate further on this point in a later publica-
tion in connection with a variational determination
of lower bounds on E~.

of L' and I., The total wave function 4 can be
expanded in terms of the 'JJ's as

4 "(r,R) = Q f~ (~, R)'g „"(r,R),
lj

(4.4}

ternal-kinetic-energy operator for the target
system with a reduced mass m,~ 1' is the square
of the target internal angular momentum operator
in the frame S; j' is the square of the angular
momentum operator for the relative motion of
the projectile and the target center of mass in
the frame 8; and W(r, R, a) = V(r, %}+Ur(r), where
Ur(r) is the interaction between the target particles,
and o. denotes the angle between r and R. Since
the square of the total angular momentum opera-
tor L' of the system given by

L'=(I +))', (4.2)

and the projection of L onto the z axis in the frame
S, L~, are conserved, it will be useful to introduce
the set of eigenfunctions

'9 „"(r,ft) = Q ( Ijm, m, ~
LM) Y,„(r)Y, , (R)

(4.3)

IV. ANGULAR-MOMENTUM COUPLING

The formal discussion of bounds on scattering
lengths presented in Secs. 0 and HI does not ex-
plicitly analyze the coupling of the angular momen-
ta of the target and projectile. The kinematics
associated with the angular momentum coupling
can be useful for applications, however, and we
briefly consider here several ways of formulating
this part of the problem, which may at times give
rise to slightly different bounds. The laboratory
frame will be denoted by S and the variables in
that frame will not be primed. The body-fixed
frame will be denoted by S' and the variables in
that frame will be primed. R defines the z' axis
of S', that is, we have z' =R;R is measured in
the frame S.

While most of the following considerations can
almost surely be extended to targets with many
particles, it will greatly simplify the discussion
if we restrict ourselves to targets, such as hy-
drogen atoms, containing only two particles. The
total Hamiltonian H can then be written

H=t„+t„+,I'+, j'+W(r, R, a),
2m' r 2Mf

(4.1)

where t~ is the radial part of the kinetic-energy
operator for the relative motion of the projectile
and the center of mass of the target, with a re-
duced mass M,~, t, is the radial part of the in-

where 1' and j' are in general not conserved be-
cause of the interaction V(r, R) which explicitly
depends on the angle e. Note that all the angles
which appear in (4.3) and (4.4) are measured in
the frame S.

Evidently, the choice of variables in (4.3}is not
unique; most of the different choices are related
to one another by appropriate rotations. One
choice" is to take, in addition to r and R, the
angle o. between r" and R, the polar angles of R
in S, that is, 8 and 4, and the angle 0 between
the planes defined by (r, Jt) and (R, z). The new
set is

(r',R}=(r,o. ;R, e, C, Q},

whereas the set used in (4.3}and (4.4) was

(r, R) = (r, e, Q; R, e, 4 }.

(4 5)

(4.6)

The introduction of the variable o. in (4.5) might
be convenient since the potential V depends only
on this angle and the radial variables r and R.
However, except for L=O, the variables (r, R, a)
and the Euler angles (e, 4, 0}do not separate in
the kinetic energy terms of (4.1) that contain 1'

and j', as there occurs a coupling term of the
form S'/SASa ""The .to'tal wave function 4' in
the set (4.5), e.g. , may then be expanded in terms
of the rotation matrices, the Q's, as
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vrhere E is the quantum number associated with
the projection of the total angular momentum L
onto the body-fixed s ' axis, that is, onto A. Pre-
sumably, the form (4.8) would be more useful in
the case of ion-atom collisions at low energies,
vrhere the Born-Oppenheimer picture, for which
K is often a good quantum number, is more ap-
propriate. In fact, in the usual molecular state
calculations with the vector 8 f'ized, the variable
r' in the frame N' is used to evaluate the elec-
tronic wave functions and its adiabatic energies.

After these preliminary discussions, we now
return to the problem of bounds. Dropping the
ts term in (4.1) and recalling the form (4.4), we
can immediately project th8 problem onto a sub"
space of given L and M, and consider the adiabatic
problem defined by

" 2mM'

= 8'„(R)y'„"(r;It) . (4.9)

(We could also take the projection of the operator
in large parentheses onto the subspace of given L
and M, but it is not necessary to do so.) To actu-
ally determine S~ (R), (j)„"would be expanded in
terms of '(i's just as in (4.4); (4.9) then gives rise
to an infinite set of coupled equations in the var-
iable r for different allowed sets of (I,j ). These
coupled equations have been found to be tractable
for the scattering of an electron by a hydrogen
molecule, "and should be tractable for a number
of other problems. The inequality (2.16b) is re-
placed by

(4.10)HI, ~ t„+(g, (R) =HI, ~,
where (t', (R) is the lowest-energy eigenvalue for
the given I, and R. The solution of (2.17), with
H~ replaced by H~ ~ of (4.10), and the boundary
conditions (2.18}, gives a bound

+L +L,gd &
(4.11)

= $„(R)4„'(r';R), (4.12)

provided of course that the number of bound states
supported by HL and by HL ~ is the same, as dis-
cussed in Sec. II. The bound (4.11)obtained from
(4.10) is rigorous and in principle applicable to
all values of I. However, many of the molecular
wave functions and energy calculations which are
available do not employ the form (4.9), but rather
the form involving r' in the frame I'. Thus it is
also of interest to consider the adiabatic problem
defined by

As indicated by the notation, the energies for the
two equations are the same; the wave functions
are related by a rotation, that is,

y„(r;It) =6t(e, e, II)y„'(r;a), (4.14)

where 8, is the rotation operator connecting the
frames 8 and S'.

Using Eq. (4.13), the inequality (2.16b) is now

replaced by

Hq ~ ts+ 2L(L+1)+ho(R)—= Hq ~, (4.15)

where j' has been replaced by L(L+1)tt'. (As
always throughout this paper, we are assuming
that the target ground state has zero angular mo-
mentum. } Again the solution of (2.17), with H~
replaced by H~ ~ of (4.15), and the boundary con-
ditions (2.18), gives

AL «AL ~, (4.16)

provided HL and HL ~ both support exactly the
same number of bound states.

Evidently, bvo slightly different angular momen-
tum decompositions of (2.16b) gave rise to two
different bounds, (4.11) and (4.16). In general it
is difficult to determine in advance which of the
two approaches will give the better bound. How-
ever, we have, comparing (4.9) and (4.13) and
noting that j' is a positive operator„

g&g (4.17)

and thus, choosing L = 0 and comparing (4.10) and
(4.15),

+L=O L=O, af L=O, at ~ (4.18)

under the same conditions stated earlier for the
validity of (4.11) and (4.16}.

The inequality (4.16) is especially useful in
practice, for the simple reason that h„(R)of
(4.12) and (4.13) are readily available for many
complex molecular systems when appropriate re-
duced-mass corrections are incorporated in the
form of scaling parameters for the energies and
length units. On the other hand, A.L ~ requires a
new calculation using (4.9) which is more difficult
than (4.12). But, at least for L=0, the resulting
bound would be an improvement over the result
obtained from (4.12) and (4.13).

As is clear from (4.9) and (4.13), the angular

where l" is the square of the target internal an-
gular momentum operator in the frame 8'. The
analogous equation in the frame 8 is

),+,l'+W(r, )(n) ,)( „tr;R) = (( (R)„((r;„R).
2m.M'

(4.13)
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momentum projections on to a state of definite
L and M at different stages of the calculations
yield different scattering length bounds. Thus,
when the vector R is held fixed during the 8,
calculation, we cease to have a system with a
well defined total angular momentum. (Localiza-
tion at a point requires a superposition of all
possible angular momenta. ) However, the I, de-
pendence of Az, is recovered in (4.15), so that the
bound thus obtained is still rigorously valid. In
contrast, when the scalar II is fixed, as in (4.9)
with the angular variations in 8 already incorpo-
rated in the calculation of Q~", the quantum num-
bers L and I are constant throughout the calcula-
tion.

V. APPLICATIONS

In this section, we consider several applications
of the bounds on A. developed in Secs. II and IV.
Specifically, we discuss the e'H, e+He, and PH
systems, for each of which 'U, is known, and a
constructed two-channel model which can be
studied in depth by varying the parameters con-
tained in the model. The role of symmetry with
regard to PH scattering is discussed in Appendix
8; the analysis in this section assumes that the
two protons are in a spatially symmetric state.

A(L =0) = -2.1a» (5.1)

where a, is the Bohr radius. Since e' and e have
the same mass, there is no reason to assume that
the adiabatic approximation in which we first Qx
the positron will yield good results, but the bound
(2.2V) should still be valid under the appropriate
conditions. In fact, since the true e'H system has
no bound states, while the e'H system in the ad-
iabatic approximation does have a bound state,
(2.27) need not be correct. Indeed, with the Q,
of Bates and Reid, " the numerical solution of
(2.20) for zero total angular momentum (L =0}
yields A~ = 19a„which obviously violates the
bound (2.27}.We have neglected here small correc-
tions of order m, /M~ connected with the scaling of
energies and lengths, which are necessary in gener-
al to convert the adiabatic energies calculated in the
scaled units 2'" Vfe can however use the Hamil-
tonian H(L = 0}of Eq. (2.16b), obtained by project-
ing H onto the space of total orbital angular mo-
mentum zero. The associated adiabatic potential
'U, (L = 0}cannot" support a bound state of e' +H,

A. e'H scattering

The scattering length for positron-hydrogen
atom scattering was obtained to very high pre-
cision by a variational calculation which yielded"
(retaining only two significant figures}

and the use of 'Uo(L = 0) must yield a bound on A.
The use of 'U, (I = 0) in (2.20) yields

W.„(L= 0) = —24', &W .

We do find a legitimate, if very poor, bound.
From the fact that U,(L = 0) cannot support a

bound state, and from the relationship H~& H, we
conclude that a true bound state of the e+ H sys-
tem does not exist, in agreement with a previous
finding. "

S. e'He scattering

The positron-helium adiabatic potential has
been studied extensively. " Stuart and Matsen
give the potential 'U, (R) over the range for which
it is negative, from tao on out. A, ~ is relatively
insensitive to precisely how the potential is ex-
trapolated toward the origin. [U,(R) should clear-
ly approach (2e'/It) plus the difference in binding
energies of Li' and He. j Using such an extrapola-
tion, we find that '0, cannot support a bound state
and that

A~(I = 0) = (-0.7 s 0.1)a

this probably represents a lower bound within the
estimated error.

The true value of A cannot readily be estimated
theoretically because of the complexity of (and
uncertainty in) the helium ground-state wave
function. Many estimates are available, "all of
which point to an approximate value

A = (- 0.5+ 0.1)a,&A„.
The bound is therefore satisfied. In view of the
fact that we are here too fixing the light positron,
the result is suspiciously good.

C. pH scattering

U we think of m, /M~ as arbitrarily small, the
adiabatic approximation, in which we fix the
proton-proton separation and allow the very light
electron to run around, is exact; the question of
obtaining bounds on the scattering length (or bind-
ing energy) does not then arise. If on the other
hand, we are interested in corrections of order
m, /M~, or some power thereof, the adiabatic ap-
proximation is not exact and the determination of
bounds is of interest. The adiabatic potential in
the latter problem, in which we fix the separation
of the incident proton and the center of mass of
the hydrogen atom, is obtained from the adiabatic
approximation with the proton-proton separation
fixed by scaling. " An adiabatic calculation of the
vibrational levels of the lowest electronic state
of the H,

' system can be expected physically, as
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noted above, to be very accurate; more concrete-
ly, Wind" has shown that the nonadiabatic correc-
tions are quite small. It is then reasonable to
assume that the number of vibrational bound states
of the lowest electronic level in the adiabatic ap-
proximation is the same as the true number. (The
adiabatic approximation gives 19, 18, and 17
vibrational bound states for the rotational quantum
number j=0, 2, and 4, respectively. ) Our con-
siderations are restricted to the scattering length
associated with j=0 scattering. The cases with
j&0 can be treated analogously, but the problem
of the determination of bounds is of an entirely
different character, because the adiabatic poten-
tial '0, behaves at large values of ft as —n.,/If',
where e, is the dipole polarizability of the hydro-
gen atom The. leading behavior of tang~(I. =j) is
therefore given by"

tang~ = vo. P'[(2l, + 3)(2L+ I }(2L- 1)a,]

and the determination of bounds on tanqI, reduces
to the determination of bounds on ao.

%e return now to the L =0 case. The effective
potential 0, can now be used, in conjunction with
(2.20), to obtain A~. (Note that the zero-energy
adiabatic scattering wave function u~ has 19
nodes. ) It is very much simpler, though it en-
tails a loss of accuracy, to use effective range
theory and the binding energy in the adiabatic ap-
proximation of the state which is least bound, the
v = 19, j = L =0 level, with an energy

E~(v = 19, L = 0) = -(}'f'/2M, ~)a', ~ ~
= —4.4 x 10 a.u. ,

obtained from Fig. 2 of Wind. Lengths are in
units of a, =}t'/m, e', where m, is the electron
mass, and energies are in units of e'/2a, . The
reduced mass is one-half the proton mass. If we
neglect the term with the effective range, and

apply effective range theory within the framework
of the adiabatic approximation, we obtain

A~= (~,9 ~) '= 7.9a, .

If one includes the leading nonadiabatic correc-
tion term, one obtains the improved estimate"

E(v =19, f.=0)= —3.98x10 '
a, .u.

Effective range theory now gives

A. = 8.3go.

Clearly, once one has the eorreeted energy
estimate, the adiabatic approximation serves no
purpose. %'e have included an estimate of A.—
even though, as noted above, A~ does not provide
a bound even apart from the approximation in-
volved in using effective-range theory-to obtain

some idea of the accuracy that can be achieved in
the adiabatic approximation.

D. Two-channel model

In order to study the accuracy of the bound de-
rived in Sec. II, and further, to confirm that the
bound is indeed valid when H and H~ have the same
number of bound states, we construct a simple two-
state model and study A and A~ as functions of
the parameters contained in the model. %'ith the
Hamiltonian given by (2.1), and with the target
assumed to have only two states, with energies
and normalized wave functions E» and gr, (r),
and E» and gr, (r), respectively, we write

4 (r, H) = gr, (r)u, (R)+y»(r)u, (H) . (5.1a)

Substitution of (5.1a) into the zero-incident-kinetic-
energy scattering equation gives a set of two
coupled equations

A d

d'
2 22 T2 T1 N2 ~2l+1 &2m cia

where m is the reduced mass and where

{5.1b)

P, (r; H) = Pr, (r)(u, (H)+ g»(r)ur, (R},

y, (r; R) = —P»(r)(u, (R) +yr, (r)(u, (R),
{5.2)

where the coefficient functions (d, and ~, must
have values such that the normalization and or-
thogonality conditions are satisfied, that is, such
that

+ r = 6 for each fixed R .

%'e therefore have

(d& +4)2 = 1.

Q„satisfies (2.12), with b„=Er„+'0„.Inserting
each of Eqs. (5.2) in turn into (2.12), and pro-
jecting onto Pr„(r), we have

(ET1 ~11 @2)~R ~12~ 1 1

(ET2 ~22 ~2)+1 ~21~2 '

we assume all relevant angular momenta to have
the value zero. Since g~, and tjj~, form a complete
set in the present model, the adiabatic approxi-
mation wave functions P„(r;R) can be expressed as
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where

p = (vR/2R, );

for 8 &3„

in addition, we choose 80 = 3go, E~, = —2 Ry,
Ez, = —1 Ry, and

'U, = —'U, = —G cosp for 8&A„
for R ~RO.

The coupling constant G (in Ry) is varied in the
calculation. The V 's are given then, for 8 «8„
by

V»= cos'p+Gcospcos(2p) = —V»,

V» = —sinp cosp(Er, —Er, +2G cosp) = V»,

and

V~=0 for R-Bo ~

The L = 0 scattering lengths are calculated for the
static and adiabatic approximations from the
equations

d'
2~ dye 1 og

and the usual boundary conditions. The approxi-
mate values, A„„andA~, are compared with the
exact value A obtained from the numerical solu-
tion of the coupled equations (5.lb). The results
are summarized in Table G. A.s expected, the
inequality A &A~ is violated only for values of
G for which the number of composite bound states
in the adiabatic approximation, N~, differs
from the true number, ¹ Note however that
when H and H~ can each support one bound state,
we must also consider the second inequality in
(2.30a), and (2.30b). Writing

P+s=y (rr) (Rus),

mhere

us(R}= JI dr gr, (r)gs(r, R),

the second inequality in (2.$0a) can be written

)I dRus(R)[T(R)+V„(R)]us(R)&0. (5.3)

Rather than parametrizing the model by specifying
V~ and Ez„,it mill be convenient to choose the
values for 'U»U» co» ~»E», and E»,' these com-
pletely determine the model. Explicitly, me set

co, = sin p, ~, = cosp for 8&8,

(The ground state in our model is labeled I
rather than zero. ) A necessary (but not sufficient)
condition for the validity of (5.$) is that there be
a bound state in the static approximation. In
summary, then, for the first five entries in Table
II, we have N,„,=N=N~ =0, andwecanpredictthat
A fat

~ A ~ A~,' these inequalities can indeed be
seen to be satisfied. For the next 3 entries, we
have N,„,=N4N~, and all that me can be certain
of is that A,„,&A; me can not guarantee any in-
equalities involving A~ . For the last 4 entries,
we have &,„,eN=N~ =0, and (5.3) is not satisfied.
We cannot therefore guarantee any scattering
length inequalities. Nevertheless, we do find
A &A~ for all 4 cases, which might suggest that
(5.$) may often not be necessary.

TABLE II. Scattering lengths as functions of the in-
teraction strength 6 for the two-channel model of Sec.
IV. A,&& denotes the L, =0 scattering length in the static
approximation, A is the true value, and A, z is the
value in the adiabatic approximation. N, f1&, N, and N«
denote the corresponding numbers of I =0 composite
bound states. For a fixed G, the numbers +»& and N, ~
are equal to the number of nodes of the associated zero
energy scattering wave functions, u sf,t and u, z, alter-
natively, these numbers are equal to the number of
times the scattering length has passed through -~ as one
increases G from 0 to the value of interest. The theo-
rems that A,&& &A if N = N», , and A &A,

„

if N = N«
and Eqs. {2.30) are valid, are seen to be satisfied.

& s~t & &,g A stlf

0.25
0.50
0.75
1.00
1.25
1.50
l.75
2.00
2.25
2.50
2.75
3.00

0.32
0.27
0.21
0.15
0.09
0.01

-0.07
-0.15
-0.25
-0.36
-0.48
-0.62

0.18
0.04

-0.16
-0.47
-0.97
-1.95
-4.78

-95.24
7.66
4.23
3.11
2.53

-0.29
-0.74
-1.52
-3.29

-11.09
18.69
6.35
4.22
3.34
2.85
2.53
2.31

VI. DISCUSSION

This is the first of tmo reports on a study of
lower bounds on binding energies and on the scat-
tering parameters as listed in Table I. We have
given a rather extensive discussion of the physical
picture involved in the adiabatic approximation
adopted in the formulation using Hj. As is clear
from the nature of the approximation and also
from the examples considered in Sec. V, the
bounds me obtained in Secs. II-V on the scatter-
ing lengths are expected to be accurate when the
projectile mass and one of the target particle
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masses are large compared with the masses of
the other target particles. Therefore, the formal-
ism is perhaps better suited to an analysis of the
ion-atom case than of the positron-atom case,
for example. Ne now discuss briefly various
limitations and possible extensions of the theory.

(a) When the simple adiabatic bounds formulated
in this paper fail to provide useful results, it is
most desirable to be able to improve the bound

by a variational procedure. In fact this can be
done and wiQ be reported on as a sequence to
the present paper.

(b) Since the adiabatic approximation singles
out the projectile and treats it differently from
the target particles, it is in general difficult to
incorporate exchange and rearrangement effects,
as in electron-atom and positronium-atom colli-
sions. Consider e 8 scattering, for example.
Freezing the second electron at position r„we
would find the most general regular solution
Q~(r„r,) in the region r, «r, . The boundary con-
dition would be imposed at r, =r2. The normal
derivative of Q would be set equal to zero for the
spatially symmetric case, while P itself would be
set equal to zero for the spatially antisymmetric
case. The method can probably be extended to
systems with more than two electrons, but we will
not here pursue the matter further; first, the
boundary conditions make the computations more
difficult than for the positron case, and second,
the approximation will not normally be a very
good one since we are freezing one particle, an
electron, which has the same mass as particles
that are allowed to run around freely.

(c) On the other hand, the formalism can de-
scribe ion-atom collisions with charge exchange
in a very natural way as the adiabatic states
jQ„jare best suited for this purpose. This is in
strong contrast with the variational upper bound
formulation, ' ' which fits in better for electron-
atom collisions.

(d) Inelastic excitations and other multichannel
scattering phenomena at nonzero energies can be
treated by appropriate extensions of the present
formalism. The modifications required here are
closely related to the variational procedure men-
tioned in (a) and will be reported on later.

where

P(Hr +V —go}PQ0 = —Pv Qp0,

e(H, V-&.)ey. = -@VPy. .

Solving for Qg„we obtain

Q(I) p= G~QVPQ p,

where

'„G=[q(8, - H—r V)q] -',
and substituting for QP, in Eq. (ASa), we get

P(Hr +V —$0+ VGe~v)PQO = 0

or

P( 'Uo+ V~+V@-~V)PQ, = 0.

(A5a)

(A5b)

(A6)

This is not a scattering equation but a form which
determines Pgp and Sp Noting that C~ ls a local
operator in the 8 variable, it follows that the en-
tity operating on P, in (AB) must vanish, that is,
we must have

P'UpP =PV~P+PVG~VP . (A9)

The second term explicitly exhibits the effects of
virtual excitations. Subtracting (AQ) from (Al)
gives

P(U, -~,)P =PV(Ge - G'„)VP. y, &0)

Now it is easy to show" that B&C &0 implies
C '&8 '&0. If we assume that

=1 —P.
The solution of the equation

(T+U,)s,(R) =0

then provides the exact scattering length A, where
u, is combined with gr, (r) to give

P4' = $,(r)u, (R), (A4)

which is consistent with the boundary conditions
(2.5). To compare the problem formulated in
(A3) and that in the adiabatic approximation, as
given by (2.20), it is useful to analyze the adiabat-
ic potential &,(R). From the definition (2.12) of
Q, and 8,(R}, we have

APPENDIX A: ADIABATIC POTENTIAL AND

EFFECTIVE OPTICAL POTENTIAL

PUpP =PV~P+PVG~VP,

G =(Q(& o-H)Q) ',
(A 1)

(A2)

The effective optical potential for elastic scat-
tering at threshold, that is, for E=E&p is given
by27

a„-E„=-r+v,-0,
then, with the identifications

H =@(H-Zro)Q and C =Q(Hr+V —So)Q,

we have C&0 by the definition of 8p and B&0 which
follows from C&0 and (All). We also have

H-C =Q(T+Uo)Q =Q(H~ &ro)Q -0-
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(T +'U, }a~(R)=0,

we have, for -=N~ —Np since Tlp= —Uolp

(A13)

(A14)

using (All) and (A12). The inequality (A14) is
identical to that derived in (2.24).

The discussion given so far has been limited to
zero-energy scattering, simply because the in-
equality (A12) can be proven explicitly only for
E =E&p. However, me can formally extend our
argument which leads to (A14) to the region E
somewhat above Er, as follows: from (Al) and

(A2), with E» replaced by E, and from (AQ} and

(AV), with h, replaced by E+g„wehave

8 Up O'U
p'&0 and ' =0; (A15)

it follows that (A12) may well not be valid for E
large enough, but there mill exist a finite region
of E~ E», where (A12) is still valid and thus

g~ w7f

in that region. In general, it is difficult to deter-
mine the energy region in which (A12) is valid,
but both (A16) and (A12) seem to hold in many
cases up to the first excitation threshold, espe-
cially when Up and Up are not too close to each
other.

APPENDIX B: BOUNDARY CONDITIONS

The Hamiltonian H~ may differ from H in mays
which make it difficult for the associated scatter-
ing wave functions to satisfy the same boundary
conditions. We nom turn to this point.

%'e begin with e He scattering, for which there
are no difficulties. The boundary conditions on
the true scattering wave function 4' are that at
large e+ -n separation the two electrons are
attached to the alpha. On freezing the e', the
adiabatic bound state wave function Pp associated
with the state of lowest energy will satisfy that
condition, as will the adiabatic scattering wave
function C~, and no problems arise.

Consider e+8 scattering, however. The true
scattering mave function 4' has e attached to p
for large e+P separation. In the determination
of Q p homever, me find Q p to be symmetric under
the reflection of R into —R, where R is the e P
separation; the electron spends half its time near

and it follows that 0& G & C~ and therefore that

PUpP&P'UpP . (A12)

With the adiabatic zero-energy wave function u~(R)
defined by

P and half near e'. This may be disturbing, sug-
gesting as is anyhom obvious that the adiabatic
approximation is not too good, but it does not
destroy the rigor of the bound. After all, Pp
arises in the determination of 'U, (R), not in the
determination of A~ . The wave function whose
asymptotic form determines A~ is 4 ~, not Q„
and 4 ~ is to be determined subject to the appro-
priate boundary condition, namely, that e" is
bound to P.

We turn nom to PH scattering. We have here a true
two channel problem for each J. for the zero in-
cident energy case under consideration. The two
channels can be described in a number of ways.
Physically, it is desirable to think of direct and
exchange scattering; these correspond to the
normal experimental arrangement in scattering.
However, since the protons are identical, it is
advantageous to work mith wave functions 4 and

which are even and odd, respectively, under
R- -R, where R is the proton-proton separation,
and which represent decoupled channels. (The
mixing parameter is zero. ) The associated scat-
tering lengths are denoted by A' and A, respec-
tively. We introduce even and odd adiabab, c func-
tions defined by

with r the separation of the electron and the
center of mass of the protons, and with

(P+„,P~}= (P„,P ) =5„„for all R .

The solutions automatically satisfy

We also have

y„"(r;R)- 2 '~'[y»(r, )+ y»(r, )],
where r, and r, are the separations of the elec-
tron from each of the protons, and

(We are assuming here that m, /M~ is vanishingly
small. ) The adiabatic scattering lengths A~ de-
fined by Eqs. (2.18)-(2.20}, for each 1,, with 00
replaced by 'U,' and V, , respectively, provide the
bounds

A~&A, A~ &A" .

The bound on A obtained in Sec. VC refers to
A and was obtained with the use of 'U, . We have
also looked at the antisymmetric case, using the
'Up of Bates and Reid, "extrapolated beyond
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8 = 20ao by using the polarization potential
2ae—'/8', where a =ama', is the polarizability of

the hydrogen atom. 'Uo can definitely support at
least one bound state. Whether or not &,

"
can

support a second bound state is touch and go and
would require a very precise numerical deter-
mination of 'U, . Since the second state is either
just bound or just not bound, only a very careful
numerical determination can give a reasonable
estimate of A~, which is certainly very large in
absolute magnitude.

We can introduce direct and exchange scatter-
ing lengths for both the true problem and the
adiabatic approximation problem. These are
defined by

%'e then have

Since A'&A~, it follows immediately that

We cannot obtain a bound on A' from the above
relations. %'e can, however, obtain the upper
bound on A~' and upper and lower bounds on A~ if
we also have the usual (simpler) upper bounds on A '.

*Supported by the U. S, Army Research Office, Durham,
Grant No. DA-ARO-D-31-124-72-G92 and by the Office
of Naval Research Grant No. N00014-67-A-0467-0007.

~Supported by the National Science Foundation Grant No.
GU31S6.

~Permanent address: University of Connecticut, Storrs,
Conn.

~L. Spruch and L. Bosenberg, Phys. Rev. 116, 1034
(1959).

L. Bosenberg, L. Spruch, and T. F. O' Malley, Phys.
Bev. 118, 184 (1960).

3L. Spruch and L. Rosenberg, Nucl. Phys. 17, 30 (1960).
Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev.
12S, 932 (1962); Phys. Rev. 130, 381 (1963).

5Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev.
134, B397 (1964); Phys. Rev. 134, 8911 (1964).

ST. Kato, Prog. Theor. Phys. 6, 394 (1951).
7K. Kalikstein and L. Spruch, J. Math. Phys. 5, 1261

(1964), and references therein.
SB. Sugar and R. Blankenbecler, Phys. Rev. 136, B472

(1964) ~

9L. Spruch, in Fee Nucleon Problems, Ninth Summer
Meeting of Yugoslav Physicists, Hercegnoei, edited
by M. Cerineo (Federal Nuclear Commission, Bel-
grade, Yugoslavia, 1964), p. 243.

'OY. Hahn, Phys. Rev. 139, 8212 (1965).
N. W. Bazley, Phys. Rev. 120, 144 (1960); N. N. Baz-
ley and D. W. Fox, J. Math. Phys. 4, 1147 (1963).

"Y. Hahn and L. Spruch, Bull. Am. Phys. Soc. 12, 560
(1967).
L. Spruch, in The Physics of Electronic and Atomic
Collisions: Incited Papers from the Fifth International
Conference, Leningrad, 196T, edited by L. M. Brans-
comb (University of Colorado Press, Boulder, Colo. ,
1968).

~4F. H. Gertler, H. B. Snodgrass, and L. Spruch, Phys.
Rev. 172, 110 {1968); L. Spruch, in Lectures in Theo-
retical Physics —Atomic Collision Processes, edited
by S. Geltman, K. T. Mahanthappa, and %. E. Brittin

(Gordon aml Breach, New York, 1969), Vol. XIC, p. 57.
'~I. Aronson, C. J. Kleinman, and L. Spruch„Phys. Rev.

A ~4 841 (1971}.
~6E. A. Hylleraas, Z. Phys. 48, 469 (1928); Z. Phys. 54,

347 (1929); G. Breit, Phys. Rev. 35, 569 (1930); also
in P. M. Morse and H. Feshbach, Methods of Theoreti-
cal Physics (McGraw-Hill, New York, 1953), p. 1719.

~A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050
(1964).

tsA M. Arthurs and A. Dalgarno, Proc. R. Soc. A 256,
540 (1960};R. W'. B. Ardill and W. D. Davison, Proc.
R. Soc. A 304, 465 (1968); B. J. W. Henry, Phys. Rev.
A 2 1349 (1970), where earlier references may be
found.

'SC. Schwartz, Phys. Rev. 124, 1468 (1961).
2 D. R. Bates and R. H. G. Reid, Advances in Atomic and

Molecular Physics, edited by D. R. Bates (Academic,
New York, 1968), Vol. 4, p. 13.

2~See Sec. 4B of the first reference of Ref. 14.
2J. D. Stuart and F. A. Matsen, J. Chem. Phys. 41, 1646
(1964); also, L. Wolniewicz, J. Chem. Phys. 43, 1087
{1965).

2 R. J. Drachm~n. , Phys. Rev. 144, 25 (1966); Phys. Rev.
173, 190 (1968); S. K. Houston and R. J. Drachman,
Phys. Rev. A 3, 1335 (1971}; T. Hashino, Prog. Theor.
Phys. 36, 671 {1966); N. R. Kestner, J. Jortner, M. H.
Cohen, and S. A. Rice, Phys. Bev. 140, A56 (1965).

4H. Wind, J. Chem. Phys. 43, 2956 (1965); J. Chem.
Phys. 42, 2371 (1965). See also, S. Cohen, D. L. Judd,
and J. Riddell, Phys. Rev. 119, 384 (1960); S. Cohen,
J. R. Hiskes, and R. J. Riddell, Phys. Rev. 119, 1025
(1960).

25T, F. O' Malley, L. Spruch, and L. Rosenberg, J. Math.
Phys. 2, 491 (1961).

26Y. Hahn and L. Spruch {unpublished).
~H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962}.
See, for example, Y. Hahn and L. Spruch, Phys. Rev.
153, 1159 {1967).


