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Soft-mode dynamics in nematic liquid crystals

B. Blinc, S. I.ugomer, and B. Zeks
I@8&it@te "8'oX'ef Stefm", VnitIersity of I jube jana, Ljublj ana, Fugoslavt'a

{Received 17 September 1973; revised manuscript received 31 December 1973)

The dynamic properties of the molecular model proposed by Maier-Saupe t,'MS) for nematic
liquid crystals are investigated. It is shown that the model predicts diffusive optic soft
modes, describing nematic-order-parameter fluctuations which condense at the isotropic-
nematic stability limit. Since the MS Hamiltonian in its usual form does not exhibit the full
symmetry of the high-tempexature phase, no symmetry-recovering Goldstone mode is pre-
dicted. A rotationally invariant form of the Maier-Saupe Hamiltonian, on the other hand,
predicts the existence of tv' different diffusive optic soft modes in.the nematic phase, in
addition to a doubly degenerate '*magnon" mode which is the Goldstone mode of the isotropic-
nematic transition.

I. INTRODUCTION

Maier and Saupe' have proposed a simple mi-
croscopic model for nematic liquid crystals.
Whexeas the static properties of this model mere
studied in great detail, the dynamic properties
do not seem to have been investigated at all. It
is the purpose of this paper to elucidate the dy-
namics of the Maier-Saupe (MS) model with par-
ticular emphasis on the existence of soft modes,
the condensation of which should result in an iso-
tropic-nematic phase transition. The stability
of the various phases against homogeneous and
inhomogeneous fluctuations and the susceptibili-
ties of the system will be investigated as mell.
The pxoblem of the existence of symmetry-recov-
ering Goldstone modes, the frequency of which
should vanish in the long-wavelength limit in the
lom-symmetry phase, will be discussed. It mill
be shown that these modes, which are a necessary
consequence of the breaking of a continuous sym-
metry group at the isotropic-nematie phase tran-
sition, are not predicted by the usual form of the
MS Hamiltonian as this does not contain the full
symmetry of the high-temperature phase. A
rotationally invariant form of the MS Hamiltonian,
on the other hand„does predict the existence of
the Goldstone modes.

The present work is thus complementary to the
macroscopic approach to liquid-crystal dynam-
ics, ' ~ as well as to the approach' which is the
extension of the microscopic theory of collective
modes in classical liquids.

rived the following Hamiltonian:

K = —Q Ai~(g cos sip —2) ~

where 3ij is the angle between the long axes of
the molecules i and j. A&j is a constant which
measures the strength of the interaction.

To minimize the free energy associated with
the above orientational interaction, the moleeules
prefer-below a certain temperature-a parallel
orientation of the long axes of the molecules. It
is this orientational long-range ordering which
characterizes the onset of the nematic phase.

The above Hamiltonian (1) is usually replaced
by a separable interaction

j
3 2 1 3 2 1= —Z A„(-, cos'S, -~)(-, cos'8; ——,)

$,j

A(jq]qj,
i,j

where 3& is the angle between the long axis of the
i th molecule and the preferred direction in space,
i.e., the nematic axis, and where

3 2 1 3 g 1
i)i = (~ cos'Si —-, ) = (~n,', i

—-,) .

Here, me specified the orientation of a given
molecule in space by the unit vector n, :

ni = (sin3& costIt)i, sindhi sing&, cosy, ) .

In the molecular-field approximation, Eq. (2)
is replaced by

Xs~a", = —2 +A„(iI,)q, .

II. THE HAMILTONIAN

Taking into account dispersion forces betmeen
anisotropic molecules and averaging over their
center-of-mass positions, Maier and Saupe' de-

(ni) =&a)+&&i),),
where the thermodynamic average (iI) is the ne-
matic order parameter and 5(q~) represents small
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deviations from the homogeneous state.
In a quasilattice type model, Eq. (8) now be-

comes

III. STATIC PROPERTIES

A. Rotationally noninvariant MS Hamiltonian,
homogeneous case / =0

where

V0=2+Aiq

and V, is the corresponding Fourier transform

(8)

Let us first discuss the static properties of the
Hamiltonian (2} in the homogeneous case &q&) = ()))
using the molecular-field approximation

x„,= —v,&q)q. (15)

The nematic order parameter (7}) is determined
as a solution of the self-consistent equation

y~ 2 fq(R) -R f)fj

In a "continuum" model analogous expressions
are obtained. The only difference is that Vp and
V, are now given by

N 3V, =2 — Ag, p, (r„rq)d r,

and

V~ =2 — Ag) p, (R), Rg) exp[iq(R( Ri)] d'-ri,

].d» (r»' —&)exp[pV.&q) (k»' —&)]
f'd»e~[ pV(-,'»' —,')]-

P= 1/kT
(Is)

One solution of this system-which corresponds
to the isotropic phase-exists at all temperatures

(17a)

whereas another-which corresponds to the nemat-
ic phase-

where N/V is the density and p, is the conditional
probability density to find the jth molecule in the
place H~ if we know that the f'th is in the place Rf.

it should be noted that the Hamiltoman (2) does
not contain the full symmetry of the isotropic
phase. %'ith the help of the unit vectors n, and n&,
which specify the orientations of the two mole-
cules, Eq. (1) can be rewritten as {x)= —yrv, &q)2 (19a)

exists only below a certain temperature T,.
To see which of these two solutions represents

a stable state, we have to investigate the free
energy of the system

z =(x& —Ts,
where

3~X = —g ~Aug(ning) + g ~A)g,
fj

which can be contrasted with the usually used form
of the Maier-Saupe Hamiitonian as given by Eq, . (2)

a '
Xni= — A, i(gn,', ,—g)(gn,' i- ~) .

fy

Whereas the difference between these two forms
is not significant in the static case, it is important
when dynamic properties are investigated.

Since we are not tadong into account the relative
motion of the centers of gravity of the molecules,
the second term in Eq. (12) is a constant and can
be left out. In the MFA approximation we can
rewrite Eq. (12) as

X, "= - -', x 2gA„(&n, ,&n„, +(n, „&n,'„+&n,'gn,',

8 = —Nk(lnp)

exp(pv, (q) q)= -Nk ln, d
'

3 2 I . (19b)

The stability conditions are

(20b}

Equation (20a) is equivalent to Eq. (16). The con-
dition for the stability of the solution (q), can thus
be expressed as the requirement that the inverse
susceptibility of the system is a positive quantity

+ 2&n„n, gn, ~,„+2(n,~„&n,~,.
+2(n, „n„)n(„n„).

1 e'F
Nv, e(q)'

(21)
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In the isotropic phase

&q&. =o, &q'&. =1/5,

so that

X-'= S —PV, /5 = i —T,/T, T& T, . (22b)

The stability limit of the isotropic phase T0 is
given by

T, = V,/5k. (23a)

Iu the acmatic phase, (q), aud (q'), are both
different from zero. The stability limit of the
nematic phase T, will be always larger than T,.
Since the stability limits of the two phases do not
coincide, the phase transition will be of first
order. The transition will take place at a temper-
ature T„where the free energies of the two
phases become equal. Evidently one has

~0 TC~ To ~ (23b)

B. Rotationally noninvariant MS Hamiltonian,
fluctuations with /=0

Let us now a.liow for small deviations from the
homogeneous state

(q, &
= &q& + 5(q,&,

5(q,) = 5(q, )e'q@~ R~'-

C. Rotationally invariant Maier-Saupe Hamiltonian

In the homogenous case, where (n,'„)=(n'„') etc.,
we can rewrite the MFA Hamiltoman [Eq. (14)] as

3e "= ——,
'
V,((n„')n,'+ (n„')n', + (n',&n,

'

+ 2&n,ngn„n, + 2&n,n.&n„n,

+ 2(n,n,)n, n, ) .

The self-consistent equations are now

&

fe-' ~n dn
MFA

fe ' dfi
n, P=x, y, ~. (28)

The integration goes over the whole solid angle
and is performed with the help of Eq. (4).

In the high-temperature isotropic phase we find

V~ has a maximum for q=0, the system will make
a transition to a homogeneously ordered nematic
state. If, however, V„has a maximum for a
finite q =q0& 0, the system will become unstable
against inhomogeneous fluctuations of wave vector
q„resulting in a cholesteric state. It should be
noted that this ean happen only if the intermolecu-
lar forces are not completely short range so that
second-nearest-neighbor interactions are impor-
tant.

and investigate the stability of the system against
fluctuations with a finite wave vector q. The MFA
Hamiltonian is now

(n.'& =(ng =(n,') =-,'

(n~g =(n,n,) =(n„n.) =O.

(29)

(30)

3C~'= -(V,&q)+V;5(q, ))q, .

Using the sa, me procedure as in ease (i), we
obtain the wave-vector-dependent susceptibility
g(q) of the system as

This solution, which exists at all temperatures,
corresponds to (q) =0.

In order to investigate the low-temperature
solution, let us assume that the molecules order
along the s axis, and that there is no preferential
ordering in the xy plane. In such a case we have

0 0
(25)

Equation (25) coincides with (21) for q =O. It
should be mentioned that }((q) can be determined
by measuring the dynamic structure factor for
coherent neutron scattering integrated over all
frequencies.

The isotropie phase is stable against inhomoge-
neous order fluctuations as long as

&n~g =(n,n,) =(n,n,) =O,

&n;& = &n;& = -.'(1-(n:)) .

It should be noted that this a,ssumption breaks
the symmetry of the high-temperature phase.
From Eqs. (3) and (4) we see that

(n,') =-,'(2(q) +1),

&n:) =&n„'& =-'(1-(q) ).

(31)

X '(q) = (Vq/Vo)(l —PV q/5) & O„T& T, . (26}

The system becomes unstable, y '(q) =0, as
soon as with lowering temperature the condition

kT = Vq/5

is fulfilled.
The value of q, for which Vq is a maximum,

thus determines the nature of the instability. If

When we insert Eqs. (31)-(34) into Eq. (27}, it
reduces to

3CMFA V (q)q

thus demonstrating that in the homogeneous static
case there is no difference between the usual and
the rotationally invariant form of the MS Hamil-
tonian.
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We shall assume that the collective normal
modes in liquid crystals are so strongly over-
damped that the real part of the mode frequency
may be neglected in comparison with the imagi-
nary one and the system can be treated in a re-
laxational approximation.

0.7

neeatic isotropic

I

(

I

A. The rotationally noninvariant MS Hamiltonian

The relaxationa1 equations of motion for the
deviations from the MFA solutions are

d &(}&( 1= —
T {((I&(-(&(}&(&},

l

0.3

0.2

9.85

where T, is a constant and, where

&(I&(=&a&+5&i}&e ",
&((}&(&=((}&+5(&(}»('".

{37}

{38)

FIG. 1. Temperature dependence of the nematlc (T,/7)
relaxational soft mode as obtained from the rotationally
noninvariant forzn of the Maier-Saupe Hamiltonian.

The system is assumed to relax towards the
time dependent equilibrium value (&()&(&, which is
determined by the instantaneous molecular field

fexp{ PXP-")q d 0"""=y-p{ PX, }d-n
(39

where X, " is given by Eq. (7) so that inhomoge-
neous fluctuations are accounted for. Equation
(36) can be rewritten as

which goes to zero, or the relaxation time to infin-
ity, as q 0. These Goldstone-likes acoustic branch-
es have been lost tu replacing the rotationally in-
variant Hamiltonian, which contains the full sym-
metry of the isotropic phase by an anisotropic one.

8. RotationaHy invariant form of the Maier-Saupe
Hamiltonian

Let us now investigate the dynamic properties
of the Hamiltonian

dt"
'= -

T {5&(})X~'}
1

X = —z Q&(({n((i() {42)

The relaxation time governing the approach to
equilibrium is obtained with the help of Eqs. (37}
and (38) as

1/& = {1/&,}X,„',

1/~ thus represents the relaxation time for the
nematic order parameter fluctuations. Equation
{41)predicts-together with Eqs. {25}and {26)-a
critical slowing down of this diffusive "soft" mode
at the corresponding stability limits. The temper-
ature dependence of the relaxation time v is shown
in Fig. 1 for the special case q =0. The nematic
mode represents a fluctuation in the magnitude of
the orientation of the molecules and can be ob-
served, for example, by NMR rely, tion or scat-
tering techniques.

It should be noted that the above soft mode repre-
sents a diffusive "optic" mode. There is no mode
in the low-temperature phase, the frequency of

The relaxational equations of motion for the de-
viations from the MFA solutions are

df &««((&(= T{&n(-n(((&( «n( n-(((&(&},

where n, P =x, y, z and

PA

g e n(~n(, dO

1'e Bn( d-fl

(43)

X+A is given by Eq. (14), and ((n«n(((»( by

(&n(„n(g&(= &n,„n„&+5(&«.n(g&e-"" . {45)

5&n.ng ,= g 5&«.-n„&e(&'( (46)

and using Eq. {45), we find

Introducing collective coordinates by the Fourier
transform

T,/v 5(n„n((&;= 5(n„n(() „---,'PV-, {(n„n((n',&5(n',&-, +(n n((n2$ 5(n'„);+(n n((n'. )5(n,') q+2(n„n((n, n„)5(n~g;
+2(n n((n, n,&5(n,n,& +2(n n((n„n, &5(n~,&-}+2PV-(n„n((&{(ng5&n',&~+(F5(ng-+(n', )5(n,) } {47}
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where V~ is given by Eq. (9).
We thus have a system of six linear equations

for the fluctuation eigenvectors 5(n n8}-(a, P
=x, y, z). The eigenvectors must satisfy the rela. -
tion

5&n2) + «n~g+ «ng = O,

so that only five of these equations are independent.
This corresponds to the fact that the nematic or-
der parameter is-as pointed out by de Gennes' —a
symmetric second-rank tensor of zero trace which
has five independent components.

The nature of the solution fox ~ depends on the
averages

T„/v(q) = paq'/5 .
The degeneracy of the soft mode is lifted in the

nematic phase. %'e find tmo different diffusive
optic soft modes:

(i) T,/1'(q) = 1 —3pV-(@P„)„

with the eigenvectors

«n, n, &-, ~O or «n', &; —«n,'}-,~O,

(11) T,/~(q) =1+aPV;(&n,'ng —&n',) &n',))

with the eigenvectors

&n„') =&ng = g&sin'»

= s t(co-s'S) +k&cos'»,

&n,') =(cos'»,
&n,'n', ) = (n'„n',) = +sin'Scos'»

= icos'8& —icos'»,

(49a)

(49b)

5&n,');+5(ng;= —«ng;,

in addition to a doubly degenerate diffusive "acous-
tic'" magnon mode

(iii) T,/r(q) = 1 —SPV(q)(n,'n,')

= (Vo —V q}/Vo

(n,'n2) = I&sin'» = 8 —4(cos'» + s &cos'» . (49d)

In the isotropic phase T & T„one easily finds that

&n~g = &n4$ = (n'.) = s,
(n2~,') = (n2~,') = (n,'ng =—,',

and all five possibl. e fluctuations relax with the
same wave-vector™dependent relaxation time

Tg/1'(q) = (1 —PVq/5) = X '(q) (5&)

where )( (q} is glvell by Eq. (26).
This result is easy to understand. The ellipsoid,

which can be ascribed to the equilibrium value of
the order-parameter tensor, reduces to a sphere
for T&T,. Above T, all orientations of the order
pa, rameter tensor are thus equivalent, and there-
fore aO possible deformations relax with the same
relaxation time. Equation (51) predicts a critical
slowing down of r(q) as PV~/5- 1. Depending on

the value of q for which Y~ is a maximum, we
find —after the diffusive sof't mode has condensed
out-a homogeneous nematic (q=0) or a spiral
cholesteric (q4 0) low temperature phase.

In the following we shal. l be concerned with the
nematic solution.

If one assumes that V~ is isotropic

Vq = Vo —aq (52)

T,/v(q) =1 —To/T+Paq'/5, P= 1/hT.

The above diffusive soft mode has thus an optic
character (1/~ 4 0 for q =0), except at the stability
limit T'0, where

with the eigenvectors

«n, ng-, ~O, &n„n,&;~O.

The fifth mode, which mould represent a rotation
of the nematic-order-parameter ellipsoid around
the z axis, is not a real normal mode of the sys-
tem in view of our assumption of the isotropy in
the xy plane. If, however, our order-parameter
tensor would be biaxial, i.e., a general ellipsoid
and not an axially symmetric one, the fifth mode
would be present too.

The nature of the four nematic-order-fluctuation
modes is illustrated in Fig. 2. The first (i) mode
represents a change in the magnitude of the two
smaller principal axes of the order-parameter
ellipsoid with the largest (g) axis remaining con-
stant. The increase in the magnitude of the x
axis is compensated by a decrease in the magni-
tude of the y axis and vice versa. It can be called
a "biaxial" nematic soft mode, since it tends to
destroy the "uniaxial" nematic symmetry. The
second (ii) mode represents a decrease in the
magnitude of the z axis which is compensated by
an increase in the x and y principal axes and vice
versa. It is an uniaxial nematic soft mode.
Whereas the above two modes thus represent a
change in the magnitude of the local anisotropy,
the doubly degenerate third (iii) mode represents
a rotation of the local anisotropy out of the z direc-
tion. The rotational ellipsoid rotates in the xy
or the yz plane. It is this last mode which is the
Goldstone mode' of the isotropic-nematic transi-
tion.

In the transition from the isotropic liquid to the
acmatic phase, the continuous rotational symmetry
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