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Using the precision s- and p-wave elastic-scattering wave functions obtained previously, we have

calculated the annihilation rate for positrons colliding with hydrogen atoms below the
positronium-formation threshold. The s-wave results agree well with those of Humberston, while the
p-wave results, which are new, contribute about 209o of the total at the higher energies.

I. INTRODUCTION

In two previous papers, "generalized Hylleraas
wave functions were used in rigorous lower-bound
calculations of the s-wave' and P-wave' phase
shifts for positron-hydrogen elastic scattering.
One of the interesting by-products of such a cal-
culation is the annihilation cross section, which
can be obtained in first-order perturbation theory,
and which gives an additional test of the accuracy
and reliability of the calculation.

Although annihilation calculations have been re-
ported frequently' for the positron-helium system
(which is under experimental examination ) only
two such results" have been reported for atomic
hydrogen, a much more difficult experimental
subject. Nevertheless, it seems quite worthwhile
to report the results corresponding to two very
accurate wave functions.

where ft)Q is the hydrogen ground-state wave func-
tion and Z,ff 1 independent of k. To compute
Z,«as a function of k one simply normalizes the
numerically obtained function 4 to the asymptotic
form given in Eq. (3) and applies Eq. (2).

The s- and P-wave (L =0, 1) scattering functions
are represented as follows":

+ =[[U( )]/ }1' (%)e,(.)+eh(, .), (4)

where

q4 =e —y,(r, ) f dF((r}e (r ,r,'&,'. „
For s waves' the correlation function is

and for P waves, '

4, = [f„cos(a812)$", (f)

II. FORMULATION

The partial cross section for annihilation of an
incoming positron and an atomic electron with the
emission of two gamma rays is'

where

+f21sin(-,'9»)I),' (g)] (2w)'~', (6b)

o. = Z„,owk '(wa', ),
where a = e'/Sc is the fine-structure constant,
s, =I'/me' is the Bohr radius, and k is the posi-
tron's asymptotic wave number in units of aQ'.
The quantity Z,„depends on specific properties
of the positron-atom system and approaches Z,
the number of atomic electrons, when the positron
can be represented as a free particle. For hydro-
gen,

Z.„= dr, dr, ]e(r,r, ) ]'5(r1 —r,), (2)

where 4'(r„r, ) is the positron-hydrogen scattering
wave function; Ze«measures the probability that
the positron and electron are at the same point. '
In the noninteracting limit, for positron wave num-
ber k,

4 (r„r,) = e '1((((,(r,), (3)

The g"s are symmetric Euler angles, and the
S's are rotational harmonics of appropriate type. '
The normalization of Eq. (3) requires that

U~(r) -[4w(2K+1)]'~'k 'sin(kr ——,'(L, w)- qz) .

To evaluate the wave function for L =1 at r, =r„
we note that'

cos(wS12»i'(A =( w) "(1'10(%)+1'10(a)].
9

sin(w s 2%l (E) =(«) '"[1;.(rt ) —1;.(f)'.)],
and hence the second term in Eq. (6b) vanishes
in the limit, while the first simplifies. The final
result is

Z,w(0+1) = Q t
dr([U~(r)-rf~(r)]

dp
L =Qwl

&& p (r) +rf»(r, r, 0)j,(10a)
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TABLE I. Z,ff as a function of positron wave number k . We quote the results of the

present calculation to three decimal places, but do not imply convergence to that accuracy.
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+ «{~1)I. Eq. (13))

&10 '
0.001
0.004
0.010
0.022
0.039
0.063

Ze«(Total)

7.385
5.629
4.375
3.631
3.142
2.782
2.541

where I~(r) is related to the integral in Eq. (5):

I~= dQ dry'40 r2 4's r, r,' (10b}

For completeness and possible comparison with
experiment, it is desirable to estimate the con-
tribution of higher partial waves (I, & 1) to the
annihilation. This can be done by using the un-
scattered form and omitting the last two terms in

Eq. (10). That is, V~= [4m(2I, +1)]'~'rj~(kr) and

Z„, (I, & 1)= 4s g (2I, +1) dr r'P', (r)j'(kr) .
0

Using the identity

Q (2I, +1)jr=1,
I.=0

one can write

(12}

z„p.»)=4 j a.~a-* p-, ;-s,,*)
0

, + , „,ln(1 + k')—

(13)

This correction is quite small and goes like —,'k
for small k.

III. RESULTS

In Table I we present our best-converged values
of Z ff for I.= 0 and L = 1 as a function of k up to
the inelastic threshold. For L, =0 they are com-
pared with the results of Humberston and Wallace';
the agreement is good, although it improves with

increasing k. No zero-energy calculations were
reyorted in Ref. 1, so we are unable to corrobo-
rate the zero-energy value' Z,« =8.9, although an
independent 84-term Kohn variational calculation'0
gave Z,« =8.888. The analytic correction [Eq. (13}]
for J.&1 is evaluated and the best total Z.ff ls also
presented.

The convergence of Z,«as the trial-function ex-
pansion length increases is illustrated in Tables
II and III for two different values of k. In each
case, the nonlinear parameters in the tria1 func-
tion are selected to maximize approximately the
phase shift. Since no minimum principle holds
for Z,« it is rather difficult to extrapolate the
results toward an exact value, and we have pre-
ferred to present our best actual values in the
Tables. It is interesting to notice, however, the
difference in possible convergence behavior: for
L, =O and k=0.1, Z,ff is seen to increase mono-
tonically with N, while for k =0.6 some oscillation
is observed. In the former type of case, it seemed
reasonable to assume the convergence to follow
approximately the formula

(q- —q~)""[~.ff ("}—&.fr (»] (14)

since the phase-shift error is of second order in
the wave-function error, while the error in Z,«
is of first order. This relation is fairly well
obeyed for k = 0.1 and 0.2, for which we obtain
extrapolated values for Z,«of 7.56 and 5.6, in
better agreement with the results of Ref. 5. [For
k = 0, Eq. (14) is very well obeyed" and leads to
an extrapolated value of S.04.] Convergence for
I.=1 was always monotonic.

Schrader" has emphasized the importance of
examining the "cusp value"

TABLE II. Convergence with increasing expansion
length N of Zeff (0) for two different values of

TABLE III. Convergence with increasing expansion
length N of Z,«{1)for two different values of A.
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which probes the accuracy of the trial function
near the positron-electron coalescence point, and
which should equal ——,'. (For I.&0 certain angular
averages must be taken") W. e have computed v,
and v, from the wave functions of Refs. 1 and 2

and find good convergence for I.=0; typically our
best-converged wave functions give v, = -0.494

+0.010. %e were unable to obtain reasonable re-
sults, however, for I.=1: our best-converged
wave functions give v, = -0.19. We do not under-
stand this discrepancy, and can only remark that
similar difficulties show up in I.= 1 helium bound
states. ' Because the convergence in N is rea-
sonable, however, we believe our values for Z,«
are meaningful.
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