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A cluster expansion is obtained for the coherent and incoherent dynamic structure factors in the case
of a simple classical dense fluid. The expansion is useful in the case of fluids ~here the hard-core
repulsive part of the interaction plays an important role. The first term in the expansion is given by
the dynamic structure factor of a noninteracting system. The second term is obtained by solving the

dynamics of a two-particle system with initial positions given by the pair-correlation function for the
full system and initial velocities given by a Maxwellian distribution, The third term is obtained by
solving the dynamics of a three-particle system, etc. Keeping only the first two terms, the effect of
repeated binary collisions on the dynamic structure factor is studied in the case of a hard-core fluid

and a Lennard-Jones {6,12) Auid with liquid-argon parameters. The results are compared with

neutron-scattering experiments.

I. INTRODUCTION

The coherent and incoherent dynamic structure
factors S(k, &u} and S,(k, {d}of simple liquids have
been obtained from both molecular dynamics' and
neutron scattering experiments. ' However, a
first-principle calculation of these quantities is
not yet available. Most of the theories are based
on either the solution of a kinetic equation such
as the Boltzmann equation, which is the method
pioneered by welkin and co-workers, ' or the cal-
culation of memory functions, which were intro-
duced by Zwanzig' and Mori. ' Recently Mazenko'
has developed a fully renormalized kinetic theory.
There also have been attempts' to construct the
dynamic structure factor S(k, {d) from some known
and (hopefully) simpler functions of k and ~.

In the present paper we follow a different ap-
proach in calculating the dynamic structure fac-
tors. We develop a cluster-expansion scheme
for both S(k, &o) and S, (k, u{). The first term is
the dynamic structure factor of a free gas. The
second term arises due to the binary collisions
between the atoms in the liquid. This term is
obtained by solving the dynamics of a two-parti-
cle system with their initial relative positions
given by the equilibrium radial distribution func-
tion g(r) of the liquid and their initial velocities
given by the Maxwellian distribution. The third
term involves the dynamics of a, three-body system

and the three-particle equal-time correlation
function.

This scheme is useful for hard-core and hard-
core-like systems at any density. Keeping only
the first two terms in the cluster expansion, we
study the effect of binary collisions in the liquid
at high densities due to the hard repulsive cores
of the atoms by calculating S(k, &u) and S,(k, u). Since
it is straightforward to solve for the dynamics
of a two-particle system with the aid of a com-
puter, we have calculated the dynamic structure
factors using both the I ennard-Jones (I J) (6, 12)
potential with liquid-argon parameters and the
hard-core potential with a suitably chosen diam-
eter. ' In Sec. 0 we present the cluster-expansion
scheme and in Sec. III we give the details of com-
putation and discuss the results. Using Scho-
field's'9 prescription for quantum corrections
we make a comparison with neutron scattering
results.

II. CLUSTER EXPANSION

In this section we shall derive the cluster-ex-
pansion scheme for the dynamic structure fac-
tors using linear-response theory. The starting
point is a classical equivalent of the Kubo formula
for the density-density response function K(k, &u)

derived by Ron' for a system of lV particles con-
tained in a volume V:

x F(k„.. . , k, -k, . . . , k„)k' (p„. . . , p„) . (I)
~pi
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Here L is the standard N-particle Liouville oper-
ator. F(k„.. . , k, -k, . . . , k„) is the Fourier trans-
form of F(r„.. . , r„},where

K(r„.. . , i„)=—exp(-()I 4(lr, -r l)) . (2)
j &0

Z is the partition function and C (r) is the inter-
action potential. G(p„. . . , p„}is the canonical
distribution function for the N-momenta. The
fluctuation-dissipation" theorem relates S (}t, (())

and K(}t, &u):

terms involving the pair correlation function di-
verge much faster than the three-particle terms
involving three-particle correlation functions and
the three-particle terms diverge much faster than
the four-particle terms, etc. In the present paper
we propose to sum the most divergent terms and
obtain a cluster expansion for the dynamic struc-
ture factor. Such a cluster expansion is useful for
hard-core and haxd-core-like systems. This is
equivalent to using a cluster expansion" for the
operator (L-(K)} ' in Eq. (1), i.e.,

S(k, &u) = (m~v/2v p) [Im K(&, ~)/~],

where p is the density of the liquid and v=(2&~&/Kn)"'

is the thermal velocity of the atoms in the liquid.
In Eq. (1), if the summation over I is removed by
setting I = 1, we obtain S, (k, ~), the incoherent
dynamic structure factor. In the rest of the paper
we discuss only the general cse since S, (&, &u} can
be obtained by setting l = 1.

High-frequency expansion" for the density-den-
sity response function and large-wave-vector ex-
pansion for the dynamic structure factor" have
been known for some time. However, such ex-
pansions are not useful in the case of dense liq-
uids with hard-core repulsive interaction. Using
a model potential

4(t') = c(a/r)"

one sees"'" that these expansions diverge term
by term in the limit n-~ (in this limit the inter-
action becomes hard core). The two-particle

+ term involving three particles+

Such expansions have been used in the literature
for deriving the memory functions and kinetic
equations. " In the present paper we shall re-
strict ourselves to keeping only the first two terms
and study the effect of binary collisions on the
dynamic structure factor. The two-term cluster
expansion reproduces all the terms involving the
free-particle and the two-particle contributions
in both large-co or large-k expansions previously
mentioned. Neglecting the three-particle term
introduces an error of the order I/e' or 1/k~ in
S(k, (u).

Using Eqs. (1) and (5) we obtain a cluster ex-
pansion for K(k, ~). Keeping only the first iwo
terms we have

N 1 1
+ „, dp„. . . , dp„yN+g Lo+ Lg((,sg )—(d Lo—47

k~, . . . , k~

aG p . . . , p„x F(k„.. . , ki-k, . . . , k„)k
~pr

(6)

In the first term the matrix elements of the operator 1/(L, —(()) are easily evaluated. To study the second
term we write

Each L, (ij ) involves an operator (8/Bp& -6/Sp~)
operating on everything to the right. We now in-
troduce complete sets of plane-wave states be-
tween various operators. Then the matrix ele-

ment of operator 1/(L, -~) on the left involves only

p, . Doing integrations over momenta, only those
terms with i =1 survive. Using the restriction on
j we replace Q&,& by N-I and set j =2. Thus,
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Then we write L, =L, (1)+L,(2)+L,' where L,'=g";=2L, (i) and noting the fact that Lo commutes with Lz (12),
we evaluate K(t), e),

)((d, -)=,".f d)Li'(.
-

. . . ', i,)t(i, r)i ", t'
I(~

N(N-1) 1 1

L,(1)+ L,(2) + Lt (12)- (() L (1)+ L (2)- k)
]( k

~(k-k k)'{'P') k, S(k k k) "{PP).k~ ~
~j. & 2

pi 8P2

Equation (9) can be written as

K(t), &u) =K,(tt, k)) + [K,{1),k) ) -Ki(k, k))] .

Clearly K2(it, k)) and K', (k, k)) are related to the
free-particle response functions and K((tt, &o) is
related to the two-particle response function.
Using the fluctuation-dissipation theorem and Eq.
(10) we write

S(1), &u) =S,(t), k))+[S((tt, k)) -S')(/2, k))].

After a simple calculation we obtain

S,(t2, k)) =(1/t))/2i, t)) e

d;(r, )=d, (d, ~ )d fr(r)d',

where we have used the fact that

p gr d3r=N —1.

Now S)(tt, k)) is calculated as follows: Kt(t), k)) can
be very easily written as

((,(lr, )=:(dt,d)i, f dr, d, d '"'y, l 2

x p e'"'r E(r„r )k ~2— (p„p2),
~12 —~ ~=i.2 ~P&

where

F( „,)= —fsxt(-dp d((t, —r, ())dr, ~ dr„

0

dpi dp2 dr~ dr2 8 ~ 8»
' g(lr. -r, l) G(p„P.).

Here we might recall that the incoherent dynamic
structure factor is given by the l =1 term.

Since e ' »' is a time-evolution-operator equa-
tion, (17) can be evaluated from a knowledge of
the trajectories of the two-particle system, Using
Liouville theorem it, is easily sho%'n that

oo d

0

x dp, dp, dr, dr, e '"'~

X Q etk'rt(t)
&=122 m

xg(lr, (t) —r-, (t)l) G(p, (t), p, (t)), {lg)

where F, (t) and p, (t) (t =1, 2) are the coordinates
and momenta of the hvo particles at time t given
that at t =0, r, (0) =r, and p, {0)=p, (l =1, 2). Using
the center-of-mass and relative-coordinate sys-
tem and taking the limit N/V =t) as N-~ and
V —~, we obtain,

S, (A, , (d)) = —— dt dr dp pg(r(t)) G(p(t))
1 &" sin~t
F + 0 (d

=g(lr, —r, l)/&'.

Using the antisymmetry of the imaginary part of
K(k, (d)) and the fluctuation-dissipation theorem,
it is easily shown that

X [e-k () t /8{&-(k[r (t) r)/2-
dt

etk(r (t)+r)/2)]
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G(p(f)} &
D2-(2)/22D222

(23222 v 2 v}3/ 2 (20)
TABLE I. List of typical parameters used in the

computation of the dynamic structure factors in liquid
argon (where r.u. stands for reduced units).

Thus the calculation of S(k, &u) reduces to the cal-
culation of the trajectories for various initial
configurations with distributions of the initial rela-
tive coordinate given by the radial distribution
function of the full system and the initial relative
velocities given by a Maxwellian distribution.

Using the binary-collision cluster expansion for
S(k, &) we easily check that the second and fourth
moments are reproduced exactly. The two-particle
and free-particle terms occurring in all the higher
moments are also reproduced exactly. In the limit
of dilute systems when g(r)-e se'"' the three-
particle effects are negligible and hence S(k) is
also reproduced correctly. However, for dense
systems S(k} is correct only up to order 1/k' and
the error is of the order 1/k'. Thus, S(k) ap-
proaches unity for large k.

In the present paper we have obtained a cluster-
expansion scheme which is useful even in the case
of hard-core potentials and has much wider ap-
plicability than the conventional large-k or large-
& expansion. It also isolates the effect of binary
collisions and thus, we hope, will lead to a better
understanding of the dynamics in simple liquids.

In Sec. III we present the results of the two-term
cluster expansion.

Wave vector

Number of initial relative
position used

Step size of the initial
position

Number of initial velocities
in Gauss-Hermite integration

Number of angles the initial
relative velocity makes with
initial relative position used
in Gauss-Legendre integration

Step size used in time fourier
transform

Time step used in integrating
the equation of motion

Exact second moment

Calculated second moment

Exact fourth moment (coherent)

Calculated fourth moment (coherent)

Exact fourth moment (incoherent)

Calculated fourth moment (incoherent)

13.69 r.u.

200

0.04 r.u.

0.032 r.u.

0.016 r.u.

2.79 r.u.

2.80 r.u.

37.02 r.u.

34.88 r.u.

39.89 r.u.

37.85 r.u.

III. RESULTS

Using the spherical symmetry of the interaction
potential, the integration over the angles of the
initial relative position r(0) with respect to the
wave vector k (taken to be in Z direction) is car-
ried out immediately, thus reducing the number
of numerical integrations to be performed in Eq.
(19). Standard numerical integration procedures
are used for the integrations over time and the
magnitude of the initial relative position with
suitable step size. The Gaussian-quadrature
methods are used for the integrations over the
magnitudes of the relative momenta and the angles
the relative momentum vector makes with the
initial relative position. The number of points
required to obtain precise values of S(k, &o) depend
on the k value chosen. These parameters are
chosen in each case by trial until the values of
S(k, (u) do not vary at least to the third significant
figure. The S(k, (u) thus obtained gives a second
moment exact within 1%. The fourth moment in
the case of LJ potential compares with the exact
value within 1 to 5% in the wave-vector range of
2to12A '.

For both the LJ potential and the hard-sphere
potential we have used the corresponding radial
distribution function obtained from molecular-

B(k, t)dt,

0,04-

k= ll. 75 A

0.03

3 002

0.01

5.0 10.0 15.0 20.0 25.0 30.0
h~ &evf

FIG. 1. Plot of S,(k, &a)/K vs Su st k=ll. VS A ~. The
crosses indicate the perfect-gas values.

dynamics computations. '
Having chosen the initial configuration, we solve

Newton's equation of motion using the prescription
of Verlet and Levesque. " The time step of inte-
gration is chosen small eamagh se that we obtain
an accurate trajectory for the time's eorrespomding
to the decay time of the integrand in Eq. (19}. This
can be written as



M. RAO

where

[s-)) ~))&2/s(e &&-&/(2) &r «)-r &o) ]
N

+e&&k/2) & r &&)+r &o) ])1

lP&)~te a' -~&'/~g(~r(0)[)

0 ]2

0.10

3

0.08

B(k, t)-0 as t-~
The condition for the time step of integration re-
quires small step size for small values of wave
vector and large step size for large wave vectors.
For the case of hard-sphere potentials the calcula-
tion of the trajectory is much simpler and we refer
the reader to the literature for details.

All the calculations are carried out using an
IBM 370-165 machine for the case of liquid argon
with density of 0.844 and at a temperature of
0.722 in reduced units. For these parameters
neutron scattering data are available so that a
direct comparison is possible. " In Table I we
list the various typical parameters for the case of
a wave vector of 4.0 A ' or 13.62 reduced units.

Even though the theory predicts all behavior
for large k, a direct comparison with experiments
is not possible due to the lack of available data.
In Fig. 1 we present a plot of S,(k, «)) vs &d for a

0.02

2 0 4 0 6.0 8.0,10.0
5 u) (me@)

FIG. 3. Plot of S{k',~)/4 vs A~ at 4=3.0 A ~. Symbols
are the same as in Fig. 2.

large wave vector of 11.'75 A '. The free gas and
the LJ curves approach one another showing the
relatively minor importance of the binary colli-
sions in the large-k regime.

For very small wave vectors the theory is valid
only for a very large where the data are not
known precisely or not available. The interesting
region is the intermediate values of the wave vec-

0.N
0

0.20

0
0.16

'"x
X

0.12 &

k=3.0 A
0.16

0

0.12

0.10

008

4=4-.0 A

2.0 4.0 6.0 8.0 10.0 12.0
0 cu ImeV)

FIG. 2. Plot of 8~{k,a)//'h vs pfu at 4=3.0 A . The
crosses denote perfect-gas values; the circles denote
the experiment; the dots denote the present calculation
with the hard-sphex e model; and the full line denotes
the present calculation with the Lennard-Jones {6,12)
potential.

0 04.

0.02

I

2.0 4 0 6 0 8,0 10.0 120
5 co(meV)

FIG. 4. Plot of Ss{k~u~//A vs hw at A'=4 0 A'-i Symbol
are the same as in Fig. 2.
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FIG. 5. Plot of S(A',~}/5 vs ken at 4=4.0 A . Symbols
are the same as in Fig, 2.

tor (2 to 4.4 A ') where the high-frequency behav-
ior predicted by the theory can be directly com-
pared to the experiments. In Figs. 2 to 5 we have
plotted $, (h, ~) and S(h, ~) vs &u for typical wave
vectors of 4.0 and 3.0 A '. In the same plots we
have shown the free-gas behavior, experimental
results, and the calculations based on the hard-
sphere potential. The agreement between the LJ
curve and the experiments is very good from -3
to 10.6 meV. At lower frequencies the cluster
expansion breaks down and is not useful. The long
tail of the hard-sphere model is characteristic of
the discontinuous potential. This can be seen- more
clearly in Fig. 6 where we present (u'S(h, ~) vs ~.
Thus the hard-sphere model seems to be inadequate
to describe the high-frequency behavior of S(k, ru).

Instead of presenting a multitude of curves, we
merely point out that the dynamic structure factor

FIG. 6, Plot of 8 S(k,~}vs k~ at 4=4.0 A . Symbols
are the same as in Fig. 2.

in simple classical liquids can be calculated from
first principles in a wide range of (&o, k) values
using the cluster-expansion scheme without any
adjustable parameters. This scheme also brings
out the fact that an analytic potential is too "soft"
to describe the repulsive core effects in liquids
and the hard-core potential is too "hard" to de-
scribe the high-frequency behavior of the dynamic
structure factor. This approach complements
other attempts'0 to extend the region of validity in
the + —Av plane and is useful in understanding the
basic dynamical processes in simple classical
liquids.
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