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Logarithmic divergence in the virial expansion of transport coefficients of hard spheres. I
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The expansion of transport coefficients of gases in powers of the density makes a logarith-
mic divergence appear in the second-order correction to the Boltzmann order term. This
divergence arises from the sequences of four collisions among four isolated hard spheres.
The number of distinct sequences may be reduced to 10 in the cases of the shear viscosity
and the heat conductivity and to 9 for the self-diffusion coefficient. For these three trans-
port coefficients the contributions of two sequences are computed in the first Enskog approx-
imation and given in terms of elementary functions.

I. INTRODUCTION

It is now widely recognized that an expansion
of transport coefficients of gases in powers of
the density does not exist very probably beyond
some finite order, ' In d-dimensional systems,
the coefficient of this expansion diverges loga-
rithmically at the order n -' for the shear vis-
cosity and the heat conductivity and at the order
n ~ for the self-diffusion coefficient (n is the
number density). However, to our knowledge, the
computation of the coefficients in front of these
diverging quantities has not been carried out ex-
plicitly for three-dimensional gases —except for
the particular case of the perfect Lorentz gas. '
This paper is the first one of a series, where this
calculation will be done for the above-mentioned
transport coefficients (i.e., the shear viscosity,
the heat conductivity, and the self-diffusion coeffi-
cient) of a gas of hard spheres.

This calculation could be relevant in a study
of the actual low-density behavior of transport
coefficients. In fact, in a renormalized theory
of this low-density expansion, the diverging fac-
tor ln~, where e is approximately the inverse
duration of a collision sequence between four
spheres, should be replaced by inn, as this dura-
tion cannot exceed too largely the mean free flight
time. ' As the power expansion of the heat con-
ductivity, for instance, reads

K=KO+K~n+K2n inc+ ~ ~ .
the renormalized theory should yield

Ko+Kx" +K2 +2 inn

where K," is still the coefficient in front of the
na inc term of the power expansion. This conjec-
ture is true in the case of the perfect Lorentz
gas with hard spheres as scatterers, ' but is still
unproved in general.

In the present paper, we shall consider explicitly

all kinds of sequences of four collisions between
hard spheres that contribute to K,' and in Sec. II
their number will be reduced to 10. In Sec. III,
two contributions to K,' will be reduced to con-
stants in the first Enskog approximation. %'e

shall give also the corresponding contributions
to the shear viscosity and the self-diffusion co-
efficient. The forthcoming paper mill be devoted
to the computation of the other contributions, much
more involved than the ones considered in the
present work.

II. RING COLLISION SEQUENCES BETWEEN
FOUR SPHERES AND THEIR SYMMETRIES

A. Generalities

The Green-Kubo formula for the heat conduc-
tivity reads

K= lim lim K(e),
q~o Pf P~eo

N/F= rf

with

((( ) ~ j die-"(il(0) i(t)),

where ( ~ ~ ) denotes a canonical equilibrium av-
erage at temperature ~ on the ensemble of initial
conditions for a system of N hard spheres in a
box of volume V, and where d(t) is the value at
ti~e t of the fluctuating heat current in the sys-
tem.

Expanding formally K(e) in powers of n, we
get

K(e) = Qn'K, (e),
l =0

where the computation of the lth term involves'
the knowledge of the dynamics of (l + l) particles.
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LOGARITHMIC DIVERGENCE IN THE VIRIAL EXPANSION. . . I

It has been shown' that K,(s) exists, as being the
Boltzmann order value of the heat conductivity,
while K,(s) behaves' near s =0 like K, (s =0)
+O(s Ins) and has a finite limit for small s. But
a logarithmic divergence occurs for K, (s) and

more generally K, (s) I/s' ' (I ~ 3). Using
Kawasaki-Qppenheim arguments, ' the resumma-
tion of the most divergent contributions at every
order in this density expansion should yield a
convergent value of K(0):

K K,(0)+K,(0}n+K,'s'inn.

The purpose of this paper and a subsequent one is
to calculate K,'.

Some of the contributions to K,(s) arise from
the dynamical correlations created by collision
sequences between four isolated molecules. As
shown above, one class of these collisions, the
"ring events" (as the one drawn in Fig. 1), is

(a)

responsible for the logarithmic divergence of
Ks(s =0). The other contributions to K, arise
from the virial expansion of the equilibrium weight
in (1) or from the potential part of the heat cur-
rent f. As shown in Appendix A, it may be as-
sumed that these contributions do not diverge.
Let us briefly sketch the derivation of the virial
expansion of K,(s). As this becomes tluite com-
plicated beyond the first term, we shall consider
part of this expansion only, and neglect both the
potential part of the heat current and any effect
of the equilibrium correlations, so that the heat
current 8 is reduced to its kinetic part, i.e.,
Q; ], with I, = v, (2m', ' —-',kv). Let us define a
Liouville evolution operator that acts on any func-
tion of the dynamical variables of the system as

thus we may write (1) as

K(~) =
ayp ( I

' G(~)Z I

1 2 3 4 5

incr eosing
time

with O(s) =(s —if,) ', and K(s) stands here and
from now on for that part of the heat conductivity
under consideration, the average ( ~ ~ ~ ) is carried
over an equilibrium weight of a system of non-
interacting particles. Expanding G(s) by means of
the binary-collision operator, one gets the follow-
ing renormalized density expansion for K(s):

K(~) =, f~",os,s, ~ fe mA n'A~(s)

sequerce (12)(23){34)(35)(51)
-n'Ascu(s)+O(n')j ' ~ I, ,

(3)

2 3 4 5

-k 3

sequence (12)(23){1&)(&5)(53)

FIG. 1. Some irreducible ring events of 5 particles.
Tixne increases downwards. (a) Each binary collision
is represented by a horizontal line between the two par-
ticles involved; k (or -Q is the carried momentum.
(b) Schematization of the sequences of (a); only the par-
ticle carrying a nonsero "momentum" (+ f or —Q is
labelled. The two representations are taken from Kawa-
saki and Oppenheim (Ref. 5).

is the Boltzmann statistical factor; A~ is the lin-
earized Boltzmann collision operator, Aca the
linearized Choh-Uhlenbeck operator, and Asc„ the
linearized "super -Choh-Uhlenbeck" collision
operator; they involve, respectively, the dynam-
ics of two„ three, and four isolated molecules
and may be defined by means of matrix elements
of the binary operator T&, to be defined below.

The linearized Boltzmann collision operator
A~ acts on any function P of the velocity as

A~& = dv24 v, 001T„I 0 0 P v, +P v2) .

The linearized Choh-Uhlenbeck collision opera-
tor AcU involves a series of products of three
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and more binary collision operators, their in-
dices being chosen among three particles only.
The super-Choh-Uhlenbeck operator AlcU that

will be considered in this work involves a product
of at least four collision operators with four par-
ticles; one of these contributions is

A («)(& j=lI»«o(«&», f»i(ooi «„lt&, -t(&(« — 't& «,.&-'&-t&ol « I-„i&0&(«-(t& «„)-
4=2 2»» '

x(q, 0[ T„[q, 0) (e —iq ~ v») '(q, —q~ T» [0,0}g&1)(v»)+(similar terms}.

x(l. +I.} A~(~)(},+»+1, +1.}, (4)

75 A,
A =-A (~=0}=——

64g' ~m

for hard spheres, and it will be understood that
Asc»)(e) accounts for the ring events only and so is
replaced by the first term in its binary collision
expansion:

T»~oT »"OTscoT~
a, s, y

where, as usual G, is the resolvent of the non-
interacting Hamiltonian; T&, is the binary collision
operator, and ~ p, y stand for any nonordered
pair of indices (i,j ) (i', 1»i,j «4). We have
used the freedom in the labeling of particles to

A. priori, the binary expansion of A~„ is infinite,
even for hard spheres. However our objective is
noI, a computation of the complete super-Choh-
Uhlenbeck contribution to some transport coef-
ficient; we are only interested in the divergence
of the density expansion of transport coefficients,
and the more "catastrophic" divergences are ex-
pected to arise from the ring collision events
which involve the minimum number of collisions
for each collision operator, i.e., four collisions
at the super-Choh-Uhlenbeck order (order»»' in
the virial expansion for the heat conductivity),
five collisions at the order n', and so on. Qf
course we do not claim that the higher-order
terms in the binary collision expansion do not
yield divergences too, but either they are less
"catastrophic" than the ring divergences, or they
are due to some reason as yet unknown. From
Eq. (3), the super-Choh-Uhlenbeck contribution
to the heat conductivity is in the first Enskog
approximation

II «» C(v»}
2 nP7'ICO

call (12) the pair colliding at the beginning of the
sequence; as we assume that time increases from
the left to the right, (12) is the first collision of
the ring event.

B. List of the collisions

From the summation +„8„ there should be
(',)' =216 different terms in Asc„(e). However,
this number is lowered by the following rules:

RgLe a. Two consecutive pairs of indices cannot
be the same: 0. ~(12), P~ o., y~P. This is due
to the resummation carried out in the binary-
collision operator, and for hard spheres expresses
the simple property that two particles cannot re-
collide unless one of them has met a third particle.

Rule b. The set of indices ( (12},n, (6, yj cannot
be split into two (or eventually more) nonempty
subsets so that particles belonging to different
parts are not connected by a binary-collision op-
erator. For instance TggGQTsyGQTggGQTgq is re-
jected, as there is no common collision between
subsets (12) and (84). More generally, any term
vanishes when no quantity containing i or j ap-
pears on the right (or the left) of T, , This rule
derives from the property that T„G,T»f(v„v,) =0
for any function f.

Rule c. The sequences are "irreducible": a
particle cannot meet a, first subset of particles,
leave them, and interact with another subset
having no collision event in common with the first
one because the contributions arising from these
"reducible" diagrams are products of irreducible
factors and so disappear' in the inverted series
for the collision operator. This rule rejects the
sequence T„G,T„G,T, G,T, or the sequence
T$2G TQSG Q T $G TI Q

in the present case this ru le
states that a, particle colliding only once does it
in an intermediate collision.

%'ith the above restrictions we are now able
to list the allowed sequences for A~»&(e}. One
of the particles, 1 or 2, must occur in. the second
collision (rule I») but not both (rule»»); then a new
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paxticle, say 3, must appear in o, , the fourth
particle occurs. in the third collision (rule c), and
so the product T„T TBT„ takes the form

2

T» T„T(,T, k (i = 1, 2, 3; j, k = 1, 2, 3, 4),
and the allowed sequences are

(12) (23) (14) (12), (12) (23) (14) (13),

(12) (23) (14) (24), (12) (23) (14) (34),

(12}(23) {24){12), (12) (23) (24) (14),

(12) (23) (34) (13), (12) (23) (34) (14) .

$2 Q2
3

The third sequence is the time-reversed expres-
sion of the second one (this can be seen through
the substitution of indices 1, 2, 3, 4 2, 4, 1, 3};
from elementary properties of the operator T&,
they give the same contribution; the same re-
rnark holds for the sixth and seventh sequences.
So, there are only six distinct sequences 8„.. . , s,
defined as

s, = (12) (23) (14) (12),

s, = (12) (23) (14) (13),

s, = (12) (23) (14) (34),

s, = (12) (23) (24) (12),

s, = (12) (23) (34) (13),

s6 = (12) (23) (34) (14),

and the contribution of the sequences s~ and s,
to K,(e) are to be multiplied by 2. The six pro-
cesses are symbolized in Fig. 2.

of the spheres at the instant of the collision

(8)p(6, v») =6+ (v» jv») (a' —h')'~',

and 6 is the impact parameter, orthogonal to v»
and moving inside the circle of radius a (a is the
diameter of the hard spheres); and where v,', v,'

are the velocities after collision and v12 =v
As an useful example, we get from Egs. (f) and

(8) the action of T» on the heat current:

=v» dSs '~'~t~ "»~aJ(6;v»v, ),

FIG. 2. Diagrams representing the six possible se-
quences 8&, ~,s6 of four-particle irreducible ring events
for the heat conductivity or the shear viscosity. The
conventions are the same as in Fig. 1(b).

C. Real and virtual collisions

We now make explicit the "matrix element" of
This element describes the action of T'» on

any function of the general form
i% r ys&k'

rgb{

For a hard-sphere potential, T» may be split
into a virtual" and a "real" part as' '

R F
T12 T12 T»

with

&J(6;v„v,) = &os(v»(v» V)

—w(6, v„)[w(6, v„) 0]), {10)

with

(k+|1,k'-q
~

„T"[R, '}t)y(v„v, )

d e '~'~~~ "12~q V1, V, , ~a

0 = k(v„+v, ) =-,'(v,'+v,'),

w(6~ vgk) =v~ vk

(1 la)

(k+j,k'-|1
~ T)»%, %'}g(v„v, ) (lib}

d e-'q'~~b»& y v' v' 7b

where p(6, v») is the distance between the centers

Using Egs. (V)-(ll), we may write a contri-
bution to Q(e), from the sequence s, for example,
as:
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xiq, DI 'T„i t,)0) . „fdb'" '"'~~ ""'EJ(b"';
1P

where we have used the Hermicity of the T op-
erator to make the left T, operator act on its
left. . The intermediate 2' operators (T» and T„
in the above example) must be split into their
vir tual and real parts, and so the contribution to
K, (e) of any one of the sequences s; (i =1, 2, . . . , 6)
listed in Eqs. (6), will be the sum of four terms:

where+12m'rK', /75(gT}5]S, is the contribution of
sequence s, to K,(e), and where the superscripts
R and V, written in the chronological order, mean,
respectively, "re l" and virtual" and refer to
the part of the intermediate T operator we con-
sider. For instance, S~ is the contribution of
the sequence s, when the collision (23) is real and
the collision (14) is virtual. Each of the six se-
quences 8, being divided into four contributions
.RR, R V, VR and VV, we should have 24 terms
to compute. Actually, their number can be re-
duced by the following considerations:

(i) If the two particles colliding at the beginning
and end of the sequence are the same (cases s,
and s,), the two intermediate collisions cannot
be virtual as the velocity of at least one of the
particles 1 and 2 must be modified during the
sequence in order to aller a. recoBision. This
obvious point could be verlf led by Rn expllclt
computation of S~' and S~~. Thus

(ii) Some real-virtual sequences are time-
reversed from each other and

g~kF ~~FR SRF pe
sRF ~KB SRF peQ 6

(iii) Let us introduce a new classification among
the intermediate collisions. %e shall say that
there is no transf8rof correlation if the new par-
ticle appearing in this collision does not occur
again on the right of this collision. For instance,
particles 3 and 4 appear only once in the sequence
(12), (23), (14), (12), and, roughly speaking, the
correlation between particles 1 and 2 created in
this sequence by the left collision (12) is "scattered"
(but not "transferred" ) by collisions (23) and (14);
this makes invalid the Stosszahlansatz for the last
collision (12), leading to a correction to the Boitz-
mann theory. Qn the other hand, we shall say that

a transfer of correlation takes place in an inter-
mediate collision, say (23), if the new particle
occurring in this collision, say particle 3, does
appear again on the right, although the collided
particle, 2, disappears. In the sequence (12) (23)
(14) (13), the correlation created by the first
co/fision (12) is transferred from particle 2 to 3
at collision (23), and due to this new correlation,
the Stosszahlansatz breaks down for the last col-
lision (13).

The interest of this splitting into collisions with
or without transfer is the following one: uI28n N8
iP2E8J'PPl8d2Q/8 collision is y8gl, due to the isotropy
of the scattering cross section between hard
spheres, the integration over the impa, ct param-
eter makes any distinction between the two par-
ticles after the collision almost disappear, ex-
cept for the shift between the centers of the
spheres at the instant of the collision. But it may
be understood that this shift of order a, becomes
unimportant when one considers large collision
sequences, a,s the one yielding the inc behavior
of K,(c). Henceforth, it is of interest to consider
the behavior of a diverging contribution to K, (e -0)
under the transformation of an intermediate real
collision arith transfer into a, real collision u itI2out
transfer and conversely. This transformation acts
on a collision sequence as follows: when an inter-
mediate collision (i, j) is real, make on its right
the substitution i —j, anything else being kept
fixed [for short this transformation will be called
(transfer} —(no transfer}]. For instance, this
yields from (12) (23) (14) (12), the sequences
(12) (23)' (14)' (»), (12) (23)' (14)' (43), and

(12) (23)" (14} (42).
As shown in Appendix 8 for a large class of

collision sequences, this transformation does
not modify the contribution to the diverging part
of K, (e -0), and using the results of Appendix
C, this result may be straightforwardly extended
to any four-particle ring collision event with
intermediate rea. l collisions.

I et us point out again that this is due to the
isotropy of the differential cross section for hard
spheres. A similar property probably does not
hold for other potentials, and it is surely not
true for two-dimensional systems as can be seen
from the calculation by Sengers of the first di-
verging term for the viscosity of hard discs. '
From the above considerations, we have in the
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small-z limit

SRR ERR ERR ERR ERR
1 2 3

HARV
SRV SVR

HARV1 2 0 2 3

HARV HARV
SVR

HARV5 P 5

and

2mg (e) ~ o [(2SFF OFF ~FF SFF)

4 (SR F +g FR +g
R'F +gFR )

+ 4(SRR +ERR)]

1 1
'0 (e) ~ ——F)'[RR "+R""+RR +R "

20 k~ o 2 3 5 6

4(g RF +gFR +gFR

+BARF

)

+4 (R
RR ~ERR)]

where

16 a' atm

is the first Enskog value of the viscosity at the
Boltzmann order, and where the quantities R are
deduced from the quantities 5 with the same in-
dices by replacing the heat current ~; by the trace-
less tensor

We still remain with ten diverging terms. They
are schematized in Fig. 3, and the problem is
now to compute them explicitly. A first step con-
sists in exhibiting the dominant contribution when
e -0. This part of our program is already
achieved, and we have recovered in any case
the predicted inc behavior. The methods we have
used are generalizations of those in Sec. III and
Refs. 7 and 8. We shall detail them in a fox th-
coming paper.

The second step consists in computing the nu-
merical value of the coefficient of inc which is
still a complicated sum of numbers given by multi-
dimensional integrals. In many cases, the re-
duction of these integrals to low-dimensional inte-
grals or to elementary quantities is a very diffi-
cult, if not impossible, task. In some cases, the
calculations can be completely carried out. We
describe in Sec. III two of these contributions:
Sv" and Svv.

Before ending this section, let us point out that
all the above arguments hold without any change
for the second-order diverging correction to the
shear visccsity q, (e). This reads

't; =FEZ(V( Vg —oVg 1 ) .

Some modifications occur when we deal with
the self-diffusion coefficient: we have to point
out one of the particle, say 1, and so, for obvious
rea, sons, the sequence s, does not contribute,
whereas sequences s„s„s„and s, must be
reckoned twice owing to straightforward symme-
tries. Thus, the divergent second-order contri-
bution to D is the sum of nine contributions:

D m
D (e) ~ —[2rP" +2b "+4" 6bkr 2

2gv R 6gRv 4gvR
2 5 5

+4~RR + 5gRR]

Ba2 m

and where the 4's are deduced from the S's by
replacing ~, by v, and ~2, by 0.

2 3 3
+v Qv

Svv
5

2 2

Svv
2

~v ~v

1

Svv
3

2 2
~v

1

SVR (~SVR
4 5

2 2

U &
1 1

Sva (~ SVR )
2

2 3 3
~R ~v

S$tv (~ SVR )5 6

SRV(~ 5 Rv )
2 3

2 2 2
~RR

1

SAR (~ SRR ~SRR )5 6

SRR (~ S RR ~ SR% )
2 3

FIG. 3. Diagrams of the
ten distinct contributions
to the divergent part of E2(~)
[or g(e)]; the nature of
the intermediate collision
(real or virtual) is pre-
cised with label R or V.
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Hl. COMPUTATION OF S,"AND S,"
We are interested in the following collision se-

quences:
(i) (12) (23)" (14)" (18). Note that both the inter-

mediate collisions (23) and (14) are virtual. The
corresponding contribution to g, is called S~".

It vrill be simpler to consider it together with
the time-reversed sequence (12) (14)" (23)» (13)
of contribution S2"~ =S"," and to deal with
—,'(8,'»»+S»») instead of S»» itself.

(ii) (12) (28)» (34) (13). This contribution,
where the intermediate collisions are again vir-
tual, is called S~5~.

From Eqs. (3), (7), and (9)

4

p 4(v~) d v, 2, d b d 6' d 6 exp (fq t Io(b, v„)+p(b', v») —p(b"', v») j)2w'

v»v»814v» J(51 vlq vg) M (6 t vip v~)

(e —iq v„)(e —iq v»)' (12a)

%'e get S,'~" by commuting on the right-hand side
of (12a) indices 2 and 3. The impact parameters
b, 5', 5'" move in circles of radius s in planes
perpendicular to vj2, vs3& v, s, respectively. The

integration over the parameter 6" of the virtual
collision (24) has been performed and yields a
factor ga'.

In a similar manner, we get for S","

S, =scP 4 v~ dv& 3 d d 'd "xexp t, q ~ p b„vj~ +p b', v —p b', v

~»~»~S4~(st vll v2) ~(5 l vlt vS)

(e —fq 'v») (6 fq v»)
(12b)

Formulas (12) look very much the same and
the similarity will hold throughout all the calcu-
lation, although the integrand in S~5~ will appear
less symmetrical than S"," and thus yields slightly
more complicated computations. We shall detail
the calculation of the "symmetrical" term S~~~

only and give at each step the corresponding re-
sult for S",~. We shall proceed in the following
way: (i) choose the integration variables, (ii)
integrate over q and express the divergence near
e =0, (iii) integrate over the impact parameters
b, 6', b"', (iv) integrate over the remaining
variables.

A. Choice of the integration variables

The integrand in Eq. {12a) depends mostly on
the relative velocities, and particle 1, plays a
special role. So we choose as new variables the
velocity of the center of mass

V~ = ~(v, + v2+ v, + v~)

and the three relative velocities

Vj2 = Vj —V2y Vj3 = Vl —Vgp

The Jacobian of the transformation is equal to

j. and
4

Pu&' =4V,'+8„

with

2 g X~r 4(~»+ ~» + ~14/ 2%12 vis +v» v14 + »14 v») .

(13)

Moreover, the orientation in space of the tri-
hedral vjgy vj3p vj4 plays no role in the integrand
of the right-hand side of (12a). Thus, we may fix
the direction of the vector v», which amounts to
an integration over a solid angle and provides a
4m factor, and choose as reference plane, the
plane of the vectors v», v» (whence a 2v factor).
Once this frame is fixed, the trihedral vjpp vjp,
vj, is completely dete rmined by the lengths IU»,

js~ &j. a« the t»e«ngles
6:(V»y V13)y 0 &

O' =: Ivj.„vj~)„0«~6' «» 7T

cp' = angle between planes

(vy2p v») and (v»~ v14)~ 0 (p
" 2 II',

With these variables S"," reads
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1r Q1r

sjn8 gag sing' $8 dy g ~ " r
0 0 0

I d gpss +J ~ pyg
d q exp lg pg2 b + p23 b ) p» b

(2v)' (e -iq v }(e iq-v )' (14)

where ere have adopted the shortened notations
&J„(S)and p»(S) for hJ(5;v„v, ) and p(b, v„).

8. The logarithmic singularity

The q integration is carried out by using

&-fq ~ A

(2v)' (e —iq 5)(e —iq 0)'

c„

where the trihedral Obeys has been chosen in such
a way that B is parallel to Ox (and B,&0) and 6
lies in the xOy plane; 6(x) is the Heaveside step
function

e(x) =1 when x&0

= 0 otherwise.

When the quantities A„A„, C„, . . . are in turn
variables in further integration, a singularity
may occur near & =0 arising from the part of the
domain of integration where C„ is very small.
Near C~=O,

&«xpl- c(A, /C„) (1 —C„/B,)].
By inspection of Eq. (14), we shall choose

B=vj.» C =v»

&=- p (b) p..(b-)+P»(5");
as the singularity occurs when C, =- v» sin8 is
small, it corresponds either to 8~0 or H=m.

From the Heaveside function e(-C„/8„), one must
have —(v»/U») cos8&0 which eliminates 8=0. Then
the dominant contribution to S," arises from a
configuration where v» and v» are almost. anti-
parallel; the impact parameters b, b', b" move
inside the circle of radius a of the y0s plane [Fig.
4(b)]. This corresponds to an unbounded recol-
lision time for particles 1 and 3 [Fig. 4(b)] and
one can wonder if this infinite time has a physi-
cal meaning or is actually bounded by the mean
free flight time.

Near &-0, one may replace

r dq expiiq Ã (b)+p.,(5') -p,.(5-)]}
(»)' (e -iq v)»(e -i q v»)'

b(b, ~ b —b,"'((b(b, ~ b',„' —b„"'((b, ~I„'-b,"( b (b ~ b—b,")( „))„',
v~v»sin 8

exp sin8 v~ v»

In order to exhibit the divergence, we shaQ perform the 8 integration near 6 = ~. The Boltmmann factor
B„and the scalar product remain finite at 8 = m and take a simplified form that we shall explicate later
on. In the e - 0 limit they are to be multipl, ied by

d8 ~ (8„+h„' —b,"')
e(-cos8)exp — " " ' (~ +U,.) = -»~,

sin8 0~v» sin8 ~ g

where the dependence on the impact parameters has disappeared. Gathering aQ these results, we obtain
the dominant contribution to S,"" in the symmetrical form:
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m
ee, "=3,"" 3,'"" —eie

e
(nd'))ni' — d)e, e '"1f dn f d „

&~p m p 0

ejo 21K

d.„.„;,n„(;,~.„) de sine de e ~ f dn f dn
Q

x db" 5 b, +b,'-b,"' b„+b,'-b„" 6 b, +b,' —b„'" aJ„b .aJ„b"
e=m ~

(15a)

The integrand has been written in a dimensionless form and

&() =&,
I 2 e(

==4 (v'13+ vj3+ v'14) + 2 v12v13 2v14cos8 (v12 v13) ~

The corresponding result for S, reads

(15b)

5 13 3

dv„v'„v„+v„v„v',, de' sine' dq
' e 'p'~' db db'

x db" 5 b, +b,'-b," b, +b,'-b'," 6 b, +b„'-b,"~J„b} aJ„b" ~. .. (16a)

with

Bt 4')2 + 1Pj3 + 4 v34 + V12v13 —
2 (vj2 + 2V13) v34 Cos 8 (16b)

C. Integration over the impact parameters

It becomes necessary to give explicitly AJ12(b}
b J»(b"') I(),. In the reference frame of Sec. III 8,

this quantity can be put into the form

n}

(23)

&J12(b) &J13(b"') 12 =.

12 13 Q U {b bede)V

where U), &'s are functions of the impact param-
eters only, and where the cartesian coordinates
V), and W~ of

X

V-=-2'(vj+je2) and W=-"2(vj+v3)

V„= Vd„- 4(v» + v») +-,'v, 4cos8',

W„= V, „+-4'(v» + v») +-, v„cos8',

V, =8', = V„+-,'v, 4sin6}' cosy',

b)

b b

r'}~~aa' b"

V, =8', = V„+-,'v, ~ sin6}' sing'.

After integration over V, and y', the crossed
terms like V„W, , V„W, , . .. , yield vanishing con-
tributions, whereas the contributions of V, S', and

V, W, are equal. Thus we need only the values of
U„. and U,„+U„. From the definition of 4J given
in E(I. (10)

FIG. 4. (a) Disposition of the velocities for long re-
collision times in S~2~. (b) Disposition of the velocities
v&2, v&3 and impact parameters 6, b', b'" in the xoyz
reference frame.
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U„, = (16/a2) bRb'"'(a —b') (a —b'" ') —(4/a2) (2b —a')

x (2btttR g}b bttt [(aR b2) (aR btttR} j 1/2 (17a)
2S~5" ~—333*a22v 2 IRT 7/'

144 1/2 m

U, R
+U„=(16/a') (a' —b') (a' —b'") (b b'")'

(4/a2) (2bR a2) (2bttt2 a2)b, bttt

x )(~ bR) (y btttR} j1/2 (17b)

and the right-hand sides of Eqs. (17a) and (17b) are
functions of the length and of the scalar product of
b and b"'. The problem of the integration of this
kind of quantity over the impact parameters b and
5'" is solved in Appendix C, and we get from (C2)

with

3, I' I' I' I'
inc —I' —~+m +4' 8 8 32 4

V12U13 012+ Vis dv12dvis

x sin8' d8' e
0

(18b)

V34

~12 ~13( 12 1$}( 12 2 1$} e12 ~13

x 5(b, +b,' —b,'") ~22'a3
V34"V34

0
sine' d 8' e-"",

xe(b, +b,' b',")6(b, +b,'- b,"') ~w'a3,

and after integration over V, and y' we may write
gW+gf W

I 3 V12 Vis ~12 V13 d V12 Vis V34 V34
0 0 0

sin8' cos'8' d8' e
0

I4 — V12vis V12 + Vis dv12 d Vis V34dvs4
0 0 0

(18a)
X Sins8' d 8' e-so~2,

12 13 12 13 12 13
0 p

V12V13 V12 + Vis d512 d Vis
0 0

vs4d V34

d v,4 v,4 d 8' sin 8' e sin8' cos8' d8' e

fR = U12 "1312~13( 12+ 1$}
p 0

8&'& being given in (16b).

D. Final results

x dv, 4v', 4
d8' sin&' e ~0~2,

0

dv12 dvis +i2+is V12 + vis dv14 ~14

d8' sin8' cos28' e ~0~2,

%e look for the diagonalization of the quadratic
forms which define B, and B'3. In the first case,
the symmetric role of v» and v„suggests that we
take as new integration variables

1 1 1
2(012 ~13) y2t(1 12 ~13) t 2 2114 t

t.

and so the I 's take the simplified form

I4 = dvi2 dVis U12vis~vi2 + Vis~
0 0

14 14

t30 X

I, =2' 2'e ' dx (x'-yR)3e ~/'4(y)dy,
0 0

d8' sins8' e 0~2.

For the "unsymmetrical" term, we get

210
2

210
3

4e-x d~ g y2 se-y'/2@, dy
0

y2 se-~ /2 &~
dy

0
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e " 'd4yI =2" x'e ' dx (x'-y')' dy,
0 0 y dy

where

O(y)=f s'8 " 'd*f e" ' Iin8'll'
0 0

2 eF/6
=—+— (y'+3} e ~'dt.

9 27 y 0

The I, (n = 1, . . . , 4) can then be expressed as lin-
ear combinations of

gram, we have found

+II Ql I +J Il + +II Jlf
4 1 S 2 8 3 3Q 4 4 5

—232533bo+ 10752080, —17623)

with

DQ Qg e Qp e 3 lQ 1 g~2 C0 0
4

a~+ I -2/3y -P'/e yt
Q 0 0

(m, pl integers j 5 ~ —1~ m+ 0) ~

C = + e'&x e' ~'y'"dy m @ 0
0 0

= —,'x&6arcsinh(1/v 2) -A', .

Replacing all the constants by their numerical
values, we obtain the contribution to rPK, (e) from
the two sequences studied in this section

x "e dx e ' 'dl' ypg~O)

which may be computed by means of the recur-
rence relations:

+ 0.3714KO(aa')' inc .
In a similar manner, we get the corresponding

expressions for shear viscosity and seU-diffusion
coefficients. We have

~Gas 2.a»2
~ Q % FPl

C, =-', (2m-1)C, '+-', (m —1)! (-', )",
C„=(2n —1)C„",—,'(m+n ——1)!(3)

b =s(2m-l)b, +~ (g) (m-1)f .

So we can calculate the A„'s, C„"'s, and 5 's
as linear functions of bo =(3/WB)arctan (1/&8),
Coo=(1/W2) arctan (1/&2), and

A -=dxe ' ~e ' dt e
0 0 0

dt ~ al ctan

vv

x (1040, + 39COO—10ba —3)~~~,

x[C, +„D +, b — II, —,),

2~a a' ln~
~0 PPl

~ (13 CO +M~0 &~y 1. )

= 0.447 19351.. . .
Using the REDUCE program, we have obtained

the following expression for the last factor on the
right-hand side of (18a):

a~ I, —
8 I 2 + s I, + ~~ I ~

=
2~~~ (- 1200384COO +491451bo

—2572802', +M 1785) .
In a similar manner, the change of variables

x = ~u~, y =-,'(u» + 2v„}, and z =-,'.v„makes possible
a separation of the exponent 80 into a sum of func-
tions of x and of y. Using again the REDUCE pro-

x(6COO+10gP, —3DOO—13bo+6)~~~,

where the R~t and &v&v have been defined in Sec.
IIC. The corresponding second-order correc-
tions for viscosity and self-diffusion are then

—0.349 q, (na')' inc

+ 1.6212DO(na~)' inc,

respectively.



I.OGARI TH M IC DIV E ROE NC Z I N THE VIRIAL EXPANSION. . . I

ACKNOWLEDGMENTS

The authors acknowledge Professor J. R. Dorf-
man and Professor J. T. Sengers for their kind
interest in the work and Dr. Y. H. Kan for her very
careful reading of a first version.

APPENDIX A

In this Appendix we consider those contributions
to E, which have been neglected in the bulk of
this paper. The main result is that none of these
contributions involve the super-Choh-Uhlenbeck
operator and that they cannot yield the related
divergences. %'e shall sketch a proof of this as-
sumption, but no detailed calculations will be
done, as they are not particularly illuminating
and involve a lot of formalism. %'e are not in-
terested in the numerical value but only in the
convergence properties of the various contribu-
tions. %e shall consider successively the so-
called potential-potential K"~, potential-kinetic
K"~, and kinetic-kinetic terms K~~.

%'e shall show first that the potential-potential
contribution to E, K"~ in the usual terminology,
is of order e' in the low-density limit, that it
does not diverge, and so does not contribute to
K,. The potential part of the fluctuating heat cur-
rent is a sum of two particle contributions which,
for hard spheres, are in fact "pseudocurrents", "
but this does not change essentially reasoning.
Let

be this potential heat flux. Neglecting any effect
from the equilibrium correlations, we have

K"(»)=, (I}" (» —iL) '0")

i'y»'(» -iL) 'Z y(
n~0 l &Nt

where the last average is carried out over the

equilibrium ensemble of a perfect gas. Again
we shall derive the low-density value of K~ from
the binary-collision expansion of (» —iL) '. The
renormalization leading to the inverse suxn of
linearized collision operators, as in Eq. (3), is
no longer needed here: as (» -i L) ' acts on non-
constant functions of the positions, Go is never
equal to c ', as it can be in the case of the kinetic-
kinetic part of K, but to (» iq-v, ~) in Fourier
transform, with q40, and this suppresses the
divergences of the "nh, ive" density expansion of the
Green-Kubo average.

The first term in the binary-collision expansion
of (» iL-} ' leads to a contribution proportional to

Z (yi2' « -' Lo) 'yr ) .

If the pair of particles (12) and (lm) are not the
same, this vanishes owing to the property

dv, e (v, }y„=o,
although, if the pairs (12) and (Im) are identical,
this contribution vanishes for hard spheres, as
y, &

involves collision operator and two isolated
hard spheres cannot collide twice.

Accordingly, the first term in the density ex-
pansion of K~"(») involves at least one collision
with a particle which is not in the argument of
the potential currents on the left and right of the
Green-Kubo average. This binary-collision ex-
pansion does not end after this single collision
with an external particle, since, at the same
order in the density (i.e., without adding another
external particle), one has to consider the com-
plete dynamics of the system of particles, where
the number of collisions is not limited to three
[ = (one intermediate collision)+ (one collision
in each of the currents y» and y, )] . However
we shall write the first tern of this binary col-
lision expansion. For that purpose we define
y, & (q) as the Fourier transform of y„ in the vari-
able r,» this is a function of v„v, , and q. The
first contribution to Kr (» } is, for hard spheres,

(» ) —3» f (»f II&» & t» )»,.(-i( (» -(t('» j'((»' o I »,. (l » O
& (» - i', .) 'v, .»(

+(q» O
I ~»10» q) (» —iq'v&3) y»(q}] .

This contribution makes a three-particle "ring
event" appear and is of order n', as announced.
It involves ts(o propagators (» iq v) ' on-ly, and
so does not present the type of divergence studied
in the bulk of this paper that was crucially re-
lated to integrals over q of products of three

propagators (» iq v) '. At h-igher order in the
binary-col1ision expansion, more complicated
events appear in this contribution to K and yield
an expansion very similar to the one of the Choh-
Uhlenbeck collision operator, as it depends on
the dynamics of three isolated particles. Thus in
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the low-density limit no divergence appears in
K" at the ring order and K (e) contributes first
to K, in the virial expansion of K.

Consider now the kinetic-potential part of the
heat conductivity. As shown by Sengers et al ., '
it contributes to the heat conductivity at the order
n at least. The first virial correction to this
term involves again a number of effects: one has
to keep the next order term in the virial expansion
of the intermediate collision operator and to
account for the next term in the virial expansion
of the equilibrium weight. We shall consider
these two corrections successively.

I.et us consider the potential-kinetic term with
an intermediate Choh-Uhlenbeck collision opera-
tor and without equilibrium correlations. This
contribution may be reduced to the following form:

xoe+NAs) 'n'Ace (e+nAs) 'j„j( v),

where the notation (.. .}„- means that the product
1

of operators (e +nAs} 'n Ac„(e+nAs) ' acting on
some function of the velocity, like j(v), yields a
function of the velocity v, . As'o

(Pr~ y~2
= 5 'llQ j~ p

~NO

the above-defined contribution to K," is found

by multiplying by the factor 5 en'' that part of
K, wherein the linearized Choh-Uhlenbeck opera-
tor appears Let Ky cU be this part of Ky As Ky

exists, this contribution to K, is convergent.
Consider now the correction to K, arising from

the virial expa, nsion of the equil, ibrium weight.
The effects of the equilibrium correlations appear
as follows. The binary-collision expansion of
(e -iL) ' yields series of products

GoT~ Go ' T

When the equilibrium correlations are neglected,
each particle of the pairs (a;j has (1/V)4(v) as
the statistical weight, and the first correction
to this approximation will appear by accounting
for equilibrium correlations between particles
of the same, or of different, pairs. " One of these
corrections to K, takes the following form:

4

Q dv, e(v;} dr„y„((e +nAs) ')-,
307' i=1

dr23T~~CroT~+ 2y 3) 6 +sA3 y ) v) ~

where g(2, 3) is the equilibrium pair correlation
function. From

d, e(v, (f d „y„=-'. 'I, ,

the above contribution is again equal to 5 mna'

times some of the first virial corrections to the
kinetic-kinetic part of K. Similar considerations
could be applied to most of the contributions to
K," due to the equilibrium correlations. However
there is an effect on K due to these correlations
which does not appear in the case of K . As the
potential pseudocurrent y;~ depends on the relative
position of the two particles at r;, =a, it has to be
multiplied by the equilibrium two-body pair-dis-
tribution function. This yields mell-defined cor-
rections to K proportional to the terms of the
virial expansion of the equilibrium pair-dis-
tribution function at r&& =a.

Ne have considered in the bulk of this paper that
kinetic-kinetic contribution to K, which involves
the super-Choh-Uhlenbeck collision operator.
There are in fact many more kinetic-kinetic con-
tributions to K, . Only one of them (the super-
Choh-Uhlenbeck contribution being excluded) does
not involve the equilibrium correlations. In fact,
part of the virial expansion of transport coeffi-
cients is derived from the power expansion of the
intermediate inverse linearized collision opera-
tor Ie+nAs+g~Acu —n~A~+O(n~)] ", (e+sAs) .

being kept constant. Including up to the second
order, this expansion reads

l&+sAs+n'Acu-n'AscU+0(n')]

=(e+eAs) ' —(e+nAs} 'n~ A(cU+en A)B'

+(E +PlAs) [t4 Acu(E +IEAs) tPAc(( +kg Ascu]

x(e+nAs) '+

Ai. the third order, two terms appear in this
expansion: the one depending on AscU is studied
in the bulk of this paper, the other one is for-
mally quadratic in ~U. In the first Enskog ap-
proximation, the contribution to K, of this last
term is simply equal to —(K„cu)'/K, . There re-
mains to study the kinetic-kinetic contribution to
K, involving the equilibrium correlations.

As already pointed out, these corrections arise
when one accounts for the correlations between
particles in the index of the T operators in the
expansion of (e —iL) . These equilibrium corre-
lations are to be considered together with the
dynamical correlations due to the recollisions.
The simplest corrections are obtained by multi-
plying the Boltzmann collision operator by the
equi. .ibrium pair-distribution function of two hard
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spheres at r~ =a. This yields part of the well-
known Enskog formula for the transport coeffi-
cients, which is analytical at any order in the
density.

Another class of correction is due to the "mix-
ing" of the Choh-Uhlenbeck collision operator
with the equilibrium correlations. This linear-
ized Choh-Uhlenbeck collision operator acting on
some function g(v) may be written as

3 3

O(v, ) f II d;Wv;eiv, l)', ))'((, 2, 3)g ((v, ),

where W(1, 2, 3) is equal to zero, if any one of the
r, j (i,j =1,2, 3) is smaller than a, and equal to
1 otherwise, and ~here T~, is a ternary collision
operator. [Note that in the case of the super-
Choh-Uhlenbeck operator one should introduce
also a function W(1, 2, 3, 4) accounting for the con-
dition of absence of overlapping at the beginning
of the collision event; however, this is of no im-
portance for the large cycles J. The equilibrium
correlations cause W(1, 2, 3}to be replaced by the
exact triplet distribution function. But, although
in the Boltzmann case the equilibrium correla-
tions introduced a simple multiplicative factor,
the substitution of the triplet distribution func-
tion in place of W(1, 2, 3) yields more drastic
changes in the Choh-Uhlenbeck collision operator.
A quantitative discussion of this point should lead
to complicated formulas, even more intricate than
the ones found'0'" for the Choh-Uhlenbeck opera-
tor with the simple W(1„2,3) function. Also, we
shall explain only qualitatively why these triplet
correlations do not yield "ring" divergences at
the Choh-Uhlenbeck order.

Consider a ring event between particles 1,2, and
3 which starts with a collision 1-2. If the event
has a long duration, particle 3 is very far from
particles (12) at the instant of this first collision,
and the triplet distribution, which is a weighting
factor for the initial conditions, is approximately
equal to the pair-distribution function of particles
1-2 at r~ =a times a constant. Thus, for the ring
events with a long duration, the introduction of
the equilibrium correlations makes a multiplica-
tive factor appear, that is analytical in the density
and so does not yield any new divergence.

The last type of corrections we have to consider
have an origin similar to that of the "EVD" (ex-
cluded volume dynamical) terms of Henline and
Condiff. ' They can be understood as follows. In
the Boltzmann theory, the motion of a particle,
say particle I, is described by a set of collisions
with uncorrelated particles, say particles 2, 3,. . . .
A first type of correction to the Boltzmann theory
(that is accounted for by the Choh-Uhlenbeck col-
lision operator) arises from the correlations

created by an intermediate collision (23). Another
type of correlation between 2 and 3 exists, that is
due to the equilibrium effects which, for hard
spheres, account for the absence of overlapping.
As shown by Henline and Condiff, "this EVD con-
tribution to K, is proportional to an integral like

dv2 ~s4' v 4 v, 47,
0

where the time v' is defined as follows. It is
assumed that, when particle 1 hits particle 2 at
time zero, 2 and 3 overlap; the time v is the
positive time after which particles I and 3 cannot
collide, r», r~, and the velocities being given at
7 =0. In a theory starting from the binary-col-
lision expansion of the evolution operator, as
sketched at the beginning of this paper, the role
of this time integration is played by a factor G,.
Let us study the convergence of the v integral at
large times. For that purpose, one starts from
the formula

dr, dv, dv, 4 V, 4 v,

tH3~V2V34 Vg 4 Vs
t5 —~

where f, , means that the initial conditions
(i.e., r„r„v„v„.. .} are limited by the con-
dition that collision (23) occurs after a time 7 At.
time 0 the three particles are at a distance of
order a, and v is of the order of an inverse ve-
1ocity. At large values of v, this range of varia-
tion of the relative velocity is limited to the in-
side of a small sphere of radius 7 '. As the in-
tegration over velocities yields a result roughly
proportional to the volume of this small sphere,
the integrand, as a function of 7, decreases like
v ' and no trouble appears originating from the
collision sequences with a long duration.

Consider now' the EVD contributions to K, .
Again, as the order in the density increases, the
number of contributions increases too. The EVD
part of K, is obtained by looking at initial situa-
tions where particles 2 and 3 overlap (but do not
interact} ). Actually this overlapping accounts for
the presence of a weight W(2, 3) —1 for the initial
conditions [W(i,j }=0 if r„&a and 1 otherwise J.
This weight is the first term in the virial expan-
sion of the pair correlation function, and, at the
next order in the density, W(2, 3}must be replaced
by the first virial correction to the equilibrium
pair correlation function. This correlation func-
tion has a finite range in space, and so, the pre-
vious reasoning may be applied to this EVD con-
tribution to K, . Another EVD contribution to K,
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is obtained by replacing in the previous collision
sequence the first collision (12) (or the last col-
lision 13) by a three-body event. Consider a se-
quence of collision 12-23-13-14, with the con-
dition that, at the instant of the collision (12), par-
ticles 2 and 3 or 4 and 2 overlap. Again, the
corresponding EVD contribution to E, is roughly
proportional to

drsdr~ dy& 4 v&,

where 7 is the time interval between coll, isions
(12) and (14).

In order to study the Long-time behavior of this
integral, we consider first the events for which
the size of the triangle drawn by the collision
sequence 12-23-13 is limited by a maximum
length, say 10a. Thus the previous reasoning
about the convergence of the EVD contribution to
K, remains valid as particle 4 has only to run over
a finite distance before hitting particle 1. Con-
sider now the case where the size of the triangle
(12) (23) (13) may become arbitrarily large. It
is of the order of the thermal velocity times the
time elapsed between collisions (12) and (14). It is
known' that for large times the volume of phase
space of particle 3 for which a recollision (13) is
allowed after the time w after the sequence 12-23
is of ordex 7 ' at large v. Moreover the relative
velocity v« is included into a solid angle of ap-
erture ~ ' in order to allow the recollision(14)
after the same time v. Thus, at large v, the
integrand decreases like 7 ' and again there is
no trouble due to long cycles of collisions.

The last type of EVD corrections we have to
consider originate from the equilibrium three-

body correlations. As in the case of the EVD
contribution to K„one considers a situation where
2 particles, say 1 and 2, collide at v =0, although
a third particle, say 3, overlaps particle 2, but,
at the same time a fourth particle, say 4, over-
laps both 2 and 3. Again the corresponding con-
tribution to K, is obtained by some time integra-
tion, but now there is double time integral (cor-
responding to two 6, factors in the binary-col-
lision expansion): one of the integrations is limit-
ed up to the instant of the collision (13)and the
second up to the collision (14). A simple extension
of the previous reasonings show that, at large
times, both integrals converge like J d7/~'.
This completes our study of the convergence of
the contributions to K, which do not depend on
the super-Choh-Uhlenbeck collision operator.

APPENDIX 8

In this Appendix, we prove the invariance of
some diverging contributions to K,(e -0) under
the substitution (real intermediate collision with
transfer) —(real intermediate collision without
transfer). The class of sequences under con-
sideration may be defined as follows: an inter-
mediate collision being real, the other one must
be either areal or virtual saith Aansfer; this
rejects the contribution to 8, where two inter-
mediate Green's functions 6, are equal.

Consider a collision event where the first in-
termediate collision, between particles 2 and 3
for instance, is real. %'hen no transfer of cor-
relation takes place at this collision, the cor-
responding contribution to lf, (e) is proportional
to an integral of the type

db'exp[tq p(b, v„)] .- - v» .- -, exp[ —tq H(v„v,', v, )](2v)' 6 —Sq ' V12 6 —Sq ' V12

-, -, n,S(v„v„b) ~ d,K(v„v,', v,),
6 —sq ' V(v1, v2, V4)

where b,I could be any vector function of v„v„
and b, nonsingular for any finite value of its
arguments, where h, K, V and R depend on the
velocities v„. . . , v4 and on the impact param-
eters b" and b 'of the collisions not considered
explicitly in (Al) (note that we do not consider
the case where V is equal to v» or v'„) and where

vs = v1 —v2 with

I 1 lv,' = —,(v, + v, ) + —,w»(b'; v»),

v,' = —,(v, + v, ) ——,w»(b'; v»),

b' being the impact parameter of collision (23),
perpendicular to v».

Consider now the contribution deduced from the
preceding one by writing that a transfer of cor-
relation occurs at the collision (23), i.e. , by
replacing 2 by 3 on the right of T»". The trans-
form of A, reads
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A, = „db'exp[iq p(b, v»)]
2wP f —gq 'V~2

exp[-iq ~ p(b', v )] exp[ —iq R(v„v,', v, )]

x hS(v„v„b) ~ SK{v„v,', v, ) .

This quantity differs from A, by the exchange of the
velocities v,' and v,' and the factor exp[-iq p(6', v»)],
that comes out from the distance between parti-
cles 2 and 3 at the instant of the collision (22}. In
order to prove A, A, near ~ =0, we shall proceed
in two steps: (i) Prove A, =A', with

A', = 2, db'exp[iq ~ p(b, v»)] . - - v» .- -, exp(-iq ~ [p(-b', v»)+R(v„v,', v, )]J2v' t Q V&2 e Sq Vca

-, -, hf(v„v, ;b) hK(v„v,', v, );c —sq ~ Vf'tv„v2, v, j
(B4)

(ii) prove A'„~A, where e-0.

&. a oororA, =A'I

This proof uses the isotropy of the classical
scattering cross section between two hard spheres.
Let E(v,', v,') be some function of v,' and va [i.e. ,
of v„v„and b' from (82)]. Let dA„- be the
surface element on the unit sphere on which
moves the vector

u = —w2~(b t v»)/'U»,

fdb' E(v2, v,')
2Q ~ ~ V2+v~ ~5 ~ V2+v~ V~ ~

4 " 2 2 ' 2 2

Making the substitution u -u into this last
formula and taking

E(v,', v,') =
E' —S Q 'VI~

exp[- iq [p(b', v„)+R(v„v,', v, )]j

x hS{v„v„b) S,K{u„va,v,),

one readily finds A, = A ', .

2. Proof of Al —A& vvhere e~o

In order to carry out the q integration on the
right-hand side of {Al) we use the identity

r dq 1 1 1 e&~ n (DBC) (ADC) (ABD)
(2v)' e —iq Ae -iq~ 8 e -iq C (A, B,C) (A, B,C) (A, B,C)

x
~ A B C ~

exp —
~ ~ [(D,B,C}+(A,D, C)+(A, B,D)],

t t Bt

where e still denotes the step function and (A, B,C)
the determinant of the three vectors A~ B„and C.
Both for A, and A', , we shall take A =V(v„v,', v, ),
8=v», and C =v'„although in A„D= —p(b, v»)+R
and in A', , D will be equal to —p(b, v»)+ R
+p(b', v») .

%e sha, ll explain now why the divergence ap-
pearing near e = 0, when A, or A', are integrated
again over velocities and impactyarameters,
does not depend on this value of D, making A,
different from A', . In fact, this divergence will
appear for the small values of (A, B,C}, i.e. ,
when the three vectors are almost coplanar and

in this range of values, the right-hand side of
(A5) is approximately equal to

e(y/~) e(- ~)e(-u)
exp ——(1 —X —p)

where the numbers X, g, v, a, P, y are defined by

A= AB+ pC+ vB&C,

D= nB+PC+yB&C,

and so the right-hand side of (85) depends on
D through y = (D, B,C)/( B x C ~' only.

In any case, it can be shown that v is either
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directly an integration variable or depends con-
tinuously on some integration variable, say x,
with sx/sv~, Ow0. Accordingly, the divergence
which appears in the contribution to K,(e-0)
coming from A, or A,' is found by carrying out
an integral of the form

r}X 1—e-'&' dvev, , =o o v

Inc, (B6)

where any term not explicitly written down re™
mains finite near e = 0 as can be verified in any
ease. This proves A„=A', where r -0, as the
variable y, that was a function of D, has corn-
pletely disappeared in the final result.

Let us end with three remarks:
(i) In some of the ring contributions to K,(e),

two among the three vectors A, B,C in the Qreen's
functions (&+i ItA) '. . . are the same: That is,
the case for instance, for the pairs of sequences
(s,",s, } and (s, , s, ). For these situations, the
above proof is no longer valid, as (B5) does not
hold anymore. However, the invariance of the
diverging contribution to K,(e- 0) under the
transformation (transfer) —(no transfer) still
remains true, and can be readily proved by using
results quoted in Appendix C.

(ii) The assumption that the intermediate col-
lision with or without transfer is real, is a cru-
cial one; the invariance under the transformation
(transfer) —(no transfer) is not true in general
for virtual collision; for example S, =0, although
the transformed sequences do not yield vanishing
contribution to K,(e) in general.

(iii) The above proof still holds when the ki-
netic heat current is replaced, for instance, by
the traeeless part of the kinetic pressure tensor
and so these results can be used for any transport
coefficients.

Rewrite the singular functions 0 and 6 in terms
of their Fourier transform. From

e ~e a & gk

one obtains

(2v)2 „b,-it) db„

x f(b)db -Ik '''b(bill
) dbl// (b. /Ill )ll

b'(o
eik h'

g(bs )

dbms

where k, and k, are the components of the two-
dimensional vector k.

The result of the integration over the impact
parameters b, b', and b"' is a function of k
-=(k~ only, as the scalar product (b. b"') does not
depend on the choice of the reference frame.
Then

dk . 1 dF„=—
( }, lim „. d„C, (b),

where 4„is some function of the length of k. Thus,

dk . 1 k, d

(2 )'"

as 4„(~)= 0 (the functions f, g, & being of bounded
variation and vanishing outside the interval 0, a).
Whence

F„=— f (b)h(b )(b'b"')" dbdb"

8(b„+b,'-b,"' )(b, + b,'-b', ")

1 . dky= ——lim
&

.' exprfb„(b„+ b' —b'„")],2p „. , „k„-sggP„

APPENDIX C

Qf yf P

eel(b b &tetr )n

In this Appendix we shall calculate quantities of
the general form:

g b') db',
/ &g

which vanishes for odd &.

By using result (C2} with

n=0, g= 1, f=b, f (b) =(4b', /a')(a' —b')

or'

x f(b}g(b')b(b"')b(b, +b,' b,"'}-
x(b„+b,'-b'„" }8(b, + b„'-b„'"), (Cl)

n=1, g=1, f=A,

f (b) (2/a4)(2b2 a2)(a2 b2)1/2

n being a positive integer, and f, g, b some func-
tions of the length of the impact parameters
b, b', b"' which lie the yOz plane. n=2, g=l, f=b, f(b}=(4/a4)(a2 —b2}
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one gets Eq. (16}.
When g=1, the integration over the impact pa-

rameter b' yields a factor ~a'; this is very simi-
lar to the factor found in a virtual collision soitA', out
transfer, but this must be thought as a coincidence
and we cannot conclude that virtual collisions with
or without transfer yield the same final contribu-

tion. When the intermediate collision is real, us-
ing (C2} and computational methods of Sec. GIB,
we can show that, when two intermediate Green's
function Go are equal, real collisions with or with-
out transfer give the same contribution near & =0;
an explanation of this fact has been sketched in
Sec. II C.
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mas, Universite de Paris Sud, Centre d'Orsay, 91405-
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