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A comparison is made between the Fokker—Planck equation (FPE) and the transport equa~
tion (TE) solutions of the problem of the collisional relaxation of an atomic or molecular
system undergoing Brownian motion. It is shown that, for times S (inverse collision rate),
the FPE does not provide an appropriate approximation to the TE if the velocity bandwidth
of the initially prepared sample is less than the root-mean-square change in velocity per
collision. Possible experimental verification of the theory using laser-pump sources to
provide narrow initial-velocity distributions is discussed.

I. INTRODUCTION

The linearized Boltzmann or transport equation
(TE) is commonly used to trace the time evolution
of the velocity distribution function associated with
a classical system of particles from some initial
value to a final equilibrium value. The changes in
the distribution function are caused by collisions
of the particles with some reservoir of colliding
particles, and it is implicitly assumed that the
reservoir’s distribution function is approximately
unchanged by the collisions. This latter assump-
tion enables one to linearize the Boltzmann equa-
tion and is valid, for example, in a case where the
system particles are distinguishable from and
much less numerous than the reservoir particles,
as might be the case if the “system” consisted of
excited-state atoms and the reservoir of ground -
state atoms.

The dynamics of the collisions is usually com-
plex enough to lead one to seek out approximate
forms for the TE. In the case where small-angle
scattering is the dominant collision mechanism
(“weak” collisions), a Brownian-motion-type mod-
el can be adopted. In this limit, the TE is gener-
ally thought to go over into the Fokker-Planck
equation (FPE), for which solutions are readily
available.!"® The validity conditions and applica-
bility of the transformation from the TE to the
FPE, written symbolically as TE - FPE, remain
somewhat obscure and are generally stated in
mathematical rather than physical terms. In this
paper, we shall examine in detail the transforma-
tion TE - FPE as applied to an atomic or molecu-
lar system in order to gain a better physical un-
derstanding of the range of validity of the trans-
formation. In this manner, one will be in a posi-
tion to judge whether or not the FPE is an appro-
priate equation to use to describe various experi-
mental situations involving systems of particles
undergoing Brownian motion. In addition, this

paper is intended to lay the groundwork for future
articles that will deal with more complex trans-
port equations than the one to be considered here.

II. GENERAL REMARKS

If we are to examine the transformation TE
- FPE, we must assume for the present discus-
sion that our system is describable by a classical-
type Brownian-motion transport equation. An
atomic or molecular system can be characterized
by a classical-type transport equation only if (a)
the system remains in a given eigenstate for the
entire experiment or (b) the collisional interaction
is the same for all the internal states involved in
the experiment. If the collisional interaction is
state dependent (analogous to the interaction of a
spin system with a Stern-Gerlach magnet), then
it is impossible to ascribe a classical trajectory
to the atom or molecule following a collision and,
consequently, a quantum-mechanical transport
equation is needed.* As far as the Brownian-mo-
tion assumption is concerned, its ultimate justifi-
cation will usually rest on a comparison between
theory and experiment.

Accepting the validity of the Brownian-motion TF,
we can show that the transformation TE - FPE will
be valid provided that a characteristic collisional
change in velocity Au is small compared to some
important physical parameter of the problem.

For example, in atomic radiation problems, TE
- FPE might be valid if the acquired collision-in-
duced change in the Doppler phase factor kaut is
much less than unity for all times ¢ of interest (k
is a radiation propagation vector). For the prob-
lem of particle diffusion in velocity space to be
considered here, TE - FPE will be shown to be
valid if Au is much less than the velocity band-
width of the initially prepared sample. One must
expect significant differences between TE and FPE
solutions if Au does not satisfy the above require-
ments.
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This subject matter takes on added importance
with the recent use of laser-pump sources to ex-
cite very narrow velocity subgroups of atoms or
molecules. In tracing the relaxation of these sub-
groups back to equilibrium, one may be able to
experimentally compare the TE and FPE predic-
tions. An experiment to test the theory will be
proposed.

III. TE-FPE

The TE for the distribution function p(v, t) of a
spatially isotropic system is given by!:3

zp<;+,t>=-r<v)p(v, t)

+f W@ —-v)p@, t)dr, 1)

where the kernel W (v’ — v) is the probability per
unit time for a particle to undergo the collisional
velocity change v/ —v and I'(v) = [W (v-v")d v’ is

the rate of collisions. For mathematical simplicity
we have chosen a one-dimensional problem, but
the results to be derived are quite general.

The transformation of Eq. (1) to the correspond-
ing FPE in the Brownian-motion limit is well rep-
resented in the literature.!”3 A simple way to ob-
tain the result is to realize that, for Brownian mo-
tion, W (v' —v) is a highly peaked function about
v' =v (i.e., the collisional velocity changes are
small). In that case, one can expand p(v’,t) in the
integral of Eq. (1) about v’ =v to obtain

?f_’%’t’_tk_r‘(v)p(v, t) +$ A, () 3"%(0"12,_0’ @)
where
An(v)=7:_! f W(U' — v)(v/ —U)ndv' . (3)

If one cuts off the sum at» =2, one arrives at a
slightly more general® form of the Fokker-Planck
equation:

%ﬂt,t) =[-T (1) +A,(0)]o(v, t) +A, () 8";‘;’ 0
+a,0) 0G0, @)

Equation (4) will provide a good approximation to
2) if

a’lp B’I—Zp
An 5;7 <<An-2 92 (5)
for »>2. Typically this requirement will be met
if the velocity width of the kernel W (2’ - v) is much
less than the velocity width of the distribution
function p(v, t). To see this more clearly, let us
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choose a phenomenological collision kernel sug-
gested by Keilson and Storer,3

W@ - v)=T[m(au)?]"* /2 exp[ v — av' ?/(au)?],
(6)

where T is the (velocity-independent) rate of col-
lisions and Au is root 2 times the ropt-mean-
square change in velocity per collision and is re-
lated to the most probable speed » of the thermal
equilibrium distribution by

(Aau) =1 - a®)u?. )

The kernel (6), while not derived from first prin-
ciples, does seem to provide reasonable agree-
ment with computer simulations of collisions® and
also yields the Brownian-motion results for a~1
(corresponding to small Ax). In what follows we
shall assume (6) is applicable with a~ 1 so that
1-0?~2(1 - a).

The moments A, are easily calculated using (3)
and (6) to be

A IX3XEXeee X =1)
"—I‘ an+12n/2n!

IX3IX5Xee+ X (n=2)
= an+l(n _1)12(11-1)/2

A (Au)?", n even

(1 - a)v(au)""!, n odd

(8)

where higher-order terms in (1 — @) have been
neglected. The validity condition (5) for the FPE,
given a smooth distribution function p(v, f) with
width u, at time ¢, becomes

(Au/u, <1 9)

for all £, in agreement with the statement of Sec.
II. Thus, the physical values of Ax and u, will de-
termine whether or not the FPE is applicable to
the study of Brownian motion under consideration.
Typical values for Au and u, will be discussed in
Sec. VI, but it might be noted here that Au is de-
termined by the dynamics of the collisions.

If condition (9) holds, thenthe FPE [Eq. (4)] is
valid and may be written (using the notation of
Chandresekhar?)

ap(v, ¢ ap(v,t)  9%p(v, ¢t

I R LU LU
where

B=I'(l -a) (11a)

is the effective decay rate for the average velocity
of the system and

g=T(au)?/4 (11b)

is the diffusion constant. The approximation a~ 1
is implicitly contained in Eqs. (10) and (11).
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IV. SOLUTION OF FPE AND TE

We seek solutions of Eqs. (1) and (10) with the
kernel W (v’ — v) given by Eq. (6). For our initial
condition, we take the Gaussian

p(v, 0)= (1r1402)'1/2 expl - - v,)?/u?] (12)

with 4, <u. This initial distribution is mathemati-
cally easy to deal with and should be representative
of any smooth distribution centered at v =v, with
width u,. From (9), we immediately see that FPE
will be valid if Au/u,<1. Depending on the veloci-
ty selectivity of the excitation and the collision
dynamics, Au/u, will typically range from 1.0
x10"3to 1.0X10° (see Sec. VI).

A. FPE

To solve the FPE [Eq. (10)], it is convenient to
try a solution

p(, t)=fdvoc(vo-—v, t)p(vy, 0) . (13)

Substituting this into Eq. (10), one finds that the
propagator G(v,— v, t) also satisfies the FPE with
initial condition G (v,—~v, 0)=6(v = v,). The solu-
tion of tte FPE for G is '+3

B 1/2
GWy~v,t; FPE) = <m>

- -Bty2
ey (- B o), 00

which, together with Eqs. (13), (11), and (7),

J

gives
p(v, t; FPE) = (1s%)"1/2 exp[ - (v —e~8%v,)?/s?],
(15a)
where
s?=[u?(1 —e~28t) yu2e-28%). (15b)

Thus, the FPE solution is a Gaussian that decays
towards the equilibrium distribution p(v, t>>g"1)
~ (mu?)~1/2¢-v2 /42 with an effective decay rate
B=T(1 - a)<T, the actual collision rate. The
quantity s is a measure of the velocity width of the
distribution and increases from the initial value
u, to the equilibrium value u. If u,=u, p(v,t) re-
mains unchanged, as it must.

For Bt<1,

p(v, t; FPE)~{n[Tt(au)? +u3]}-1/2
xexp{~ (v - v,)?/[Tt(au) +u2l}, (16)

where Eq. (7) has been used. Thus, it takes a
time 7~ I'"!(,/Au)? for any significant change to
occur in the initial distribution. If (,/Au)?>1
(validity requirement for FPE), 7>TI"!; that is,
it takes many collisions to effect significant
changes in the system. In some sense, this last
statement can be used as a validity criterion for
the FPE.

B. TE

Keilson and Storer® present an analytic solution
for the TE with the kernel (6). Their result for
the propagator G(v,— v, t) is

Gy~ v, t; TE)=e"T* (6(1} — ) +m™L/2 i ()T (1 - @] /2 exp[ - (v - a™p)?/ (1 - az")uz]> , Q1

1

which, when used with Eq. (13), yields
p(v, t; TE)=e~T* Z (n )"HTH" mw?)t/?
0

Xexp[- (v - a"y, )/ w?], (18a)
where

w2 =u?(1 - o®") +ua®". (18b)

The relationship of Eq. (18) to the corresponding
FPE solution (15) is discussed in Appendix A.
Equation (18) is valid for arbitrary « and for all
times { > 0. We are interested in a much more re-
stricted problem. As shall be shownbelow, the
TE and FPE solutions approach each other for
T't>1. Consequently, to compare the TE and FPE
we need only solve the TE for those times I'ts 1,
or, alternatively, for times gt=I'(1 - @){<1. In
addition, we wish to use the approximation a~1.
With these limiting assumptions, the Keilson and

—
Storer result may be reduced to a more tractable
form. Taking the appropriate limit of Eq. (18) or
directly solving the TE as is done in Appendix B,
one obtains

P, ETE) = 3 e THTEy o ) Mafud +n (au)]} /2
0

xexp{- (v - v,/ [uZ +n(au)?])}, (19)

valid for Bt =T'(1 - a)t<1 and a~ 1. The solution
(19) does not approach equilibrium at ¢ -« [the
exact solution (17) does approach equilibrium|
since it is valid only for gt <1, but (19) has the
needed property that p(v, t) remains unchanged (to
order Gt) if one starts with an equilibrium distri-
bution u, =u.

V. COMPARISON OF TE AND FPE

Equations (16) and (19) may now be compared for
various values of u,, Au, 1 -, and I'f, with the
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restrictions I'(1 = @)t <<1 and 1 = a~ 0. The sum
in Eq. (19) has its major contribution from n~ I't.”
Hence, if I't>>1, one can replace u2 +n(au)? by
u?+T't(au)? for all » of importance and then per-
form the sum over z to find that p(v, t; TE)~ p(v, ¢;
FPE) for I't>1. (The details of the calculation
are given in Appendix A.) Physically, this result
reflects the fact that subsequent collisions do not
affect the system significantly once the system has
undergone many collisions (I't> 1), regardless of
the ratio of Au and u,; the relative insignificance
of a single collision is, in effect, the validity re-
quirement for the FPE. Thus, the TE and FPE
may differ markedly only for T't< 1, as claimed in
Sec. IV. Of course, if Au<<u,, the TE once again
goes over into the FPE solution for all ¢ since the
FPE validity requirement (9) [or (5)] is well satis-
fied.

A numerical comparison of Eqs. (16) and (19) is
depicted graphically in Figs. 1-3. For (Au/u,)
=0.5, the TE and FPE solutions nearly coincide,
but for Au/u,z 1 the TE and FPE solutions can
differ significantly, as is seen for the cases
Au/u,=2 and 10 shown in Figs. 2 and 3, respec-
tively. In all cases, the TE and FPE solutions
agree for I't>>1, as was predicted above. Figures

=5

plv,1)

N -4
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1-3, therefore, represent a graphic proof that the
FPE is inadequate to describe velocity relaxation
in a sample with Au/u,2 1 for times I't<1. In
such cases, the more general TE must be used.

VI. DISCUSSION

The time evolution of the distribution function of
a spatially isotropic system of atoms or molecules
whose center-of-mass motion could be given a
classical Brownian-motion description has been
considered. It has been shown that the FPE will
not provide a good approximation to the TE for
times I't <1 (T is the collision rate) when the ini-
tial-velocity width «, of the distribution function
is less than the characteristic collisional velocity
change Au.

Some estimate of characteristic values for u, u,,
and Ax may be obtained from a recent photon-echo
experiment of Schmidt and Brewer.® Their data
yielded a value Au~ 200 cm/sec, while the ther-
mal velocity was u~ 4.0X10* cm/sec. Combining
these values in Eq. (7) yields (1 - @)~ 1.0x10"5,
indicating that the Brownian-motion picture has
some validity. The minimum value of u, possible
in their experiment was limited by the pulse width

FIG. 1. Graph of the
FPE and TE solutions for
the distribution function
for several values of I't.
The ratio Au/uy=0.5 in
this case with #; having
an arbitrary value of unity.
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of the laser excitation and corresponded to a value
u,~ 10® cm/sec, giving Au/u,<1, so that the veloc-
ity diffusion could be correctly described by the
FPE (one should note that the coupling of velocity
diffusion with the radiation processes involved in
echo formation cannot be correctly accounted for
by the FPE —the complete TE is needed®). By
going to longer pulse widths, the value of u, can
be decreased to a limiting value u,(min)~y/k,
where vy is the natural width of the transition and
k the propagation vector of the laser pulse. For
vibrational transitions this value of u,(min) might
be as low as 1.0X10"! ¢m/sec giving au/u,~1.0
X10% and making it necessary to use the TE to de-
scribe velocity diffusion.

Experimentally, velocity diffusion might be
studied using saturated absorption techniques sim-
ilar to those of Hinsch etal.® An initial pulse se-
lectively depletes the ground-state atoms or mole-
cules. By introducing a delay in the return probe
pulse and monitoring its absorption profile, one
can indirectly measure the velocity width of these
depleted atoms as a function of time. In this man-
ner, the collisional relaxation of the sample is de-
termined. It seems that the initial pulse width (in
time) should be short enough to ensure that the ex-

piv,t)

—=== plv,1; FPE)

cited atoms or molecules do not decay before being
subjected to the probe pulse, but long enough to
lead to a reasonably small value of u,. It will prob-
ably be impossible to satisfy both these conditions
for electronic transitions, but, for a 10-um mole-
cular transition with 100-pusec lifetime, a 1.0-usec
pulse satisfies the “short” restriction and corre-
sponds to a u, of ~150 cm/sec, which may be com-
parable to Ax. Quantitative experiments may help
to test the validity of the kernel (6).

The validity of the kernel (6) does remain an open
question. It can lead to the FPE for a~ 1, which
is certainly a necessary criterion. With a different
value of a, it might still be a fair approximation in
situations where important collisions occur with
small impact parameter (i.e., hard-sphere colli-
sions) and the Brownian-motion picture fails.!®
An exact quantum-mechanical kernel is available,*
but, to date, little or no progress in its evaluation
has been made.

In future papers, the comparison of TE and FPE
solutions will be extended to cover cases where
the system under consideration is also interacting
with radiation fields. In addition to condition (9),
the validity of the TE - FPE transformation will
depend on the requirement that the collision-in-

—— piv1, TE)

TFIG. 2. Same as Fig. 1
except Au/u;=2.0.
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duced change kAut in the Doppler phase factor be
small for all ¢ of interest. While this requirement
will be met in standard absorption and emission
experiments, it will not be satisfied in photon-echo
experiments, where the use of the complete TE is
needed.!! Moreover, the use of a classical TE in
radiation problems is valid only if the collisional
interaction is the same for all the levels involved
in the radiative transitions. While this might be
the case, to a first approximation, for rotational
or vibrational transitions, it most certainly will
not be true for electronic transitions. Such situa-
tions must be treated by a more general quantum-
mechanical transport equation.?
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APPENDIX A

We wish to determine those conditions under
which the TE solution (18) reduces to the FPE so-

FOKKER-PLANCK... 2175
F®=2 =g, (1)
Y
with
x=Tt, (A2a)

gh)=e* @w?) /2 exp[- (v - a"v,2/w?], (A2D)

and w, given by Eq. (18b). The exponential sum

2 x"/n| has its major contribution about n= x.
Thus, if g@2) is a slowly varying function of » in
the neighborhood of » = x, it makes sense to expand
g) as

g(n)zg(x)+-a§—f‘—) (n—x)+%%_-(:(—) 0 =) +-

(A3)
Inserting this in (A1) and performing the sums over
n gives

f(x)ze*g(x)+%xe"a—2@+-“ . (A4)

ax?

Using Eqs. (A2) and the fact that aTt~ ¢ -T¢- ¢
=e~8t for a~ 1, one finds the lead term of Eq.
(A4),

e*g(x) = mw?)*/2 exp[ - (v —e~ Pty 2/ w?],

lution (15), using the assumption that @~ 1. Equa- (AGa)
tion (18) is of the form with
10
— P(V, fi TE)
= L ) FIG. 3. Same as Fig. 1
i plvti FPE) except Au/uy=10.
T't=5

o
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2 ,=28¢

w2 =u2(1 —e"28%) yule , (A5b)
0

which is precisely the FPE solution (15). Conse-
quently, in terms of (A4), we see immediately that
the FPE will be a good approximation to the TE
provided

%XG% '1\«1. (A8)

Using Eq. (A2Db) for g(x), one finds that (A6) is sat-
isfied for all ¢ if Au® = (1 — o?)u?<u? and for

I't> 1 regardless of the ratio of Au to u,. Actually,
this statement is not strictly true—if (v —e~8%v,)?
> w? then (A6) does not hold for ¢ <1 regardless
of the values of the parameters. However, in this

J

at
==Tplk,t) +Te X2/ 1p(ax t).

Taking a=~ 1 to solve (B2), one finds

plk, t)~ p(k, 0) exp[ - Tt(1 — e ~<2@P2/4)] (B3)

With p(v, 0) given by Eq. (12), p(k, 0) may be ob-

BERMAN 9

region the distribution function itself is negligibly
small. Hence, the discussion of the text is re-
stricted to the region (v-e~8%y,)?< w?.

APPENDIX B
Equation (19) may be derived simply from Eq.

(1) in the limit Bt <1 and @~ 1. A solution of the
form

p(v, t) = (2m)"1/2 pr(n,l)e"“"dx (B1)

when substituted into Eq. (1), using Eq. (6) for
W (' - v), yields an equation for p(k, ¢),

M= -Tpk,t) +1"[2112(Au)2]‘”2 fw dv Jm dv' e~*Pexp[- (v - av’)*/ (au)]p(v', t)

(B2)

tained by inverting Eq. (B1) as
plk, 0) = (2m) 1/ 2 gixve g = Hou?/a (B4)

Inserting (B4) and (B3) into (B1), one finally ar-
rives at

p(, t)=(@2m)? fm dk explik (v, —=v) =T't(1 — e KLU/ 4y G HE (B5)

If one expands

exp(Fte"zMz/") - Z T !)—1e—m<2(Au)2/4

[}

-

and does the « integration in (B5), one arrives at
Eq. (19) of the text. This solution is valid only if
I'(l - a)t=ptk1, as can be verified by substitut-
ing the approximate solution (B3) into the exact

equation (B2) and looking at the correction terms.
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