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Various theoretical and numerical problems relating to heliumlike systems in their ground
states are treated. New developments in the numerical solution of the Schrodinger equation
permit the solution of 256-body systems with hard-sphere forces. Using periodic boundary
conditions, Quid and crystal states can be described; results for the energy and radial-dis-
tribution functions are given. A new method of correcting for low-lying phonon excitations
so as to extrapolate the energy of fluids to an infinite system is described. A perturbation
theory relating the properties of the system with pure hard-sphere forces to those with

smoother, more realistic two-body forces is introduced. As in recent work on classical
systems the potential is divided into two continuous parts: One is repulsive, one attractive,
the latter being treated as a perturbation. The solution for the repulsive part is taken di-
rectly from the hard-sphere problem when the radius is identified as the scattering length
of the repulsive part of the smooth potential. The convergence for the Lennard-Jones po-
tential is very good. Using our numerical results for the hard-sphere problem, with phonon

corrections, together with this perturbation theory, results for energy versus density agree
with experiment within our error of (3-10)$ except at high crystal densities. We carry
further Schiff's recent application of this perturbation theory to He and conclude that anti-
symmetrization by the method of Wu and Feenberg is the reason for lack of agreement with

experiment in that system.

I. INTRODUCTION

In this paper we investigate in some detail the
properties of the ground state of the hard-sphere
boson system and apply the results of this study to
the real helium case at zero temperature. It is
generally assumed that the significant features
of the structure of liquid helium are related to the
repulsive part of the interaction, the weak attrac-
tion for the most part playing the role of keeping
the system bound. A good qualitative description
of helium should be contained in the hard-sphere
problem. This is our first motivation to study
that simple system. In view of the success of
perturbation theory in the case of classical fluids,
where an expansion is carried out around a suitably
defined hard-sphere reference system, one may
try to build the same kind of perturbation theory
in the case of liquid helium, where the hard-sphere
properties are also essential ingredients. %'e

shall show that such a theory can be built and that
it is very simple and quantitatively successful.

The interest in the hard-sphere Bose system is,
of course, not new. Bogolioubov, ' Lee and Yang, '
and others' have given expressions for the energy
of the ground state which are exact in the low-den-
sity limit. These expressions are unfortunately
useless for densities of physical interest. The
only existing computations in the high-density

domain are due to Hansen, Levesque, and Schiff'
(HLS), who use in the case of the fluid phase a
variational wave function of the Bijl-Jastrow type,

where v is a trial function. The solid is described
by multiplying the function (I)~ by a product of one-
pa t'el Ga ssia fa. t se te da o dth p
scribed sites of the equilibrium lattice. Solving
this problem numerically through the usual Monte
Carlo technique used in classical statistical me-
chanics, HLS obtained the energy as a, function of
density for the liquid and solid phase, and the
parameters of the first-order transition which lies
between these phases.

The first part of this paper is devoted to the
solution of the quantum hard-sphere problem (Secs.
II-V). This solution based on a method devised
by one of us' is numerical but essentially exact.

In Sec. II we give a, summa. ry of this numerical
method. It relies on the fact that the wave function
of bosons at zero temperature, and the Green's
function of the Schrodinger equation written as an
integral equation are positive quantities which can
be used as probabilities in a Monte Carlo compu-
tation. In the case of the hard-sphere system the
only —but very great —complication in the Green's
function lies in the complex boundary conditions
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imposed by the N(N I)-/2 conditions stating that
the hard cores do not overlap. A similar Green's
function can, however, be sampled in a practical
way on simpler subdomains included in the general
complex domain; one can write and solve an in-
tegral equation which makes it possible to cover
the complicated large domain with the simpler
subdomains and thus to build the general Green's
function. The use of the Jastrow function as a
biasing factor in the Monte Carlo method makes
the computation feasible.

Section III is devoted to the construction and
sampling of the Green's function in the simple
subdomains.

In Sec. IV we give some indications of the tech-
nical aspects of the method.

The results- of the computation are given in Sec.
V. A comparison is made (Table VI) with the
variational results. The energies obtained through
the "exact" computation are slightly, although
significantly, lower than the variational ones. In
the liquid state the radial-distribution functions
(rdf) clearly present more structure than the
variational ones. The off -diagonal long-range
(ODLR) parameters are very slightly smaller
than the corresponding variational ones.

The results of Sec. V have been calculated for
a small system: 256 in our study. In Sec. VI the
extension to quasi-infinite systems is considered.
It requires the inclusion of long-wavelength ex-
citations which, as is well known, play an essen-
tial role in liquid helium. Owing to these long-
wavelength phonons the energy of the dense fluid
is lowered by about 2/p. The use of the "exact"
results for the energies, with phonon corrections,
brings a displacement of the freezing and melting
densities by about 10% as compared with the re-
sults obtained variationally by HLS.

In the rest of the paper, we apply the hard-
sphere results to the case of more realistic heli-
umlike systems.

In Sec. VG we introduce the relevant perturba-
tion theory. We divide the interaction v(x) into
two parts, as is done for the classical liquids':
a part v, (r) which gives rise to the repulsive
forces and which will be replaced later on by hard
spheres located at the scattering length of v„and
the remainder of the interaction u (r) which will
be treated as a perturbation. The numerical tests
are made using the Jastrow wave function and a
Lennard-Jones (LJ) potential

l2 g 8q
u(r) =4& „r

for which many variational computations have
been made. ' " The convergence of the theory is
shown to be excellent. Terms of higher than first

order contribute to the energy below the noise
1evel of the computation, i.e., about 0.1 K. The
physical reason for this good convergence appears
to be the following. The ground-state wave func-
tion of the system must be nodeless and bent as
little as possible to keep the kinetic energy down.
This tends to keep the particles as far away from
one another as possible. In the dense-fluid region
this prevents large density fluctuations. The
higher-order terms are therefore much smaller
than what they would be for a classical system
for the same (not very high) density. The fact
that the particles keep away from each other con-
trasts with the opposite situation relative to the
classical system for which the radial-distribution
function has a peak near the core. This makes
the quantum case much simpler than the corre-
sponding classical case, where the replacement
of the repulsive potential u, (r) by hard cores
cannot be made without introducing some density-
dependent corrections to take into account the
shape of U, (r). Here these corrections may be
neglected; the density-independent diameter is
obviously the scattering length g of the potential
Uo(r). To first order, the energy of the total
system is simply given as

where E„and gH are, respectively, the energy and
the rdf of hard spheres of density p and diameter
g. The theoretical justification of this perturba-
tion theory is examined in Sec. VIII.

We then make (Sec. IX) a digression on the vari-
ational problem in the case of continuous poten-
tials: The perturbation theory suggests a form
of the Jastrow wave function closely related to
the hard-sphere one and very different from the
trial function usually used in the LJ case. %e
show that despite this difference this wave func-
tion yields the usual value, of the order of -5.8'K
for the energy, and an rdf which presents a little
more structure than the ones previously obtained.

In Sec. X we give the results obtained with the
perturbation theory. %e first show that using the
variational hard-sphere results obtained with the
HLS trial function, one recovers the LJ varia-
tional energies both for the liquid and the not too
dense solid phase. This shows the very large
degree of success of the perturbation theory. %'e

then introduce the "exact" results for the fluid
with the phonon correction included. This has the
effect of lowering the energy of the liquid by about
0.6 K and of bringing the location of the minimum
of the energy versus density and the transition
da,ta into essential agreement with experiment.

In the last section (Sec. XI) we extend to the
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quantum case the hard-sphere model introduced
in the classical case in order to describe the
structure factor obtained from x-ray and neutron
scatte ring experiments.

Appendix A is devoted to a tabulation of the
numerical results for the radial-distribution func-
tion.

In Appendix 8, we make some remarks on the
problem of He' which complement the recent study
by Schiff." q{n)

0
q{""'dR (2 7)

n as a "generation. "
E„ the energy of the ground state, is that value

of E which makes the normalization of (i(("' (i.e. ,
the size of the population after C has been used
n times) asymptotically stable. After the process
has been judged to converge, based upon estimates
of E, and other computed results, E, may be deter-
mined from

-P V('(I'( r„.. . , r((,) = E(}'(r„.. . , r„), (2.1)

II. MONTE CARLO INTFGRATION OF THE
SCHRODINGER EQUATION

%'e write the Schrodinger equation for a system
of bosons interacting by hard-core forces in the
following dimensionless form (with h '/2m =1,
potential radius = a):

~(R) = ~, (R)C(R)

Equation (2.5) becomes

(2 6)

where E' is a trial value of E, used in the sam-
pling.

This process may be made computationally more
efficient —to an arbitrary degree —by the following
transformation. Let g~(R} be a trial function
which may be the same as g(0'(R). Then let

with the boundary conditions

g(r„. . . , r„)=0 when ~r, —r, ~&a for alii t j.
(I((R) =E' [(i( (R)G(R, R')/(C( (R')] P(R')dR',

(2.9}

-V'(I (R}=Eq(R).

Now suppose G(R, R,) satisfies

-V'G(R, Ro) = 5(R —Ro).

Eq. (2.3) may be rewritten as

((W Ef G((((( =((((( )ar, ''
If a succession of functions is defined by

(t(""'(R}=E G(R R')q'"'(R')dR'

(2.3)

(2.4)

(2.5)

n=0, 1, . . . , (2.6}

then the ground state (},of Eq. (2.1) is the asymp-
totic g{"' for large n. The Monte Carlo method
consists in sampling possible sets of coordinates
(R,} at random from (}(",an initial or trial func-
tion. For any point R„drawn from (}('"'(R„), a point
R„„drawn from g'""' is obtained by sampling
EG(R„„,R„) considered as a density function for
R„, conditional upon R„. We will call a set of
coordinates R a "configuration" and refer to the
population of configurations with a given value of

(2.2)

In addition, the wave function is periodic in a box
of side I, =(Xjp)'~'

(C'(r(& 1 r(l ' ' 1 r((() =0(r(( ' 1 r(+p)' ) ' 1 r((()&

where p& is I. times a unit vector in x, y, or z
directions, and i =1, . . . , E. Equation (2.1) is
written in the succinct form

formally the same as (2.5). A sequence of func-
tions obtained by successive application of 6 to
P~(R)g(0'(R) converges to g~(C(, and E, is again that
value that makes the population stable. It will be
shown below that, as tt)~- $„ the estimates of E,
obtained from

E = E' g'"' dR g'""' dR (2.10}

-V'Go(R, RO) =5(R -Ro). (2.11)

With the boundary conditions that they vanish on
prescribed surfaces, these Green's functions are
symmetric. Thus,

-V'G(R„R) =&(R -R, ). (2.12)

are correct on the average at n =0 (without re-
quiring (C(o' =g, ). Furthermore, E, may in fact be
estimated with zero statistical error. One ex-
pects —and our experience strongly supports—
that a reasonable analytical trial function |I)~ great-
ly reduces the computational effort required.

Unfortunately, the Green's function given in Eq.
(2.4) is not known owing to the complexity of the
boundary conditions. But all that is required is
that a scheme be devised for sampling G(R, R,)
for R at random given any R,. This is possible
in a recursive way as follows. Let D be the do-
main in configuration space not excluded by the
hard-core boundary conditions. Let D, be another
domain wholly contained within D with R, in D,.
Let G, (R, R,} satisfy (2.4) but vanish on the surface
of D, (rather than that of D):
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Multiply (2.11)by G(R„R), (2.12) by Go(R, RO),
and integrate with respect to 8 over D,. %'ith the
help of Green's theorem, we find

G(R„RO) = G~(R„RO)+ [-V„Go(R, Ro)] G(R„R)dR.
&S

(2.13)

The integral on the right side is extended over the
surface So of Do; the kernel is the normal deriva-
tive of 0, which is everywhere positive. The sub-
stitution of (2.13) into itself yields a series of
iterated integrals which may be sampled by the
following random-walk procedure.

A point is started at Ao and moved to R', chosen
at random on S„using -V„G( R', R) as the density
function; then a new domain D, is constructed con-
taining R' and a new point selected on the surface
S,. The process terminates only when a point
arrives at the boundary of D since (2.11) implies

f [-V„G,(R', R,)]dR' =1. (2.14)
So

The full Green's function is the sum of all Go(R, R„)
for the R„ that appear in the random walk.

We must choose D„at every stage so that Go is
known or can be sampled, and so that moves within
D„do not produce overlap of hard cores. A par-
ticularly convenient domain for the purpose is a
Cartesian product of N spaces, each a sphere for
one particle. The radii are chosen so as to prevent
core overlap. This construction permits Go to be
sampled in a straightforward numerical way (as
seen in Sec. III below). As shown in Ref. 5, the
requirement that the wave function, and hence
Green's function, be periodic is met by the com-
putational device of putting back on the left of the
box those particles which leak out of the right.

As it stands (2.14) is satisfied, so in that form
the random walk does not terminate. The modifi-
cation required for Eq. (2.9) removes this diffi-
culty. We have from (2.13)

g~ (R, )G(R„R,)/g~ (R,)

= C, (R, )G.(R„R.)/C, (R.)

+,t (q, (R)[-V„G,(R, R,)]/y, (R,)j
"'o

~ (q, (R, )G(R„R)/q, (R)] dR.

(2.15)

This has the same structure as (2.13) but a dif-
ferent kernel, Q~[-V„G,(R, R')] /g~], for which
(2.14) does not hold. In fact, if

and if we multiply (2.16) by G,(R, R,), (2.11)by
$~(R), and integrate over D„we have

l (q, (R) [-V„G,(R, R,)] /y, (R,))dR
S

E Rg RC RR g R dR.

J [4,G(R, R')lO', ] 0(R') dR',

the right side of (2.9), which comes from G, alone.
Thus, when g» is the exact eigenfunction, the
process of contributing to the next generation, and
that of going on with the random walk which de-
velops 6, may be treated as mutually exclusive
random events. Then the random walk always
gives exactly one configuration in the next genera-
tion and the generation size has no sampling error.

Finally we observe that Eq. (2.1'7) is correct
if Go is replaced by C and the domain of integra-
tion is D. Then, since g» =0 on the boundary,

$~(RO) = E~(R)g~(R)G(R, Ro) dR (2.18)

Again, if -V'$» =Eop»,

1

f[q, (R)G(R, R,)/y, (R,)]dR

If in Eq. (2.10) we set E' =1 and g'"' = &(R -R„),
then the expected value of the integral in the de-
nominator of (2.10) is that of (2.19); the expected
energy is identically E„ independent of Ro. Taken
together with the result stated in the preceding
paragraph, we see that when &» is the exact eigen-
function, the energy is obtained with neither sta-
tistical nor convergence error. Expectation values
are obtained by the method given in Ref. 5, in
which the asymptotic size of the generations which
arise from a configuration at Ro gives an estimate
of $(R,) which is statistically independent of the
sampling that led to Ro. When g» is exact, the
estimate of the asymptotic size is carried out with
no sampling error.

The numerical calculations whose results are
given below were carried out with g~(R) in the
form suggested by Hansen, Levesque, and Schiff'.

(2.1'7)

Thus, if E~(R), a "local energy, " is everywhere
positive, the norm on the left, which gives the
probability at Ro that the random walk continues,
is now less than 1.

Note also that if E~(R) is replaced by E, then
the integral on the right in (2.17) is that contribu-
tion to

-V'q, (R) =E,(R)q, (R), (2.16) q (R) =II tanh[(~„—I)/5 ]
](f

(2.20)



for the fluid, and

(t, (R) =exp --,'AQ (r, -s, )'

xII tanh[(r(y —I)/I) ] (2.21)

(Iuires only sampling g(r, , r,', t) for a move from
r,' to t', for every particle. Consider the problem
of sampling the normal derivative

-&„G o(R, R ') for R (== BD

Now

for a crystal whose lattice sites are s;. The pa-
rameters b, m, and A were those used in the
calculations of Ref. 4. Computational experience
shows that the values which minimize the energy
in a variational calculation are good ones for our
purposes.

III. CONSTRUCTION AND SAMPLING OF 60
IN PRODUCT SPACES

BD= Ud @d ''Bd 8 d . (3.7)

Sampling the kernel means first finding m, then
sampling points r, (I v m) on the interior of d, and
r on the surface Bd . Corresponding to (3.7),

In Sec. II it is assumed that at any stage in the
random walk, G,(R, R ) can be sampled for some
convenient domain D containing R . This is par-
ticularly simple to carry out if D is a Cartesian
product of subspaces. %'e consider the case where

)(,(&)=] g(r, , r', , z)dr, ,

(3.8)

(3 8)

D =d, d~ ' (3d~ (3.1) H, (0}=1,

-V'g(r, , r,', t)+ g(r„, r,', t—) =0,
Bt

g.(r, r,', 0) =5(r —r,')
(3.2)

and ea,ch d, is a domain of the coordinates of the
kth particle of the system. The method holds
equally for other decompositions; division into
relative and center-of-mass coordinates may be
worth considering in some problems.

1.st g(r, , r,', t) satisfy

H (~() =0.
Green's theorem applied to (3.4) shows that

aH, (t)
Bt

[-V„g(r, , r,', t)] dr, & 0.
au,

Expand (3.8) into the form

-V„G,(R, R') = g -H„'(t) QH, (t)

(3.10)

G, (R, R') = Q g(r„r,', t)dt.
0 A'

Clearly

(3.3)

(3.4)

II g(r, , r,', 0) = 5 (R -R '). (3.5)

G, (R, R') vanishes for R on BD (some r, on Bd, )
Integrating (3.4}w1th 1'espec't to time and uslllg
(3.5) we find the result that

(3.6)

g(r, , r,', t) =0

for r on bd, , the boundary of d„, and outside d~.
Then for R and R' in D, set II g(r, , r,', t)

H, (t) (3.11)

The sampling procedure is as follows: (i) Samp1e
t and m at random using the first quantity in brack-
ets in (3.11). (ii) Conditional on m and t, sample

at random on sd using the kernel V„g(r,r', t)/-
[-H'(t)]. (iii) Using the same t, sample for every
k 4 m a point r in d, using the kernel g(r, , r,', t)/
H, (t).

The function g(r, , r,', t) describes the diffusion
of a particle started at r,' at t =0. H„(t) is the
probability that it is absorbed at the boundary of
d, after time t and H,'(t) is the rate-of absorption
at t. Suppose for each 0, t, is drawn at random
from the probability density function -H,'(t). The
probability that the smallest of all t„ is t and
that t lies in a unit interval of time near t is

as required.
In the form (3.3}, sampling Go very nearly re-

-H„'(t) IIH, (t).
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In other words the operation of selecting the
smallest of k values t, samples m and t as re-
quired for Eq. (3.11).

Sampling Go(R, R') itself can be done 1n an analo-
gous way. Of course, all r, lie on the interior of
the corresponding domains d, . Here a numerical
approximation to g H~(t) is used to sample a value
of t.

In practice, each domain d„was taken to be a
sphere of radius a, centered at ~„'. In terms of
z, = I& —&,'I the familiar method of separation of
variables and eigenfunction expansion gives

g(z, , t) =(2a,'z, ) 'Q

jsin(ajar,

/a, )e " " '~'~.

(3.12)
We see explicitly that a,'g is the same function

of the reduced coordinates z„/a and f/a„' Th.is
fact is exploited in the numerical work.

The expansion (3.12), and a complementary one
obtained from the Poisson sum rule, which con-
verges rapidly for short times, are the basis for
various numerical algorithms used to sample t, ,
z, , etc. For the most part the z~ are sampled
from multivariate normal distributions, which
can be done efficiently. Although the procedure
may seem somewhat elaborate, the computation
time is dominated by the usual calculation of the
distances between particles.

IV. IMPLEMENTATION OF A COMPUTER PROGRAM

We give here some technical details of the com-
puter program in which the ideas outlined in Sec.
III have been realized. Readers interested only
in the theory may skip this part of the paper.

In any many-body simulation a crucial detail
lies in calculating the distances between pairs of
particles. In the present calculation this is done
for two reasons. First and most important, it is
necessary to know for each particle the distance
to its nearest neighbor so as to permit the choice
of the sphere in which it may move without core
overlap. Second, the computation of the value of
the trial function g~ used to accelerate the compu-
tation requires the value of r„ for all pairs [cf.
Eq. (2.20)]. For the latter purpose g~ need not
be as accurate at large pair separations as needed
for good variational calculations. Hence the tabula-
tion of r„ is truncated at a distance where the
hyperbolic tangent in (2.20) nearly attains the value
1. The pair function is smoothly extrapolated to
1 at that distance.

The tabulation of the pair distances follows the
procedures that have been in use in the Orsay
Monte Carlo and molecular dynamics programs for
some time. It suffices to say here that tables are

0, (R)[ ~„G,(R, R.) [~6(R.)]/q, (R.). (4.1)

q, (R}G,(R, R,) Vu(R, ).
rather than -V„C, and G„respectively. The tech-
niques for doing this have also evolved. At present
the method is based upon an expansion of $~(R)
about $~(R,}. To first order

P (R)/g (R,) =1+(R -R )[Vg (R,)]/g (R,).
(4.2)

If we write

(R} e-s(R)

C, (R)/C, (R,) =1-(R-R,) ~ (R.). (4.3)

u(R) is commonly called the "pseudopotential"; we
may refer to -V'u as the "pseudoforce. "

If g~ is set equal to a constant, then for each

established in which rather near neighbors of each
particle are identified. Most of the time (for a
crystal, all of the time) distances are computed
for pairs only in this table. When the tables are
built up or renewed at appropriate intervals, all
pairs are examined.

As has been suggested in Sec. III, numerical
tables are generated to facilitate sampling at
random from the various probability distributions
required to select steps from the Cartesian prod-
uct Green's function. Space limitation precludes
a detailed description of the organization of these
tables, their use, and the analysis that underlies
them. We remark only that care was taken that
with the help of these tables, the mappings or
inverse mappings based on the Green's function
are very rapid and accurate. With respect to the
latter, extensive numerical tests showed that in
a step drawn from the Green's function, as kernel„
the error in the mean-square displacement is at
most a few parts in 10'.

The computer program underwent considerable
development during the period when it was being
used. The part which has changed most is that
pertaining to "importance sampling, " i.e., the
transformation of the dependent variable from g
to g~g as indicated in Eqs. (2.8) and following.
In fact, in the first version, this was not done
although the role of the trial function in forcing
convergence of the Green's function development
was recognized and included [as in Eq. (2.15)].
We estimate that making the transformation in a
thoroughgoing way reduced the computer time
required by about a factor of 20.

In any case it becomes necessary to sample the
kernels
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sphere the direction in which a particle move is
made must be chosen in an isotropic way. The
pseudoforce defines a favored direction and a
degree of anisotropy for the proposed move. For
a system of 256 particles in a crystal phase this
elementary use of the pseudoforce has reduced the
required computing time by about a factor of 10.
The extra time to compute the pseudoforce is in-
cluded. It is clear that further improvements,
possibly resulting in additional drastic savings,
can be made. "

An awkward feature of the computational meth-
od lies in the necessity of using a trial eigenvalue
and the role that it plays in the branching of con-
figurations. It appears to require 100-200 gen-
erations for the energy and other quantities to
settle down. Since the energy changes by a total
of 3-@g and since the growth of the population
in n generations is proportional to the nth power
of the trial energy, the management of the calcu.—

lation in the face of statistical uncertainties can
be serious. In practice runs are made using
from 10 to 80 generations; early in the relaxation
process one aims for short runs. At the end of
each such run the coordinates specifying the con-
figurations are recorded on magnetic tape and used
as input for the subsequent run.

A recent series of runs (crystal, pa' =0.4) is
typical. The process was followed for 210 genera-
tions from a set of configurations calculated
variationally, after which an additional 240 gen-
erations were followed during which the calculated
parameters were constant within apparent errors
(& 1$ for the energy). A total ot 21 h of time on a
CDC 6600 was used, about 8 in the early phase.
%e estimate that about one-third of the total time
could have been saved if the generation growth
had been observed and managed better. In part,
failure to do so lies in the circumstances under
which the computer runs were made. It is likely
that if the variance which is introduced by the
branching in the Green's-function development
can be further reduced, then the uncertainties
which result from the use of the trial energy will
also be reduced.

UI. TAKING THE PHONONS INTO ACCOUNT

The approach we have followed is clearly un-
able to deal with long-wavelength excitations,
because of the limitation due to the size of the
box. Since we know the importance of these long-
wavelength excitations in liquid helium, we have
to evaluate their effect. In the framework of the
Jastrow approximation function the phonons can
be taken into account by adding to the short-range
pseudopotential u, (r) of the Jastrow wave function
a Heatto-Chester" term

(6.1)

where c is the velocity of sound and k, ' a wave-
length cutoff which should be of the order of a
few interparticle distances (0.25''0 is a guess
usually met in the literature). The change in the
kinetic energy of the hard spheres is the sum of

TABLE I. Energies in units of 82jma~ for the ground
state of the quantum hard-sphere fluid and fcc solid.
For the fluid, E& is the result of the Monte Carlo inte-
gration of the Schrodinger equation for a system of 256
particles. The phonon correction to an infinite system
is obtained by the method of Sec. VI. For the crystal
the results for 256 particles are given with no correc-
tions. Errors are estimates of the standard deviation.

State
Phonon

correction Eo

merical values of the radial™distribution function
computed for the 256-body system both by the
variational and the Schrodinger integration are
given in Appendix A.

The energies are lower than those calculated
variationally by a small but significant amount.
In the fluid region the rdf shows slightly more
structure than the variational prediction. As a
consequence the main peak of the structure factor
is enhanced relative to the variational prediction.

In summary, the Jastrow wave function is
found to be quite good as a first approximation.
The small differences will turn out, however, to
be of decisive importance in the analysis that
follows.

V. RESULTS OF THE INTEGRATION OF THE

SCHRODINGER EQUATION

The numerical results for the energy are given
in Table I. The errors quoted are estimates of
the standard deviation of the Monte Carlo results
of several runs (3-5) in which the properties of
the system were found to be constant. In all
cases the results are those for a system of 256
particles. For the fluid, a correction to an infinite
system is applied as explained in Sec. VI. Nu-

fcc
crystal

0.166
0.200
0.244
0.270

0.244
0.270
0.300
0.400
0.500

4.24+ 0.05
5.80+ 0.05
8.28+ 0.09

10.65+ 0.07

-0.09
-0.11
-0.14
-0.15

4.15~ 0.05
5.69 + 0.05
8.14+ 0.09

10.50 + 0.07

8.50+ 0.05
10.12~ 0.04
12.27+ 0.07
21.26+ 0.07
34.45+ 0.25
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two terms,

(6.2)

T, = dr V'-u, (x)+O'N~(r) 5 (6.3)

Here the subscript s refers to quantities calculated
with the usual short-range Jastrow function.
5g(r) is the change in the rdf due to the Reatto-
Chester term.

The difficulty of this variational calculation is
due to the long-range character of the Reatto-
Chester function.

It has been proposed, "in order to solve this
problem, to use an Ewald-sum technique, as in
the classical charged-particle system. It is quite
clear that we can thus take correctly into account
phonons of wave numbers which may be reached
with a finite box and periodic boundary conditions.
This sets a limit of 0.6c ' in the case of a 256-
particle system near the solidification density.
If k, is of the order of (0.2-0.3) a ' most of the
effect will be missed. %'e can also predict the
failure of the Ewald-sum technique for the follow-
ing reason: In the fluid region the variational
and "exact" energies do coincide within about
0.28'/ma'. As a consequence the contribution of
the short-wavelength phonons is smaller than
0.28'/ma' and at the noise level of the standard
Monte Carlo computation.

In order to tackle the problem of long-wave-
length phonons, we shall resort to a perturbation
technique, since, at least if k, is small, we have
to deal with a rather weak long-range pseudo-po-
tential in addition to the short-range function
u, (r).

Defining

It has been noted by Anderson and Chandler" (AC)
that I'(r) and thus 5g(r) depend crucially on the
arbitrary assumption made on the behavior of
u~(r) inside the repulsive core (where it has no
physical meaning). This dependence appears only
because a particular subset of graphs in the per-
turbation expansion has been selected. AC show
that the prescription I'(r) =0 inside the repulsive
core is very reasonable and leads to excellent re-
sults in the case of primitive models of electro-
lytes as well as in the case of the classical
I ennard-Jones liquids.

For pa'=0. 234, we show in Fig. 1 the energy
shift as a function of k, . It is seen that a minimum
is obtained for k, = 0.3a ', a value which corre-
sponds closely to the intuitive guess made above.
The energy is correspondingly lowered by 0.11 h'j
ma'. As this limiting wave vector is substan-
tially smaller than the smallest wave vector con-
sidered in the actual "exact" computation
(2s/l. = 0.6g ' as we have seen) we should also
apply this phonon correction to the "exact" en-
ergies given in Table I.

This correction on the energy, although small.
has the effect of displacing the transition parame-
ters of the hard-sphere system. I et us consider
first the case of the variational computation.
For the solidification density, one finds pa'
= 0.24+ 0,01 instead of' pa' = 0.23+ 0.01. The
melting density also rises from 0.25+ 0.01 to
0.26+ 0.01.

%'e now apply this phonon correction calculated
in the Jastrow approximation to the exact results
obtained in the paper. This yields the results

u~(k) = dr e'"' u~(r), 0.

the dominating terms in the perturbation expan-
sion are, as is well known, the ring diagrams
formed with ur, (k) as bonds. It has been shown"
that the proper way of taking into account the
effect of the size of the particles involved in the
ring is to put at each vertex of the ring diagram
the structure factor of the reference system, with
no long-range pseudopotential, i.e.,

S.ia) =1 p J dr [g, tr) —i] e'"' ' .
I i I I i )

ca

This approach leads to the formula

&g(r) =g, (r)(e "'"'- I),
with

0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 1. Energy shift due to long-wavelength phonons,
in units &2/ma, as a function of the cutoff wave vector
k, for the density pa3=0.234.
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Vfe shall suppose in the following that the helium
atoms interact through a two-body potential u(r).
This is not an important restriction since the
many-body forces in helium are known to be weak
and can be treated as a perturbation. As in the
classical theory of liquids' we divide the potential
into two parts: a, "reference" part v, (r) and a
remainder w(r) which will be considered as a
perturbation. Let e be the magnitude of the po-
tential at its minimum and r be the correspond-
ing abscissa. %'e write

-0 for r&r (V.l)

m(r)= -c for x~r
=o(r} for r&r (7.2)

Let H, be the Hamiltonian of the reference system,

H =T+V, (7.8)

~- Fluid States

obtained in Table I. The final values of the energy
of the hard-sphere system are shown in Fig. 2 as
a function of 1/p. A double tangent construction
gives the transition parameters. %'e obtain for the
solidification density pa' =0.25+ 0.01, and for the
melting density pa' = 0.27+ 0.01.

where Vo is the potential energy corresponding to
the pair potential u, (r). Let P, be the normalized
wave function of the ground state of the reference
system pertaining to the eigenvalue Eo. 'Ne have
obviously

(4I fI.14.& +&4 III'I V&

=&el~I((&-.&~.l~. ly. & (t~. lg fq.) .

(7 4).
This can be rewritten in terms of g(r), the rdf
for the total system, and go(r), that of the refer-.
ence system,

—a+-,'p g(r)ru(r) dr

The right-hand side of (7.5) is the energy obtained
from first-order perturbation theory. A com-
plete test of this perturbation theory would re-
quire the knowledge of the exact solution of the
many-body problem both for the reference and the
full potential. In view of the success of the Jas-
trow approximation in the hard-sphere case, we
use that approximation consistently in our test
of the validity of the first-order perturbation
theory.

%e have thus performed, in the case of the
Lennard-Jones potential at the normal density of
liquid helium, a series of Monte Carlo computa-
tions with a two-body Jastrow factor of the form"

f (r) =e&alrP

E/N
20—

I

2

Vfe choose for the Lennard-Jones potential the
constants, "e =10,22'K, a =2.556A, appropriate
to He'. The normal density of liquid helium cor-
responds to p =0.3648c '.

Then the ground state of the total system is
obtained as the minimum of &7'+ V) as a function
of b, the ground state of the reference system as
the minimum of (X+V,) . In this last case the
first-order term is also obtained.

Vfe thus obtain

E/N= (-5.80+ 0.08)'K

for

5 = (1.17(2}s0.01}o,

F.,/N= (I?.90~ 0.08)'K

for

b = (1.17(8)+ 0.01)o,

FIG. 2. "Exact" energy per particIe as a function of
1/pc 3. &W)/~= (-88.78+ 0.05) K.
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The errors of the Monte Carlo computation re-
main large even for the rather precise computa. -
tion reported here. within these errors it is
seen that the minimum of (8,) and (H) are ob-
tained for values of b which are very close, as
required for validity of the theory.

Using the data of Tabl.e II and the set of in-
equalities (7.5) we can therefore set an upper
bound of the order of 0.1 K to the sum of higher-
order terms in the perturbation theory. %'e can
also state that, owing to the closeness of the
upper and lower bounds on the energies, g,(r)
and g(r) should be close to each other.

The perturbation theory is therefore seen to
work at least as well in the present case as for
dense classical liquids. The physical reason
for this success is, however, rather different.
In the classical case the good convergence of the
perturbation is restricted to the dense states.
There, owing to the repulsive cores, the particles
have little chance to move so that the Quctuations
of the perturbing potential remain small. In the
quantum Quid, the density is relatively small.
The fluctuations are avoided because of the tight-
ness of the wave function: In order to reduce the
kinetic energy the particles must keep away from
each other as much as possible.

VIII. TREATMENT OF THE REFERENCE SYSTEM

Our goal is to replace the reference system
by a suitably chosen hard-sphere system. In the
case of classical liquids this replacement is not
entirely simple because the particles tend to crowd
near their core, so that some account must be
taken of the shape of the repulsion 's Because
in the quantum case the particles must stay away
from each other, the rdf will be small wherever
the repulsive potential is not zero, so that all
shape dependence should be negligible. %'e thus
anticipate that the diameter g wiU be determined
as the scattering length a corresponding to U, (r)
and that the energy of the total system will be
given by the first-order perturbation formula

where E„and g„are, respectively, the energy
and the rdf of the hard-sphere Quid of density p
and diameter g.

Let us consider again the Lennard-Jones poten-
tial with the parameters given above. Integration
of the Schrodinger equation yields

a = 0.83680 .

The normal density of a liquid corresponds to
pg'=0. 2138. Using the variational results of See.
V we obtain

E„/f)l = (17.8 ~0.1)'K,

( W)/N = (-28.58 + 0.1) K .

We therefore obtain for the total energy C, -5.76
+0.15}'K, A comparison of these results with
the variational results obtained in Sec. VII shows
excellent agreement.

We shall now proceed to give some theoretical
justification for the basic expression (8.1).

We shall first introduce an approximation for
the rdf. Let us write in the hard-sphere case

~H~»=40'«& HI»

where g„(x& is the solution of the two-body hard-
sphere problem at zero energy,

)(„(r/a) = (r a)/r—, r & a

=0, r a.
y„(r/a) then is a smooth function of r at the core.
We shall assume that we ean write

g, (r) = P,'(r/a)y„(r/a) (assumption A), (8.4)

where )t,(r/a) is a function of r which is equal to
)4(r/a) except near the core. We anticipate that

))t,(r/a) is the zero-energy solution of the two-
body Schrodinger equation with the potential )!„(r).

Assumption A is justified on physical grounds
by the idea that only for close two-body encounters
is g, (r) different from the rdf of a hard-sphere
fluid with a suitably chosen diameter.

TABLE II. Energies obtained variationally for the reference system (column 4) and for the
system ~ith the full LJ yotential, (column 6). n is the total number of configurations. The
statistical error on the kinetic and potential. energies is of the order of 0.05 K. The error on
the total energies is about 0.08'K.

1.16
1.17
1 ~ 18
1.20

13.59
13.95
14.30
15.07

4.45
4.09
3.60
3.06

18.04
18.04
17.90
18.15

-23.83
-23.80
-23.76
-23.68

-5.79
-5.76
-5.86
-5.53

650 000
650 000
400 000
650 000
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Assumption, A is not sufficient to determine the
kinetic energy. In order to calculate it we must
explicitly use the Jastrow approximation. This
requires a new assumption. We shall write for
the Jastrow factor f,(r),

Using assumptions A and 8, the energy of the
reference system can easily be cast in the form

8() = —,'Xp dr —v' lnf „(~)+ v, (r)

f,(r) = g, (r/a)S„(r/ a) (assumption B),
where

(8.5)
& tt, '(r/a)y„(r, 'a)

= E~+F, +F, (8.12)

S ( )
fa(x)
4a(x)

x x -1
tanh

x —1 0
(8.6)

There F„is the energy of the hard-sphere system
with density p and diameter a:

S„(x) is a smooth function of x at the core.
We shall now see how these two assumptions

are connected. It will turn out that the effective
expansion parameter of the development of the
reference system around hard spheres ( in the
Jastrow approximation at least) is

is of order p&' and can be safely neglected.

E2= ~%pa' dx4 go y„(y'),

where

(8.13)

(8.14)

p~'= pa' Axe x), (8.7) 4 [g,] = v, q,
' —(g'!2m )[tt „'V' 1n g„—it, 'V'

in|} „].

(8.15)

n(x) = tt, '(x) —y„'(x) (8.8)

g.(r) = g, '(r/a) y „(rla)

t

1+pa dx'g„xt)b, g')

&& [g„(x—x') —1] +0(p'e') (8.9}

x =ra ~

is negligibly small except in the region of the
core. For instance, at the normal density of
helium (p, =0.36480'), with the above LJ potential
it is found that p~' is equal to 0.65 &10 '.

The smallness of this parameter explains why
we have replaced in (8.1) the rdf of the reference
system, expected to be given by (8.4) in its hard-
sphere approximation. For the same reason, as-
sumption 8 entails assumption A. Let g, (r) be
the rdf calculated using assumption 8. %'ith the
help of the superposition appr oximation, we obtain

4 [(,] is seen, a Posteriori, to be sharply concen-
trated in the region of the core. We can therefore
write

[-{ti'!m)V'+v,]q, =0. (8.17)

Furthermore, at the minimum, F, as given by
(8.16) is seen to vanish. A direct computation
shows that, at normal density, E, +F., is smaller
than 0.05'K.

We now see that assumption 8 has been used as
an intermediate step in the reasoning. Its explicit
use appears only in the evaluation of correction
terms which are shown to be negligible. Further-
more it will be shown in Sec. IX that assumption
8 is very well justified.

F2 —2pg JH(1} dx@ (8.16)

If we now minimize the energy with respect to
g„we find that this function obeys the Euler equa-
tion:

Using the fact that ti(r) is concentrated at the
core, we have

|)g,(r) =g, (r) -go(r)
= pe'go(r) y„(1)@(r/a), .

where

2r
y(x) =— dx'[g„(x') —1]x' .

gtlP( I x —l I, 0]

(8.10)

(8.11}

IX, REMARKS ON THE VARIATIONAL PROBLEM

Assumption 8, if taken literally, has the ad-
vantage of providing a Jastrow wave function for
the reference system which, given the variational
solution of the hard-sphere problem, involves no
new parameter. In order to put this remark in
practical use, we must give an analytical form
for it, (x). Putting

M, (x) = xq, (x)

We find that at the normal density of liquid helium
!6g,(r) ~/g, (r} is smaller than Sx10 '.

we have found the following fit for the solution
of the Schrodinger equation (8.17) with the Len-
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nard-Jones constants defined above:

u, = [c,+c,(x —1)]e "'~*' ' for x ~ 1,
(9 2)

u, =x —1+c,[1+c,(x —1)']e "" " for x&1,
where

w =Sv/10A*a', A"= (I'/mo'e)~'=2. 6'I,

c, = 0.04118, c, = 0.0515, c, = -30.18,
}5| = 11.56.

We can use (8.5}with (8.6) and (8.1'I) to perform
a Monte Carlo calculation of the usual type. Vfe
have to compute

F.,= (T + V,) .

Using the Schrodinger equation it is easily seen
that

T(r) + u, (r) = ' +v, (r) h' 1 u' ' u' 1
0 '-2 Mo go

2 g„' ln SH .
2?Pl g

We find, at normal density,

F.,/N = (18.03 s O. 1}"K,

W/N = (-23.51 +0.1) K.

We thus obtain F. = (-5.5+0.2) K. This should be
compared with the value E = (-5.'l3 +0.1)'K obtained
variationally, and with the value F. = (-5.8 +0.2)'K
obtained from first-order perturbation theory.
We see that the agreement is excellent.

In. the past, the variational computations of the
energy of heliumlike systems have all been per-
formed with Jastrow functions of the form
e ~' "~,"or functions very nearly of that form. '9'"
All the functions hitherto used have the property
of tending rather slowly towards 1 for large values
of r. A Jastrow function of the form (8.5) is very
different, and we wish to investigate its use in
calculating the energy of the quantum Lennard-

TABLE III. Variational energies for the LJ system
using the Jastrow factor defined by Eqs. (9.1) and (9.2).
Column 1: equivalent hard-sphere diameter. Columns
2 and 3: energy of the reference system and of the com-
plete system, respectively. Column 4: total number of
configurations in the Monte Carlo computation.

S(k)

1.2
~ ~

1.0

0.8

0.6

0,4

0.2

Jones fluid. It depends on one variational param-
eter only which is the equivalent hard-sphere
diameter a. For g, (r/a} we shall use the analytical
expression provided by Eqs. (9.1) and (9.2). With
this Jastrow function we have performed Monte
Carlo computations for 256 particles for various
values of the diameter. The results are summa-
rized in Ta,ble III.

A propos of the energies for the reference sys-
tern, given in the second column of that table, a
remark is in order: In general, for arbitrary
values of a, the Jastrow function (9.2) is no longer
a solution of the Schrodinger equation. The La-
placian of the Jastrow function must therefore be
evaluated directly, instead of using (S.17). Be-
cause (9.2) gives an excellent fit, this entails no

practical difference.
The variational computation yields for the

reference system an energy of 17.8'K, which is
consistent with and not significantly below the
value 17.9'K obtained with the function e " "
The energy minimum is obtained for a =0.82(5).
This is close to (but a little smaller than) the
scattering length, especially if one realizes that
at the minimum the energy varies but little with
a. Assumption 8 of Sec. VIII is well verified.

The total energy per particle is equal to (-5.S2
+ 0.1) K. This turns out to be little different from
the energy obtained with the Jastrow wave func-
tion e ~~~"~, i.e. , (-5.73+0.1)'K. Taking into ac-
count the usual tendency to underestimate the
errors in Monte Carlo computations, we do not
find convincing evidence in the literature that a
lower value of the energy can be obtained with a
Jastrow wave function (at least when long-wave-
length phonons are not included). The form (9.2)

I I I I I I I I I I I I

Q I 2 3 4 5 6 T 8 9 IO I I 12

0 ~ 75
0.80
0.82
0.8368
0.86

20.64~ 0.08
18.04 + 0.04
17.84+ 0.04
18.04+ 0.04
18.40 + 0.04

-3.64+ Q.12
-5.78 + 0.06
-5.81+ 0.06
-5.48+ 0,06
-4.93+ 0.06

600 000
2 500 000
2 30Q 000
2 000 000
2 300 000

FIG. 3. Structure factor for the Lennard-Jones sys-
tem as given by variational computations at the normal
density of liquid helium. Solid curve: Jastrow factor
e &~~"~ with 5=1.18. Full circles: hard-sphere-like
Jastrow factor as given by Eqs. (9.1) and (9.2) with
a= 0.83.
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for the Jastrow function is sounder than the usual
e "/"' because it exhibits hard-sphere features
which are the most important characteristics of
liquid helium. %'e compare in Fig. 3 the structure
factors obtained with these bvo different Jastrow
factors. The over-all agreement ls good. As
expected, with a hard-sphere-like Jastrow factor
one gets a, higher main peak in the structure factor
than with a smoother trial function.

X. RESULTS OF THE PERTURBATION THEORY

We shall apply perturbation theory to the case of
the Lennard-Jones potential. Since in that case
complete and reliable results exist only for short-
range Jastrow functions, we shall as a first step
use, in order to be consistent, the corresponding
variational hard-sphere results neglecting phonons
in both cases. The corrections will be made after-
wards.

We use the values of the variational rdf listed
in Appendix A in order to calculate, with the help
of formula (8.1), the energy of the quantum fluid
composed of Lennard-Jones molecules. This is
compared in Table IV with the variational results
of Ref. 8 for the liquid, and with those of Hansen
and Pollock" for the solid. The statistical errors
on the energy and rdf of the hard-sphere gas
entail an error on the energy obtained from per-
turbation theory which is difficult to estimate
because there is clearly a correlation between the
errors on the zeroth- and first-order terms. For
pa' = 0.2138 we have made two independent runs,
the results of which are compared in Table IV.
The final energies differ by 0.1'K. The error in
the solid region is larger because there we re-
placed the rdf for distances larger than 2.4a by

I; the effect of this cutoff is clearly not negligible.

We expect the perturbation theory to break down

for low densities, where one may get large density
fluctuations without increasing the kinetic energy
much, and in the high-density solid region, where
the hard-sphere approximation must break down.
There is, jn contrast with the cl,assical case, '
a large domain of density where the perturbation
theory with the hard-sphere approximation works
well in the case of the solid. The reason for this
success is that in the quantum case solidification
occurs at a quite low density because the particles
must stay away from the cores of their neighbors,
and the details of the repulsion are not seen. As
a whole, we do not see in Table IV any clear
discrepancy between the perturbation results and
the results obtained variationally. There may
be an exception to that statement for the lowest
liquid density (p = 0.167), where the rather large
discrepancy may be due to our neglect of density
fluctuations, and for the highest solid density,
where the large discrepancy between the perturba-
tion and variational results may be significant.
As a whole it appears that the perturbation theory
applies in a density domain which is remarkably
large.

Now that the validity of the perturbation theory
has been checked within the framework of the
Jastrow approximation„we shall replace the ap-
proximate hard-sphere (HS) results by "exact"
ones. There are three kinds of corrections which
all tend to lower the energy: (i) The variational
HS energies are replaced by exact ones, as com-
puted for 256-particle systems. This appears to
be the leading correction. (ii) Exact instead of
variational rdf are used in the computation of the
first-order term. This correction is negligible
in the solid region and very small (of the order
of 0.05'K) in the fluid region. (iii) The phonon

TABLE IV. Energies of the LJ system computed within the Jastrom approximation. Column
6 gives the result of the perturbation theory. Column 7 gives the variational. results. The
upper half of the table refers to fiuid states, the lower half to solid states. For the density
pa3= 0.2138, the results of bvo independent Monte Carlo runs have been given for comparison.

Ep (m,a 2+Th~)

('K)
Fg/N
('K)

E/N
( K)

0 ~ 167
0.2
0.2138
0.2138
0.234

0.244
0.27
0.3
0.35
0.4
0.5

0.283
0.341
0.364
0.364
0.4

0.416
0.461
0 ~ 512
0.597
0.683
0.853

4.32 ~ 0.1
6.01+ 0.1
6.85+ 0.1
6.75+ 0.1
7.92+ 0.1

8.86+ 0.1
10.6+ 0.1

12.69 + 0.1
16,8+ 0.2
21.9+ 0.2
35.5+ 0.3

11,38
15.83
18.05
17.80
20.87

23.33
27.92
33.40
44.20
57.70
93.5

-16.64
-22.09
-23.89
-23.56
-26,27

-28.44
32 73

-36.50
-44.56
-54,85
-66.02

-5.26 + 0.2
-6.16~ 0,2
-5.84~ 0.2
-5.76+ 0.2
-5.40+ 0.2

-5.11+ 0.4
-4.79 + 0.5
-3.10+0.6
-0.36+ 0.8

2.87~ 1
27.5+ 2

-5.67 + 0.1
—5.91+ 0,1
-5.73 + 0.1
-5.73+ 0.1
-5.25+ 0.1

-4.97 + 0.2
-4.75+ 0.2
-3.87 + 0.3

1.4+ 0.4
3.2 + 0.5

22.8+ I
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TABLE V. Results of perturbation theory. Column 4: perturbation energies using hard-
sphere results. Column 5: Estimated energies obtained by adding to the variational LJ results
of Column 3 the hard-sphere correction 5E given in Table VI. The upper half of the table
refers to fluid states, the lower half to soM states.

&ed%
('Ig

&e~
('K)

0.167
0.2
0.244

0.244
0.27
0.3
0.4
0.5

0.283
0.341
0.416

0.416
0.461
0.512
0.683
0.853

-5.67 ~ 0.1
-5.91+0.1
-5.02+ 0.1
-4.97 + 0.2
-4.75 + 0.2
-3.87+ 0.3

3.2+ 0.5
22.8+ 1

-5.72+ 0.2
-7.14+ 0.2
-6.50 + 0.2

-6.11+ 0.4
-5.79+ 0.5
-4.10+ 0.6

1.2+ 1
24.8+ 2

-6.13+ 0 ~ 2
-6.77 + 0.2
-6.67 + 0.2
-5.97 + 0.4
-5.75+ 0.5
-5.00+ 0.6

1.5+ 1
20.1+2

(-7.09)
-6.84

(-5.5)
-6.08
-5.3

2.1
26

TABLE VI. Smoothed difference &8/+ bebveen the
"exact" energy per particle of the hard-sphere system
and its variational estimate. Energies in units of 5 /&so~.

0.166
0.2
0.244

0.244
0.27
0.3
0.4
0.5

4.15
5.69
8.14

8.50
10.12
12.27
21.26
34.45

4.32
6.01
8.80

- 8.86
10.50
12.65
21.9
35.5

0.17
0.32
0.66

0.38
0.38
0.43
0,64
1.05

correction is small but not completely negligible.
With the value of the HS diameter which has been
chosen, and with the Michels constants for the
LJ potential, we obtain for the velocity of sound
in the hard-sphere system the value 295 m/sec for
the equilibrium density of liquid helium. This is
not far from the experimental value (289 m/sec).
Caving to the small size of the phonon correction,
it is rather irrelevant which value we use.

The perturbation results thus obtained are shown

in Table V and compared with the experimental
values. "'" It is seen that, within the estimated
error, which is by no means small, there is no
clear discrepancy except at the highest solid
density, where the Lennard-Jones potential
clearly gives energies which are too low, as al-
ready known from the work of Hansen and Pollock. "
We can obtain a confirmation of these results in

the following way: As we have seen, the correc-
tion to be applied to the variational results is
essentially that in the kinetic energy. We can
therefore estimate the exact energy by adding to
the variational LJ energies a term I equal to
the equivalent HS system minus the variational
energy of the HS system.

In this process, we use smoother data than in
the straight perturbation theory. The LJ varia-
tional data are quite precise and smooth, and
5E can also be smoothed. The value of 5E which
are used are given in Table VI and the energies
thus obtained are given in column 5 of Table V.
They are entirely compatible with the perturba-
tion energies and with experiment (except at very
high density).

We did not try to determine from the above
data the transition and equilibrium densities. They
are obviously compatible with the experimental
data, within a large uncertainty which may amount
to 10%.

Xl. HARD-SPHERE MODEL

In the preceding sections, the close relationship
between the reference system and the hard-sphere
fluid has been exhibited. It has moreover been
shown that the attractive forces change the struc-
ture only a little. In particular, it has been demon-
strated in Sec. IX, on the basis of variational com-
putations, that a hard-sphere-like Jastrow function
is perfectly acceptable for the description of the
full LJ fluid. Still within the variational frame-
work, we can obtain a further test of the validity
of this hard-sphere representation by comparing
the off-diagonal long-range order parameter ob-
tained" for the LJ fluid at normal density (with
the e ~'~"" Jastrow factor), i.e., n, =0.105+0.005,
with the HS variational value a,t pa' =0.2138, where
we find n, = 0.093 y 0.013. These values are clearly
compatible. Last, we may try the solidification
criterion used in the classical case": The real
system solidifies when the equivalent HS system
does. The solidification density of the HS system
in the variational approximation is obtained for
pa' =0.23+ 0.01. This gives for the I.J system
~' =0.39+ 0.02, which should be compared with the
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value po' =0.38 obtained through the variational

computation made directly in the LJ system. "
Let us now go beyond the Jastrow approximation.

In Fig. 4 we show the "exact" S(k) appropriate to
the normal density of liquid helium. We take for
the full LJ system the same equivalent hard-sphere
density pa' =0.2138 corresponding to a diameter
a =0.836Rr as in the case of the reference system.
This choice is motivated as follows: We know

from the computations of Sec. IX that the attractive
forces have the tendency to reduce the equivalent
diameter to a value around a =0.810. Qn the other
hand, we know that in order to describe real heli-
um more realistic potentials than the usual LJ po-
tentiat. used in this study should be used, e.g. , the
potential owing to Beck" or the modified Lennard-
Jones potential (I.J2) considered by Hansen and
Pollock. " These potentials have a wider core
than the LJ potential with Michels constants. They
both yield the value a =0.86o as the equivalent hard-
sphere diameter for the reference fluid. %'e thus
see that keeping the value a =0.8368o realizes a
compromise between the above two effects.

The determination of the exact S(k) involves
some manipulations which should be indicated.
For pa'=0. 2, we can compute precisely the dif-
ference between the exact and variational rdf.
This difference is scaled and added to the varia-
tional rdf at pa' =0.2138. In order to get the Fou-
rier transform of the rdf, we have obtained its
value beyond ~ =2.4a by using the Qrnstein-Zer-
nike relation and the assumption that, for large r,
the direct correlation function is negligible. ' The
phonon contribution is then calculated as indicated
in Sec. VI, using for the sound velocity the experi-

0.8

0,6

04

0.2

I I I

0 I 2 5 4 S 8 7 I 9 I
FIG. 4. Structure factor at the normal density of

liquid helium. Solid line: experiment Q,ef. 27 and 28).
Open circles: "reconstructed" experiment as explained
in the text. Full circles: "exact" hard-sphere structure
factor.

mental value and for the cutoff wave vector the
value 4, =0.3a ' that leads to the energy minimum.

The structure factor thus determined is corn-
pared in Fig. 4 to experimental results obtained by

x-ray scattering. Hallock's data" have been used
for 4&1.1 A ' (ha&2. 3). Achter and Meyer's re-
sults" are shown for higher values of A. It is seen
that at low k our results agree well with those of
Hallock a1though they show the shoulder predicted
by Miller, Pines, and Nozieres" a little more. We
may note that this shoulder was not observed by
Achter and Meyer, whose results may differ from
Hallock's by as much as 1K/0. In the 4 region cor-
responding to the rise of the first peak, the experi-
rnental and theoretical results agree quite mell.
The position of the first peak and the zeros in
S(k)- I differ markedly. We note, however, that
this disagreement is no longer present when one
considers the results obtained from neutron scat-
tering by Henshaw. " There, however, the first
peak rises to a much higher value than in Fig. 4.

In order to get more insight into the origin of the
discrepancy at large A, , we reexamine the experi-
mental data used in Fig. 4. The rdf obtained from
these results by Fourier transform is not strictly
zero inside the core. If we correct this rdf by irn-
posing simply that it vanish for r ~ a, the structure
factor that we obtain by Fourier transform is no
longer identical with the experimental one. We can
impose a compatibility with experiment in the low-
0 region (including the first peak) and a strict van-
ishing of the rdf inside the core if we iterate the
procedure described above, based on a succession
of Fourier transforms. In this way, a self-con-
sistent structure factor is reconstructed, with
admittedly some measure of arbitrariness. The
results are shown in Fig. 4. It is seen that the
agreement with the hard-sphere structure factor
is somewhat improved. We believe the remaining
discrepancy to be due more to the errors in the
hard-spher e rdf and the experimental structure
factor than to a defect in the model.

The exact QDLRQ parameter is estimated as
80 0 095 + 0.001 at pa' = 0.2 . It is very different
from the recent estimateso of pl p 0 0241 + 0 01
which is obtained indirectly from experiment at
1.2'K.

Last, we examine the solidification criterion.
The freezing density for hard spheres pa'=0. 25
+0.01 yields the value pa'=0. 427. At the solidifi-
cation density, the main peak of the hard-sphere
structure factor reaches the value 1.40, which
should be compared to the value 2.85 in the clas-
sical case. '~ A value of the order of 1.40 should
therefore be the maximum value reached by the
structure factor of liquid helium at very low tem-
perature in the whole fluid range.
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APPENDIX A

%'e tabulate the radial-distribution function for
the hard-sphere Bose system as computed by the
Monte Carlo integration of the Schr5dinger equa-
tion and by the variational method with the Jastrow
factor, '

f(r) = tanh[(r —I)/h J .

Results are given at pa' =0.2, 0.244, and 0.27 for
the fluid (Table VII) and at pa3 =0.2'I and 0.4 for
the crystal (Table VIII). The numbers tabulated as
g are, in fact, average values over the interval
ending in the z. That is,

TABLE VII, Radial-distribution function for Quid states of the hard-sphere boson system calculated by variational
method {g„)and Schrodinger integration {g~).

1.10
1.20
1.30
1.40
1.50

1.60
1.70
1.80
1.90
2.00
2.10

0.049
0.239
0.542
0.870
1.113

1.280
1.394
1.322
1.236
1.198
1.065

0.044
0.259
0.567
0.876
1.121

1.253
1.299
1.274
1.198
1.142
1.069

2.20
2.30
2.40
2.50
2.60

2.70
2.SQ

2.90
3.00
3.10
3.20

1.025
0.949
0.912
0.880
0.890

0.907
0.958
0.990
1.025
1.045
1.048

pa~ = 0.2

1.012
0.969
0.941
0.933
0.947

0 ~ 943
0.964
0.981
0.992
1.005
1.011

3.30
3.40
3.50
3.60
3.70

3.80
3.SO

4.00
4,10
4.20
4.30

1.045
1.037
1.0Q9
0.990
0.990

1.005
0,992
0.993
0.995
0.990
0.998

1.021
1.018
1.017
1.G15
1.005

0.998
0.997
0.999
0.993
0.989
0.996

4.40
4.50
4.6Q

4.70
4.80

4.90
5.00
5.10
5.20
5.30
5.40

1.016
0.993
1.000
0.990
0.999

Q. SSS
1.007
0.987
1.003
1.005
1.G03

0.995
0.997
1.002
0.998
1.004

1.001
1.001
1.000
1.002
1.002
1.000

1.10
1,20
1.30
1.40
1.50

1.60
1.70
1.80
1.SO

2.00
2.10

0.044
0.262
0.587
0.955
1.271

1.457
1.504
1.409
1.283
1.169
1.029

0.031
0.245
0.636
1.035
1.285

1.414
1.428
1.365
1.291
1.162
1.037

2.2Q

2.30
2.40
2.50
2.60

2.70
2.SO

2.90
3.00
3.10
3.20

0.912
0.820
0.786
0.787
0.812

0.880
0.952
1.021
1.085
1.12S
1.131

pe~ = 0.244

0.923
0.847
0.801
0.790
0,820

0.881
0.953
1.018
1.077
1.110
1.125

3.30
3.40
3.50
3.60
3.70

3.80
3.90
4.00
4.10
4.20
4.30

1.119
1.077
1.044
0.99S
0.963

0.936
O.S31
Q.933
0.943
0.949
0.969

1.103
1.073
1.042
l.004
0.976

0.952
0.940
0.935
0.937
0.952
0.966

4.40
4.50
4.60
4.70
4.80

4.90
5.00
5.08

0.990
1.014
1.048
1.057
1.066

1.056
1.036
1.021

Q. SSS
1.012
1.040
1.059
1.060

1.057
1.035
1.023

1.05
1.10
1.15
1.20
1.25

0.017
0.100
0.256
0.450
0.686

0.021
0.109
0.280
0.507
0.73S

2.05
2.10
2.15
2,20
2.25

0.919
0.886
0.877
Q.S74
O.S43

pa~ = 0.27

0.938
0.909
0.88g
0.877
0.878

3.05
3.10
3.15
3.20
3.25

1.054
1.055
1.036
1.004
1 ~ 024

1.035
1.026
1.024
1.014
1.004

4.05
4.10
4.15
4,20
4.25

1.005
1.008
1.024
1.006
1.014

1.003
1.000
l.008
1.004
0.998

1.30
1.35
1.40
1,45
1.50

1,55
1.60
1.65
1.70
1.75

1.80
1.85
1.90
1.95
2.00

0.931
1.154
1.320
1.415
1.489

1.527
1.478
1.431
1.364
1.273

1.217
1.108
1.04S
0.986
0.957

0.990
1.184
1.330
1.425
1.469

1.492
1.441
1.387
1.313
1.243

1.162
1.094
1 ~ 025
1.004
0.965

2.30
2.35
2.40
2.45
2.50

2.55
2.60
2.65
2.70
2, 75

2.80
2.85
2.90
2.95
3.00

0.863
0.877
0.887
0.924
0.922

0.942
0.961
0'.987
1.022
1.034

1.060
1.034
1.062
1.033
1.033

0.887
0.894
0.910
0.928
0.941

0.968
0.972
1.000
1.005
1.022

1.022
1.044
1.050
1.053
1.035

3.30
3.35
3.40
3.45
3.50

3,55
3.60
3.65
3.70
3.75

3.80
3.85
3.90
3.95
4.00

0.994
0.994
0.999
1.017
0.997

0.986
0.972
0.963
0.975
0.970

0.976
0.988
0.984
0.992
1,001

1 ~ 001
1.011
0.997
0.981
0.983

0.985
0.986
0.984
0.990
0 ~ 985

0.989
1.001
0.993
0.997
0.994

4.30
4.35
4.40
4.45
4.50

4.55
4.60
4.65
4.70
4.75

4.80
4.85
4.90
4.91

1.017
1.003
0.996
0,993
1,008

O, S96
1,000
0.999
1.010
0.995

1.006
1.002
0.997
1.008

1.005
1.005
1.002
1,009
1.003

1.003
0.999
0.994
1.002
0.998

0.999
0.999
0.996
0.995
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g(r„)=) r'g(~)A/ J a*dr.
~8 &n -l

%'e estimate the statistical error of the values as
less than Wo except for the fix st few entries which
have errors of 5-10%. A systematic error of a
tew percent at the peak of g(r) is possible owing to
incomplete convergence of the iteration process
used in the calculation.

APPENDIX 8

The problem of solid He' is treated exactly as
above. As iong as we neglect the (smail) exchange

effects, the only difference with He' lies in the
lighter mass of He'. Schiff" has calculated the ef-
fective diameter of the reference part of the I.J
potential in the He' case and found the value 0.823a,
He has shown that, in the variational. framework,
the perturbation theory works as well as in the
solid He' case. Here we use the results of Schiff,
but with "'exact" results for the HS boson solid
instead of variational results. As above, we give
both the results obtained by a straight application
of perturbation theory and the estimate obtained
from correcting the variational results for the dif-
ference between exact and variational HS results.

TABI,E VIII. Radial-distribution function for crystal states of the hard-sphere boson system calculated by variational
method (g„) and Schrodinger integration (g~).

pa~ = 0,27

1.05
1.10
1.15
1.20
1.25

1.30
1,35
1.40
1.45
1.50

1.55
1.60
1.65
1.70
1.75

0.009
0.077
0.205
0.387
0.561

0.763
0.971
1.178
1.306
1.402

1.464
1.540
1.550
1.553
1.467

1.406
1.332
1.247
1.160
1.051

0.006
0.047
0.155
0.324
0.538

0.786
0.988
1.206
1.343
1.429

1.524
1.536
1.541
1.502
1.460

1.419
1,325
1.223
1.164
1.077

2.05
2.10
2.15
2.20
2.25

2.30
2.35
2.40
2.45
2.50

2.80
2.85
2.90
2.95
3.00

0.986
0.896
0.849
0.782
0.766

0.724
0.725
0.726
0.747
0.771

0,830
0.857
0.892
0.957
1.020

1.046
1.100
1.122
1.142
1.179

1.004
0.903
0.857
0.807
0.761

0.734
0.724
0.722
0.753
0.771

0.802
0.853
0.903
0.955
0,998

1.033
1.096
1.115
1.147
1.163

3.05
3.10
3.15
3.20
3.25

3.30
3.35
3.40
3.45
3.50

3.55
3.60
3.65
3.70
3.75

3.80
3.85
3.90
3.95
4.00

1,168
1.155
1.139
1.124
1.105

1.077
1.033
1.009
0.967
0.984

0.954
0.946
0.931
0.928
0.930

0.933
0.928
0.943
0.944
0.942

1.165
1.161
1.141
1.124
1.105

1.077
1.043
1.023
1.000
0.981

0.966
0.942
0.935
0.934
0.935

0.925
0.919
0.922
0.927
0.933

4.05
4.10
4.15
4.20
4,25

4.30
4.35
4.40

4.50

4.55
4.60
4.65
4.70
4.75

4.80
4.85
4.90
4.91

0.944
0.954
0.968
0.963
0.978

0.999
1.014
1.029
1.046
1.059

1.079
1.088
1.078
1,071
1.075

1.071
1.039
1.032
1.010

0.931
0.938
0.956
0.965
0.985

1,002
1,018
1.050
1.059
1.073

1.082
1.087
1.085
1.081
1.064

1.052
1.043
1,012
1.005

1.05
1,10
1.15
1.20
1.25

1.30
1.35
1.4o
1.45
1.50

1.55
1.60
1.65
1.70
1.75

0.017
0.157
0.357
0.703
0.986

1.900
1 ~ 723
1.524
1.356
1.150

0.936
0.786

0.012
0.119
0.351
0.672
1.022

1.350
1.625
1.829
1.935
1.965

1.894
1.788
1.588
1.363
1.129

0.917
0,753

1.90
1.95
2.00
2.05
2.10

2.15
2.20
2.25
2.30
2.35

2.40
2.45
2.50
2.55
2.60

2.65
2.70

0.667
0.589
0.552
0.548
0.589

0.593
0.639
0.705
0.756
0.850

0.972
1,069
1,180
1.217
1.297

1.351
1.342

0.637
0.578
0.540
0.546
0.566

0.597
0.635
0,689
0.751
0.840

0.938
1.056
1.170
1,266
1.351

1.384
1.376

2.75
2.80
2.85
2.90
2.95

3.00
3 ~ 05
3.10
3.15
3.20

3.25
3.30
3.35
3.40
3.45

3.50
3.55

1.311
1.230
1.159
1.080
0.978

0.932
0.918
0.883
0.872
0.894

0.908
0.952
0.953
0.935
0.941

0.928
0.892

1.313
1.223
1.' 54
1.060
0.982

0.916
0.S76
0.870
0.882
O.S99

0.918
0.950
0.969
0,968
0,956

0.925
O, 890

3.60
3.65
3.70
3.75
3.80

3.85
3.90
3.95
4.00
4.05

4.10
4.15
4.20
4.25
4.30

0.880
0.873
0.893
0.917
0.976

1.035
1.117
1.159
1.205
1.213

1.176
1.138
1.092
1.034
0.984

0.863
0.847
0.856
0.889
0.954

1.032
1.116
1.182
1.238
1.248

1.229
1.175
1,101
1.018
0.954

0.926
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0.244
0.27
0,3
0.35

0.283
0.341
0.364
0.4
0.416

0.416
0.461
0.512
0.597

0
0.6
2.2
3.2

1.5
3.2
5.8

11.7

0.2 ~ 0.6
1.8+ 0.8
4.2 + 1,0

1.3
-0.75
-0.4

0.75
1.65

0.1+0.6
1.8~ 0.8
4.3+ 1.0
9.8 + 1.2

-2.4
2 \ 2

-1.8

-0.4
1.1
4.6

11.5

Both methods lead to energies which agree, within
the rather large errors, with experiment, as in
the He' case.

For the liquid state, the antisymmetry of the
wave function must be taken into account. In the
absence of exact hard-sphere results in the fer-
mion case„one is led to rely on the %u-Feenberg
approximation:

y„.,(r„",r~) = Cs(r„, r„)"q,(r„",r„),

TABLE IX. Results of the perturbation theory applied
to He3. Same as in Table V. The results for the liquid
state have been obtained using the Wu-Feenberg ansatz.

@dxpP
('K)

where g~ is the solution of the mass-3 boson prob-
lem and g~ is the appropriate Slater determinant
of plane waves. As Wu and Feenberg" have shown,
if the ground-state properties of the boson system
are known, the energy of the Hee fluid can be cal-
culated by making a cluster expansion of the de-
terminant. This expansion seems to converge
quite well. For the Lennard-Jones potential varia-
tional results are available, ' In that case, Schiff
has shown that the perturbation methods also work
quite well. Schiff's results rely on three assump-
tions: (i) Variational results are used for the hard-
sphere boson fiuid. (ii} The Lennard-Jones poten-
tia.l is a good approximation for the He-He inter-
action. (iii} The Wu-Feenberg ansatz is a good
approximation.

Here (Table IX) we correct for (i) by using exact
hard-sphere results. %'e know from the He' study
that the error entailed by the use of the LJ poten-
tial is small (less than 0.5'K). The very clear
discrepancy revealed in Table IX in the He' is then
largely due to the use of the Wu-Feenberg ansatz,
whose effect amounts to an overestimation of the
energy by a,t least 1'K.
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