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Infrared and Raman study of liquids. III. Theory of the
rotation-vibration coupling effects. Diatomic molecules in inert solutions
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A theory is proposed to explain the effects of the rotation-vibration coupling in the ir and
Baman spectra of inert solutions of diatomic molecules. This theory is a stochastic-type
theory related to similar theories of NMR spectra. Spectral manifestations of the rotation-
vibration interaction are found to depend very strongly on whether an ir, isotropic, or aniso-
tropic Raman spectrum is concerned, on the nature of molecular rotations in the liquid, and
on the properties of the solvent-solute interaction forces. Explicit expressions are given for
a number of profiles which are perturbed by this interaction.

I. INTRODUCTION

The theories describing the ir and Raman band
profiles of diatomic molecules dissolved in inert
solutions' "generally imply the following assump-
tions: (a) The rotation-vibration coupling is neg-
ligible; rotational and vibrational motions are
statistically independent. (b) There are no solvent-
induced components in the dipole-moment vector
M and in the polarizability tensor a of the active
molecule. These assumptions are probably correct
in a zero-order theory, but they no longer remain
satisfactory if more precise information is re-
quired. The purpose of the present paper is to
investigate spectral manifestations of the rotation-
vibration coupling in the case of diatomic mole-
cules dissolved in inert solvents; for the previous
work along similar lines, see Hefs. 11-19. The
theory we propose is a semiclassical theory of a
stochastic type. Spectral manifestation of the

rotation-vibration coupling is investigated in de-
tail, and expressions are proposed which repro-
duce different profiles perturbed by this inter-
actio n. 20

II, BASIC FORMULATION

A. Description of model

The problem to be investigated is the absorp-
tion, or the inelastic scattering, of the radiation
by a system formed by one active molecule and a
large number of nonactive structureless molecules
(Fig. 1). The following model is used to investi-
gate this problem: (a) The active molecule is
executing anharmonic vibrations coupled to the
remaining degrees of freedom of the system. This
coupling acts through (i) the solvent-solute inter-
action, (ii) the rotation-vibration interaction of
the solute molecule. Thus its vibrations are de-
scribable by the following Hamiltonian:

H(r, t) =[(p'/2q)+2Z(r r,)'+ f(r-r,)'+-"I+-[a,(r, t )j, (l a)

a, (r, t) =[v,(r, t) v, ( tr)]+-
S'(t) S'(t}

9V, 2&V, 1,a'y,("-".) '( ., &) ~
2

(» — .)*:(»., &) ~
~

(» —».)' l (»., &) ~ ")
Z'(t) 2 2 3-(» —»)—~ ( —»)' -(»-»)' —~ ).2f(r, ) 0 0 y2 0 r 3

The stochastic operator V,(r, t) representing the
solvent-solute interaction is such that there are
no solvent-induced components in M, n. (b) The
active molecule is executing stochastic reorienta-
tions described by means of the unit vector u(t)

for the molecular axis. (c) The vibrations are
described with the help of quantum mechanics,
I ~l, »kT; the reorientations are described with
the help of classical mechanics, k~&«~T. For
justification of th's approach, see, e.g. , Ref. 21;
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contrary to Refs. 1-1G, vibrations and rotations
are no longer considered as independent entities.

B. Description of absorption and scattering processes

Once the basic properties of the model have been
chosen the method used for the study of the ab-
sorption or the scattering process must still be
discussed. It is assumed that (i) the incident
beam is either linearly polarized or represents
natural light, and (ii) the sample is isotropic. In
these circumstances (a) using the fluctuation-
dissipation theorem, and (b) repeating the calcula-
tions of Refs. 2, 3 with vibrations and rotations
kept correlated, the following formulas are easily
obtained [compare with Eq. (4) of Ref. 2 and with
Eq. (5) of Ref. 3]:

I( )-
J (t'GIedt, '

where

G(&) = G.(t) = ([»p~"(&)M" (0)l [u(&) u(0)1& (ir),

(3)

G(t)=G, (t) =( Tr pe"(t) o.'"(0)& (isotropic 8},

=45p/6 —7p for natural light. ' The correlation
function Gs(t) of the complete Raman spectrum is
a linear combination, Gz(t) =AG,.(t)+BG,(t), with
coefficients A. , J3 depending on the geometry of the
expe rimental arrangement. These coefficients
are displayed in Table I.

Equations (3)-(5) can readily be transformed
into a form which makes more recognizable the
role of different physical processes influencing
the band shape. (i) The Heisenberg equation

' = ' [ff" r"]
dI; h ' 9t

is solved in the adiabatic approximation with

y =M, n, or p; sy"/at is put equal to zero, as by
assumption there are no induced components in
y". (ii) The effect of H, (r, t) in (la) is calculated
with the help of first-order perturbation theory;
all terms of order higher than one in the anhar-
monic force constant f are neglected. " (iii) 0(t)
is the angle between u(t) and u(0), ~', is the non-
perturbed frequency of the 0- & transition, and
tu, = (EC/p)'~'. If points (i)-(iii) are taken into
account, Eqs. (3)-(5) take the following form
[compare with Eqs. (8), (9), and (16) of Ref. 2 and
with Eqs. (6), (9), and (14) of Ref. 3]:

G(t) =G.(~) =([»p. f}"(t)I3"(o)1

&& [-,'[u(&) (0)l' --,' j& (anisotropic 8).
In these equations the trace operator Tr implies

the averaging over the vibrational coordinate,
characterized by its density matrix p„and the
angle brackets indicate the averages over the
stochastic processes V, (r, t), 3'(t), u(t). All the
other symbols have their usual meaning: M" (f)
is the Heisenberg operator for the magnitude of
the dipole-moment vector of the active molecule,
n" (t) the Heisenberg operator for its mean polar-
izability, and P" (t) that for the magnitude of its
anisotropy. The ratio a"(0)/p" (0) is expressible
in terms of the depolarization factor p of the band
under study; one can show that a"(0)/P" (0) =45p/
3 —4p for linearly polarized light, and a" (0)/P" (0)

G„(t) = l(OIM "(0)l o'&I'exp(- f ~;„t)

t

exp -i ~', t' +~', I, " dt'

G, (&) = I(0I ~(0)l o&l'exp(-f ~;.t)

exp -i ~',„t' +~', t'
0

TABLE I. Coefficients A, 8 of the transformation
0 (t ) =A&

&
(t ) +8&, (t ) relating, at 90' observation and

VV and VH configurations, the correlation function G (t )
of the complete Raman spectrum to the correlation func-
tions G'

~ (t ) and G~ (t ) defined by Eqs. (4) and (5) {see Hef.
3).

Configuration

Polarized light

FIG. l. Instantaneous configuration of the solvent
around the active molecule. Definition of 8;.

Natural light
VV

vH

7

90
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t

o.())=l(o(o"(o)I~)l'«o(-)~;„))
o «o -) f (~', „(~') !.()'))e'))

0

t t

+— exp i -[~(0„(t')+~',„(t')](ft' cos 2 ~'(t')dt'
0 0

(6)

2t)~ K sr " sr' " 12','~' sr ' " 24 '~' sr '
0 0 0

S'(t) f 1 5h 2
" 2I(ro) Kro t)(()o KI(ro) I(r o)

(()0

S'(t) 5hf
2I2(r ) K'r,

(I8( t)
dt

(10)

The physical content of Eqs. (6)-(11) is as fol-
lows. The band profile is produced by fluctuations
of three stochastic quantities, ~', (t), &u', „(t),
~'(t). These quantities designate the frequency
increments due to (a} the solvent-solute inter-
action, (b) the rotation-vibration interaction of
the active molecule, and (c) the component of the
angular velocity Q(t) of the active molecule per-
pendicular to the plane u(t), u(0). Contributions
(a) and (c) generally predominate and are included,
explicitly or implicitly, in the zeroth-order theo-
ries. ' " Contribution (b) often represents only a
small perturbation; the study of its effects on the
band profile is the main purpose of the present
paper.

C. Stoqhastjqtreatment of no~(t}, no~(f), ~3(f }

According to Eqs. (6}-(11},the functions G (t),
G,. (t), G, (t) are determined by three correlated
stochastic functions ~', (t), ~',„(t), ~'(t). A com-
plex situation results which is difficult to treat
mathematically and to analyze physically. It seems
reasonable, under these circumstances, to focus
attention on the study of a number of simpler
carefully selected limiting situations in which
~',„(t), to', „(t), tu'(t) are either rapidly or slowly
modulated; the analysis of complicated inter-
mediate cases is then qualitatively deduced from
the study of the limiting cases. The procedure
which has been adopted here can be sketched in
the following way.

The functions ~0( (t), ~2o„(t), &u'(t} are econom-
ically designated by ~, (t), with i =1, 2, 2, and are
treated by use of three arguments. (i} To each
~,. (t) is associated its correlation time r, , charac-
terizing the duration of the fluctuations of ~, (t). .

These times are compared with a reference time
v -1/n~, the lifetime of the physical process
generating the ir or Raman band of half-width

au under study. ~, (t) is said to be slowly modu-
lated if 7, »7; the modulation is considered to be
fast if r, «r (ii). All ~, (t)'s are assumed to be
either slowly or rapidly modulated. The correla-
tion between slowly and rapidly modulated ~, (t)'s
is neglected (see Appendix A). (iii) The time de-
pendence is suppressed in the slowly modulated
~, (t)'s by writing ~,(t)- ~, . This dependence is
conserved for the (o), (t)'s which are rapidly modu-
lated, but the condition ~, «v can be used to sim-
plify the calculations. The theory based on these
premises represents a generalization to a multi-
dimensional case of well-known one-dimensional
theories, e.g. , Refs. 21 and 23. It can be shown
in particular that, in the one-dimensional case,
the well-known slow and fast modulation conditions
((~(2))' 'r)»1, ((~,'))'I'r, «1 are deducible from
the conditions 7, »7, v, «w. Compare with Ap-
pendix B.

It remains to define the limiting cases for which
a detailed theory is to be presented. A number of
empirical and theoretical arguments are needed
for that purpose; they are developed in detail in
Secs. IIIA, IVA, and VA. For simplicity these
limits are called the free-rotation and rotationiLl-
diffusion limits, according to whether ~„v,»7
or v„~,« ~, and independently of the value of ~, .

III. RELAXATION FUNCTIONS, ir SPECTRA

A. Order-of-magnitude estimation of v,.'s

The general properties of ir spectra of diatomic
molecules dissolved in inert solutions essentially
depend on two physical parameters of the system
under study, the moment of inertia I(r) of the
active molecule and the energy V, (r, t) of the sol-
vent-solute interaction. If I(r) and the nonradial
component V„(r, t) of V, (r, t} are sufficiently
small, "the ir bands are broad and show charac-
teristic rotational wings; their over-all half-
widths L~ range, typically, from 50 to 200 cm '.
The presence of a certain structure may introduce
ambiguity into the definition of the reference time

If, as usual, spectral analysis of the band as a
whole is desired, and lack of precision in analyzing
diffuse spectral details is tolerated, v can be cal-
culated from the over-all half-width A~ of the
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band; this gives v''s of the order of 10 ' -10 '~

sec." The estimation of the correlation times
~„~„and v, is more uncertain. Nevertheless,
careful analysis of the experimental material
leads to the following rough estimation: 7', -10 "
sec, 7, -10 "-10 "sec, 7, -10 "-10 "sec
The comparison of these numbers shows that, for
systems under discussion, the conditions 7, »7,
7, »7, ~, »v approach physical reality.

If I(r) and V,(r, f) are sufficiently large, the ir
spectra have very different characteristics. The
bands are moderately broad, symmetrical or
slightly asymmetrical, and generally strueture-
less. Their half-widths b,~ range, typically,
from 25 to 50 cm '. The corresponding references
times r= I/au are of the order of 10 "sec, longer
than in the free-rotation case. The estimation of
TI 72 and v, is much more uncertain. The main
difficulty is that radial and nonradial forces both
contribute to ~p ($) and their effect on 7., must
somehow be assessed. It is believed that 7,
-10 "-10 "sec, depending on the relative im-
portance of the nonradial contribution to cdp',.
7- —10 I3 10 &4 se{ 7 —10-13 10-14 see
numbers certify that the conditions z,
7., «7. fit, approximately, the experimental data
in the present case.

The intermediate situations characterized by
conditions 7.

I + T 7.
2 T Ts T often occur in prac-

tice as well. The ir spectra have properties inter-
mediate between those just cited.

B. Free-rotation limit r, &&r, r2 Xr, r3)r
The calculation of G, (i) goes through the fol-

lowing steps. (i) Equation (6) is rewritten with
&u,', (i)=&@,', ur,

' (t) =u&', , m'(I) =&a'. (ii) The aver-
ages over the stochastic processes u&,', and ()d,'
a') are taken separately; this procedure is justi-
fied by the fact that V„(r, f) is small:

G, (i) =
I &01!)f"(0)

I o) I

' exp(-i~,".I}&exp(-i~,'„t))
x (exp(-iru,'„t) cos(&u'f)) .

(iii) The average over ~'~ is made by use of the
cumulant expansion theorem, and that over (cu,'„,
co') by writing &u,

' =-C(a)u&" and ~'=)d', with

Then, combining points (i)-(iii) one is led to the
final result:

G,. (i) =
I (0 IM"(0)

I o)) I' exp(-i&a', „I) exp P )2,. (-it)'
j= 1

1 1 -P~'
) —4))C( )t ' ' ''2 ,' ) —'4)),c( )t). '

(13a)

1 1 1 hfr, 3h llh'f
I, l(r, ) I'(r, ) 2u&, g 2u&, 6EPr,

f l(r } 5h 3
I (ro) 2Kro Q)d)) K 2(do

(13e)

The notation is as follows. The quantity n, =

(I/j !)(cu) ),. represents the jth-order cumulant
for )do„, ,F,(1, -'„z } the confluent hypergeometric
function of arguments 1, —,', and z =-[P„t'!
1 —i4p„C(o}f], )6„= (kT!2I,), with I, being the ef-
fective moment of inertia of nonrigid rotator,
f{r,) its equilibrium value, and C(n} the coef-
ficient measuring the strength of the rotation-
vibration interaction. 'The following interpretation
can be given to (13a). The relaxation mechanism
consists of two approximately independent process-
es, u,' and (&u,'„, co'). This situation is reflected
by the structure of G„(i), which contains, apart
from trivial contributions, two independent factors
associated with ~,' and ()d2, , )d'), respectively.
The first of them describes the spread of vibra-
tional frequencies due to V, and the second de-
scribes spectral manifestations of the rotations
of a free nonrigid rotator. If the rotation-vibra-
tion interaction is weak, i.e. , if C{o)-0, I,
-l(ro), i)„-[kT/2I(r, )] = P„', expression (13a) re-
duces to the simple formula provided by the zero-
order theory [compare with Eqs. (11}and (17) of
Ref. 2)].

C. Rotational-diffusion limit r I &&r, r2 &r, r3 &&r

The calculation of G„(t) involves, in this limit,
the following essential steps (i) E.quation (6)
is rewritten with &uo (t) =)d,'„, )do (i), &u'(f). (ii)
Stochastic processes cu,

' and (cu02, ur') are as-
sumed to be noneorrelated; this assumption is
justified by the fact that, in the present case,
&u~, and (cu,', )d'} have very different modulation
speeds:

G „(t)=
I (0 I

~)f"(0)
I o) I

' exp(-ice', i)&exp(-i)d,' I))

t
&& exp -i uo„(t') df' cos uP(t') dt'

(14)

(iii) The averages over &u,
' and (u', , &u') are cal-

culated, the former by using the cumulant-expan-
sion theorem and the latter by a theorem related
to it." Moreover, all terms of order higher than
two are neglected in the series over (&u'„, uP}. It
can be shown, in fact, that if v, «7., v; «7 they
are much smaller than its first- and second-order
terms; the proof is omitted here. (iv) &u,', (t),
~'(f) are taken to be Markovian-Gaussian and
the corresponding correlation functions to be single
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exponentials. "" Combining points (i)-(iv) the following result is obtained:

I
~0

G„(t)= }&0~t}f"(0)In&}'exp(-i&a', t) exp g n, (-it)'
j= 1

2kT, "I,
x'(exp ic(n) t +t' n~r~ ——1+exp —— +i'nRrx ——1+expJ TJ Tg Yz

TJ' 72 j

Tg Tg

n~=(((u,'„)' —((u,
' )')7, ,

n& = ((~')') 7~.

(15b)

(15c)

(15d)

(15e)

IV. RELAXATION FUNCTIONS, ISOTROPK

RAMAN SPECTRA

Equation (15a) suggests the following physical
interpr etation. Two approximately independent
quantities, &go and (u,'„, &u'}, determine the band

shape. This situation is reflected in the structure
of G, (t) containing, apart from trivial contribu-
tions, tmo independent factors. The first of them,
associated mith +,', describes the spread of vi-
brational frequencies due to V, and the second,
related to (~02, ~'), describes spectral manifes-
tations of strongly perturbed rotations of a non-

rigid rotator. If the rotation-vibration interaction
is absent, i.e. , if C(n)-0, I, -I(r, ), n~-0, the
well-known zero-order formula for G;,(t) is easily
obtained [compare with Eqs. (11) and (20} of Ref.
2].

Raman band; if V,(r, t) were further increased,
a new broadening of the band mould occur. The
bands are symmetrical or slightly asymmetrical.
Typically, their half-widths hu range between

a fraction of a wave number and a few wave num-

bers; the corresponding z's may be quite long:
v. -10 "-10 "sec. Estimated values of v-, range
from 10 " to 10 "sec: The long-time end of
this interval is approached if V, (r, t) determines
the behavior of u&,'„(t), and its short-time end is
approached if V„(r, t) predominates. Finally,
7-, -10 "-].0 "sec. Itistheneasilyseenthat two

limits 7, » 7, v., «7 and v, «v, z, «7. must be

consldered.

8. Free-rotation 1imit 7, &&v, v., &&v

The calculation of G, (t) goes through the following

steps. (i) Equation (7) is rewritten with &u04„(t)

=~,', ~O2 (t) =~o2„. (ii} The averages over the
stochastic processes u,' and ru,'„are made sepa-
rately; this procedure is justified by the fact that

V„(r, t) is small:

G, (t}=
~
(0

~

n". (0) ~ n) ~' exp(-i(u', „t)(exp(-ter,'„t))

A. Order-of-magnitude estimation of r,. 's x (exp(-i(uo2 t)) . (16)

The general characteristics of isotropic Haman

spectra essentially depend on two physical param-
eters of the system under study, the rotation-
vibration coupling constant C(n) and the energy

V,(r, t} of the solvent-solute interaction. If C(n)
is sufficiently large and if the solvent is excep-
tionally inert (e.g. , SF,) the bands of the spectrum
are narrow and distinctly asymmetrical, and their
half-widths hu are of the order of a few wave

numbers. The reference times y are of the order
of 10 " sec, which is much longer than in ir. The
correlation times 7„~,can be analyzed as in
Sec. IIIA. The following estimate is obtained in

this way: v -10 "-10 "sec, 7, -10 "sec. As

a rule, ~,' (t}'s are very small and there is no

need for a very precise determination of 7, . One

concludes that the conditions v, » ~, ~, » ~ fit,
approximately, the experimental data for these
systems.

lf the solvent-solute interaction energy V,(r, t)
were to gradually increase, one mould observe
first, a spectacular narrowing of the isotropic

(iii) The averaging over &u, „is made by use of'the
cumulant expansion theorem, and that over cu,

'
by writing ~,' = -C(o.)~",

2

Pl 'l=, „'71 '14 4('

Then, combining points (i)-(iii) one is led to the
final result:

G, (t) = }(0~

n"(0) ~' n) }'exp(-i(u,'„t)
~0 1

4- 444 4 lj

The following interpretation can be given to
Eq. (17). The relaxation mechanism consists
of tmo approximately independent processes ~,'
and u,' . This situation is reflected in the struc-
ture of G,.(t) containing, apart from trivial con-
tributions, two independent factors associated with

and u,', respectively. These factors describe
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the spread of vibrational frequencies produced by
the solvent-solute interactions and by the rotation-
vibration interactions, respectively. If the rota-
tion-vibration interaction is weak, i.e. , if C(n)
-0, expression (17) reduces to the simple formula
provided by the zero-order theory [compare with

Eq. (11) of Ref Sj.

C. Rotational-diffusion limits 71&&7, 7, &7 and 7. , &r, 7.
2 C7.

The calculation of G, (t) dep. ends on whether the
conditions T, o T, 7, «T or the conditions T, «T,
T, & T apply. The procedure utilized in the first
case can be sketched as follows. (i) Equation
(7) is rewritten with cu,

' (t) = ~,', ~,' (t). (ii) Sto-
chastic processes ~,' and &,' are considered to
be noncorrelated; this assumption is justified by

G;(t}=
I &o I

&"(0}
I o) I'exp(-t~'. t)(exp(-i~.' t)&

t
x exp -i ~o, (t') dt' (18)

(iii) The avera. ges over &u,'„,ufo„are calculated
with the help of the cumulant expansion theorem.
The modulation of u,' being fast, all terms of
order higher than two in (d,

' can be neglected in
this expansion; the proof is omitted here. (iv)

is taken to be a Markovian-Gaussian process
and its correlation function a single exponen-
tial."" This leads to the following result valid
in the case Tl++ T,

the fact that, in this limit, &,' and u,', have very
different modulation speeds:

2)r
G, (t) = I(0 I

u"(0)
I o) I'exp(-i&a,'„t) exp Q u, (-tt)'

I exp~tc(o) t +I'o, 7, (
——1+exp

1 0 J J

+l Q T ——1 +expYJ YJ
YJ VJ

(20a)

t+J T4 j (20b)

(20c)

The following physical interpretation can be
given to Eqs. (19) and (20): the band profile is
determined either by a unique strongly coupled
two-component process (e,', u&,

'
) (case r„«r„

T, «T} or by two approximately independent pro-
cesses &u,

' and &u,'„(case r, »r, 7, «r} This.
situation is reflected in the structure of G, (t) con-

The procedure utilized in the case T, «T, T, «T
is slightly different and can be described as fol-
lows. (i) The sum ur,

' (t) +&a,'„(t) is considered as
a new stochastic function &uo (I) characterized by
the correlation time T4. Its modulation is supposed
to be fast, T4 «T, an assumption consistent with
the fact that, separately, e,' (t) and ufo (t} are
rapidly modulated. (ii) Equation (7} is trans-
formed by applying the cumulant expansion theo-
rem. Only terms up to second order need be re-
tained, a. consequence of the fast-modulation con-
dition 7, «7. (iii) ~,' (t) is supposed to be a
Markovian-Gaussian process, which implies that
its correlation function is a single exponential. ""
Combining points (i)-(iii) one is led to the fol-
lowing result valid in the case T, «T Tp «T:

G,. (t) =
I (0 I

o."(0)
I o& I' exp(-i~', „t)

2k'
x exp -l Q

Io

taining, apart from trivial contributions, a single
factor in the former and two in the latter case.
G,. (t) describes the spread of vibrational frequen-
cies due to solvent-solute and rotation-vibration
interactions, respectively. If this second inter-
action is small, i.e. , if C(o)-0, I, -I(r, ), a~-0,
the well-known zero-order formula for G, (t) is.
easily obtained from (19) [compare with Eq. (11)
of Ref. 3].

V. RELAXATION FUNCTION, ANISOTROPIC

RAMAN SPECTRA

A. Order-of-magnitude estimation of r,. 's

The general properties of anisotropic Raman
spectra of diatomic molecules dissolved in an in-
ert solvent essentially depend on two physical
parameters of the system under consideration-
the moment of inertia l(r) of the active molecule
and the energy V,(r, t) of the solvent-solute inter-
action. U I(r) and the nonradial component V„(r, t)
of V,(r, t) are sufficiently small, the bands are
broad and exhibit a characteristic three-component
structure. The ratio between the peak intensity
of the central component and those of the side
wings varies greatly from one spectrum to another;
most frequently, the central peak is more promi-
nent here than in ir. The over-all half-width ~su

of these bands ranges, typically, from 100 to
400 cm ', and that of their central components
is of the order of 5-50 cm '. In presence of such
a band structure, choice of the characteristic
time T essentially depends on the purpose of the
study one is concerned with. Accordingly, if a
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rough analysis of the band as a whole or a more
precise study of its central component is required,
7 will be calculated either from the over-all half-
width ~~ of the band or from that of its central
component; this gives 7's of the order of 10 "-
10 "sec and 10 "-10 "sec, respectively. On
the other hand the estimate of the correlation
times T„T„T,gives the values indicated in See.
IIIA: 7, -10» see, 7, 10-i2 10-is s
-10 "-10 "sec. Comparing these numbers one
is led to the conclusion that the conditions 7, &o 7,
v, » 7., v; » 7 are adequate for reproducing, rough-
ly, the over-all structure of anisotropic Raman
bands of this class, but may be insufficient in
certain cases for a detailed quantitative descrip-
tion of their fine structure.

If f(r) and V,(r, t} are sufficiently large, the
anisotropic Raman spectra have very different
characteristics. The bands are moderately broad,
symmetrical or slightly asymmetrical and general-
ly structureless. Their half-widths ~~ are,
typically, of the order of 50 cm '. The corre-
sponding reference times T= I/a~ are of the order
of 10 "sec, larger than in the free-rotation limit.
The estimation of the correlation times T„T„
and 7, leads to the values given in Sec. GIA:
7, -10 "-10 "sec, depending on the relative
importance of the nonradial contribution to uQ,
T2 10 -10 see, and 73 10 -10 see.

These numbers indicate that the conditions 7,
7, «T, T, «7 fit, approximately, the experimental
data of this class of systems.

The intermediate situations are characterized
by conditions T, &7., 72 7 73 7 and often occur
in practice, The anisotropic Raman spectra then
have properties intermediate between those just
cited.

B. Free-rotation limit v, &&v, v, &&v, v3&&v

The calculation of G,(t) goes through the following
steps. (i) Equation (8} is rewritten with &uo„(i)

=&do, ~0„(f)=~,', &u'(f) =aP. (ii) The averages
over stochastic processes +,' and (~2, ~') are
made separately; this procedure is justified by the
fact that V„(r, t) is small:

G, (t) = l(0 I
p"(0)

I a) I" exp(-&cu", t)(exp[-iso,' ll)

~ ([exp(-&cu „t)][-,' +,'- cos(2~'t)]) . (21)

(iii) The average over uF, „is performed by use of
the cumulant expansion theorem, and that over
(«)', , «)') by writing «)', „=-C(a}«)", «) = «)',

Then, combining points (i}-(iii) one is led to the
following final result:

G&t)= )&0)ll "&0)l ))'exp& i ', t) p E-,&-„it) ) .4, 4 4,t, ), 2, j
This expression merits some comment. The

correlation function G, (t) appears as a sum of two
contributions. The comparison with Eqs. I, 13a) and

(17) shows that, apart from the nonessential factor
—,
'

I (0 I
P"(0)

I u) I', the first term is just the correla-
tion function of an isotropic Haman band. The
second term is similar to, but not identicaj with,
the correlation function of an ir band; the dif-
ference is (i) in the nonessential factor
—,
'

I (0 I
P"(0)

I o) I' and (ii) in the fact that the hyper-
geometric function, F, depends on the argument
-4)3„t'/I —&4P,C(o&)i in Raman and on the argument

P„t'/I —&4P„C(o&)t-in ir." Thus the analysis given
in Secs. III A and IV A can be reproduced word for
word and does not need to be repeated here. In
particular, if C(o)-0, I, -I(r, ), P, -P', , Eq. (22)
reduces to the simple formula predicted by the
zero-order theory [compare with Eqs. (11) and

(15) of Ref. 3].

C. Rotational-diffusion limit v. , &&v, v., &&v. , v3 Cv

The calculation of G,(t) involves, in this limit,
the following steps. (I) Equation (8) is rewritten

with uo„(t) = «),', «)0 (t), &u'(t). (ii} Stochastic
processes ~& and (&u', „, ~') are considered to t)e
noncorrelated; this assumption is justified by
the fact that, in the present case, &u,'„(t) and

(«),' (t},«)'(f)) have very different modulation
speeds:

G, (t) = I(o IP"(0)
I n) I'exp(-&~', &')(exp(-&(u,'„t))

t

~ + 4 cos 2 &d (t') dt' ).
9 )

(22)

(iii} The averages over «)0) and (~o, &d') are cal-
culated, the former using the cumulant expansion
theorem and the latter a theorem related to it."
Moreover, all terms of order higher than 2 are
neglected in the series over I', uQ', u'). lt can be
shown, in fact, that if 7, «T, 7, «7., they are much
smaller than its first- and second-order terms;
the proof is omitted here. (iv) «)', „(t) and &d'(t) are
taken to be Markovian-Gaussian and the eorres-
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ponding correlation functions to be single exponentials. Combining points (i)-(iv) the following
result is obtained:

G.(t)= l&olp"(0}iu&l'exp(-t~;. t} exp g a,(.it-)' ~exp iC(n} t
2kT

0

+i'o. ~T~ ——1+exp — +i'3u„Ts ——1+exp — l. (24)
rJ' TR- ]

Apart from the nonessential factor
l (0 l

t)"(0}
l o)l',

Eq. (24) differs from Eq. (15a) valid in ir in that
o.R is replaced by SaR; this difference is easily
explained by the elementary theory of rotational
diffusion. The following interpretation can be
given to (24). Two approximately independent
processes, &u,

' and (&u,'„, ~'), determine the band

shape. This situation is reflected in the structure
of G (t) containing, besides trivial contributions,
two independent factors. The first of them, as-
sociated with w,', describes the spread of vibra-
tional frequencies due to V, and the second, re-
lated to (~,'„, u'), spectral manifestations of
strongly perturbed rotations of a nonrigid rotator.
If the rotation-vibration interaction is absent, i.e.,
if C(u)-0, to-t(ro), n~-0, the well-known for-
mula for G, (t) is easily obtained [compare with

Eqs. (11) and (19) of Ref. 3].

VI. POSITION AND PROFILE OF SPECTRAL

BANDS

A. Method of calculation

The method of calculating the position of spec-
tral bands essentially depends on how the band
center is defined. In what foll.ows, the band cen-
ter will be assumed to correspond to the first mo-
ment (~,)o of the band. (~,)o is simply related to
the correlation function, e.g. ,

"'

, G'(0)
i)o —

G(())

Thus the study of the influence of the rotation-
vibration interaction on the band position reduces
to the derivation of (13a), (15a), (17), (19), (20a),
(22), and (24).

The calculation of the intensity-distribution
function Z(~) is considerably more elaborate.
According to (2), it involves Fourier transforma-
tion of the correlation functions (13a), (15a), (17),
(19), (20a), (22), and (24). In the simplest cases,
this can be done analytically: The results are
shown in Tables II-IV. The calculation is facili-
tated by considering the following three points:
(i) The Fourier transform of a product of two
functions is given by the convolution integral over
Fourier transforms of separate factors. (ii) In
calculating the Fourier transform of (17) and
those of (13a) and (22}, with n, =0, the order of
integrations over &' and t is interchanged. Treat-
ing the "functions" 5[f (x)] in the usual way, "one
is easily led to the final result. (iii) In the case
of rotational diffusion, i.e., (15a), (19), (20a) and

(24), it is sufficient to consider that part of G(t)
corresponding to t» T~, 7«of TR; the short-time
portion of these functions only affects f(&u) far in
the wings. If the analytical treatment is imprac-
ticable, and this is the case for the majority of
complicated situations, numerical integration re-
mains necessary

TABLE II. ir band profil. es. The non-normalized band profiles of the 0 v~ ir bands of
solutions. The parameters p„=0.2, p„, C, ~J, and G. R are defined in Eqs. {13a)-(13c)and

(15a)—(15e) of the next text. Final. ly, 8(x') is the Heaviside step function to(x) =1,x ~ 0 and

0(x)=0, x&0} and H (a, x) is the Voigt function{H( , )=a(ax/x)i~„a ' dt/[ (x-t)~+a2}}. All
these expressions refer to the shifted band origin r'~ . In calculating I g~) in the rotational
diffusion limit, the short-time portion of & (t ) has been neglected.

Broadening mechanism Profile 1(ao-u~) =Ig,c )

Free classical rotation

Rotational diffus ion

1 1-{1-4CZ )
ii 2 —

f. 1 —(1 —4CDa) }

4P „C "
4C (1-4cm)«2 16C2P„

R J)

(QR+ QJ) +AGO

Rotational diffusion and
V (r, g)

0!R +Q J
p 2(p )1/2 2(p )f/2
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TABLE III. Isopropic Raman band profiles. The non-normalized band profiles of the 0 v„
isotropic Raman bands of solutions. The parameters p„=o 2, p„, C, 0 z, and a. z„are defined

in Eqs. (17), (19), and (20) of the text. (x) is the Heaviside step function, H(.x,a) the Uoigt

function, and Erfc(x) the complementary error function [Erfc(x}= f„e ' dtl Al. l these ex-
pressions refer to the shifted band origin ~, . In calculating Igf ) in the rotational-diiTusion

limit, the short-time portion of G {t) has been neglected.

Broadening mechanism ProfileI (c -c )=I gx )

Free classical rotation [0g~)) exp lace/

F r

Free classical rotation
and Y (r, t)

Rotational diffusion

Rotational. diffusion and

V, {r,t)(Eq. (20}].

Rotational diffusion and

V, (r, t)[Eq. (19)].

2G g
e2+~2J'

2' pg
G y g + AGd2 2

l/2

P 2(P )I/O '
2(P )1/2

8. ir spectra

The rotation-vibration coupling affects the band
position and deforms its profile. It is never the
princ ipal shape-determining relaxation mechanism,
but rather represents a secondary perturbing pro-
cess. The band shift is equal to —C(a)(24T/I, )
and does not depend on the nature of molecular ro-
tations. The perturbation of the band profile, on

the contrary„strongly depends on the nature of
this motion; the following cases can be envisioned
theoretically. (a) Rotation is similar to free rota-
tion. The theory predicts that one of the two wings
will become narrower and more intense and the
other will become broader and less intense (com-

pare with Table II and Fig. 2). The position of the

gap between the two wings remains unchanged in

spite of the over-all shift of the band; the rotation-
vibration interaction is, in fact, inoperative at
low rotational frequencies appearing around the

gap. (b) Rotation is similar to rotational diffusion.
The rotation-vibration interaction broadens the
band but the increase of its half-width is quite
small. Here again, this can be explained by the
low angular velocities characterizing the rota-
tional diffusion and making the rotation-vibration
interaction ineffective. Different possible cases
are illustrated in Table II and Fig. 3. (c) Rota-
tions are of an intermediate type. The spectral
perturbations are, qualitatively speaking, inter-

TABLE IV. Anisotropic Raman band profil. es. The non-normalized band profiles of the
0-u~ anisotropic Raman bands of solutions. The parameters p„=.e2, p„, Q, n~, and o& are
defined in Eqs. (22) and (24} of the text. Finally, 6)g) is the Heaviside step function and Hg, x)
the Voigt function. All these expressions refer to the shifted band origin ~~ . In calculating
I(~}in the rotational-diffusion limit, the short-time portion of G (t } has been neglected,

Broadening mechanism Profile I (cu —uc) = I (Ace)

Free classical rotation

1 g

4 2PC~ ( ) '~ 4PC

S r t I-(I-C«d)'~' [1-(&-C«'8'1'~)
'4 4p„c c I-ca "' ~ 4c)i„

Rotational diffusion

Rotational diffusion and
v

2(30m +~)
(Su~+a ~) +6m

&/2 ~g +0 g

P 2(P )1/2 t 2(P )f/2
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mediate between those described in (a) and (b);
see Fig. 4. The effects are complex, however,
and escape a simple analysis. All these conclu-
sions are in excellent agreement with the existing
experimental material; see, e.g. , Refs. 33-36.

C. Isotropic Raman spectra

The rotation-vibration coupling affects the posi-
tion and the shape of isotropic Raman bands. Ac-
cording to circumstances, it may either be the
principal shape-determining mechanism or rep-
resent a secondary perturbing process. The band
shift is equal to —C(u)(2&T/I, ) and does not depend
on the nature of molecular rotations. The per-
turbing effect of this interaction on the pand pro-
file is„on the contrary, strongly influenced by
the precise nature of vibrational and rotational
motions; the following cases can be envisioned
theoretically. (a) Rotation is similar to free ro-
tation. If the rotation-vibration interaction is the
only relaxation mechanism available, this per-
turbation spreads an originally very narrow line
into a strongly asymmetrical band. Compare with

+15

a b, o

2 t(Q

FIG. 3. Effect of the rotation-vibration coupling on ir
spectra: rotational diffusion, no vibrational broadening.
Profiles a and b and the corresponding correlation func-
tions are associated with the 0-1, 0-2 transitions
perturbed by the rotation-vibration coupling, and curves
c repoduce the same quantities in the absence of this
perturbation; the correlation functions refer to the
shifted band origin. Calculations are made by using
Eqs. (15) of the text g = (2AT/Io) C(n) =0.4, 0.8, OT ~;

G'g=O. Q04, 0.016, OT; e~=1T; T~= T~= 0.025T].

Gtt)) l

1.0

FIG. 2. Effect of the rotation-vibration coupling on ir
spectra: free rotation, no vibrational broadening. Pro-
files a and b and the corresponding correlation functions
are associated with the 0-1, 0 2 transitions perturbed
by the rotation-vibration coupling, and curve c repro-
duces the same quantities in the absence of this perturba-
tion. Calculations are made by use of Eq. (13) of the
text [p„=10T 2; C{G.) =O.OI, 0.02, OT], T is measured
in arbitrary time units.

I

+15 vP ')

FIG. 4. Effect of the rotation-vibration coupling on ir
spectra: intermediate rotations and vibrational broaden-
ing. Profile a shows spectral manifestations of the ro-
tation-vibration coupling in the case of a 0-1 band.
These effects are absent in profile b. The calculations
are made by means of the superposition approximation
(Ref. 2): G(t) = (1 —$)Ggg(f)+ (G (t); here G~~(t),
G~(t) are given by Eqs. (13) and (15), respectively.
{$=0.35 G =0.5T ' e =0.02T-' P„=1QT-' C{n)
=0.01, OT; 6 = 0.4, OT ~; nz =0.004, OT; ez = 1T
T g = 7'g = 0.025T.)
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l g)tI

1.0

by the presence of vibrational relaxation process-
es. Compare with Table III and Fig. 6. (b) Rota-
tion is similar to rotational diffusion. If the sol-
vent-solute interaction V, (r, t) is sufficiently large
to transform free rotation to rotational diffusion,
but small enough to keep slow vibrational relaxa-
tion processes, the band is strongly narrowed and
becomes symmetrical. Its structure is entirely

l

—3 -2 0 ~(TQ

a
—--b

I l

—044 -0,4. —0.36 &+a=i)

FIG. 5. Effects of the rotation-vibration coupling on
isotropic Raman spectra; free rotation, no vibrational
broadening. The profiles a and b and the corresponding
correlation functions are associated with the 0-1, 0-2
isotropic Raman transitions perturbed by the rotation-
vibration coupling. In the absence of this perturbation
the band reduces to a 6 function. Calculations are made
by using Eq. (17) of the text (P„=10T 2; C(a.) =0.01
0.02T) .

h, --—b

/
~

I
I

I

I

t

I
/

/

I I

-0.8fi —0.8 -0.76

Table III and Fig. 5. The existence of the high-
frequency edge in X(~) is characteristic of theories
treating molecular rotations classically. It disap-
pears in more accurate quantum-mechanical the-
ories, but this effect is not treated here. The
symmetry of this band may be gradually restored

1(cu}ji

1.0

2R

FIG. 6. Effect of the rotation-vibration coupling on
isotropic Raman spectra: free rotation, vibrational
broadening. The profiles a-c illustrate the increas-
ing effect of vibrational relaxation. Calculations are
made with the help of Eq. (17) of the text. (0.2=0, 0.15,
0.30T; P„=10T; C =0.05T.)

FIG, 7. Effect of the rotation-vibration coupling on
isotropic Raman spectra: rotational diffusion, no vibra-
tional broadening. The profiles a and b and the corre-
sponding correlation functions are associated with the
0-1, 0-2 isotropic Raman transitions perturbed by
the rotation-vibration coupling; the correlation functions
refer to the shifted band origin. In the absence of this
perturbation the band reduces to a 0 function. Calcula-
tions are made using Eq. (19) of the text j6 = (24'T/Io)
C(Q.) =0.4, 0.8T i &J =0.004, 0.016T ~ 7'g ——0.025T].
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generated by vibration-rotation interaction. Corn-
pare with Table III and Figs. 7 and 8. When V, (r, t)
is further increased, the band is broadened again,
but its detailed behavior depends on whether the
modulation of ~', „(f) is fast or slow. In the former
case the band remains narrow and symmetrical;
in the latter case it is broadened and not necessar-
ily symmetrical. Compare with Table III and Fig.
9. (c) Rotations are of an intermediate type. The
spectral perturbations are, qualitatively speaking,
intermediate between those described in (a) and
(b). All these conclusions are in excellent over-
all agreement with the existing Raman data; see,
e.g. , Refs. 37-43.

O. Anisotropic Raman spectra

The rotation-vibration coupling affects the posi-
tion and the shape of anisotropic Raman bands.
Its perturbing action differs on the band center
and on the wings, and cannot always be considered
as a secondary one, The band shift is equal to
—C(u)(2kT/I, ) and does not depend on the nature
of molecular rotations. The perturbation of the
band profile, on the contrary, strongly depends
on the nature of this motion; the following cases

+ 3 tN pr-'}

FIG. 9. Effect of the rotation-vibration coupling on
isotropic Raman spectra: rotational diffusion, vibra-
tional broadening. The mode of action of the vibrational
perturbation depends on the modulation speed of ( 0~~(t);
profile a corresponds to a slow modulation of ~0~„(t) and
profile b to a fast modulation. Calculations are made
with the help of Eqs. (19) and (20) of the text. [Profile a:

1 1T, Q2 = 1T; 6 = {2kT/Io) C(&}=0.4T";
=0.004T; 7+-—0,025T. Profile b: && ———1T
= 0.010T; 6 = 0.4T; &I g=0.5T

1

I

I

I

I

I

I

'I
'I

I

-3G

GltII
1

i

1 1I 7 ZS

Rs C{~}

ITl
' ImG{t)

~ {TI

FIG. 8. Effect of the rotation-vibration coupling on
isotropic Raman spectra. Illustration of the motion-
narrowing effect. Calculations are made using Eqs. (17)
and (19) of the text; compare with Refs. 15 and 16. [Free
rotation limit, profile a: p„=10T 2; C(0.) =0.01T '. Ro-
tational-diffusion limit, profile b: G. ~= 0.004T
=-0.4T i; Tg -—0.025T.I

FIG. 10. Effect of the rotation-vibration coupling on
anisotropic Raman spectra: free rotation, no vibrational
broadening. Profiles a and b and the corresponding cor-
relation functions are associated with the 0-1, 0-2
anisotropic Raman transitions perturbed by the rotation-
vibration coupling. Curve c represents the correlation
function in the absence of this perturbation; the corre-
sponding theoretical profile is not calculated, as its
central branch is a 6 function (p„=10T 2; C(e) =0.01,
0.02, OT}.
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can be envisioned theoretically. (a) Rotation is
similar to free rotation. If solvent-induced re-
laxation mechanisms are not operating, the rota-
tion-vibration interaction spreads the originally
very narrow central component into a strongly
asymmetrical band; its behavior is essentially
that of an isotropic Raman band. Furthermore,
the coupling makes one of two wings narrower
and more intense, and the other broader and less
intense. Compare with Table IV and Fig. 10. If
the solvent-induced relaxation mechanisms are
operating, they may restore the symmetry of the
central component; see Fig. ll. (b) Rotation is
similar to rotational diffusion. The rotation-vi-
bration interaction broadens the band, but the in-
crease of its half-width is quite small; the ex-
planation is the same as in Sec. VIB. Different
possible cases are illustrated in Table IV and

Fig. 12. (c) Rotations are of an intermediate
type. The spectral perturbations are, qualitative-
ly speaking, intermediate between those described
in (a) and (b). Yet the difference in the evolution
of the band center and of the wings, when going
from the free rotation to the rotational-diffusion
limits, must be stressed. All these conclusions
are in excellent over-all agreement with the ex-
isting Raman data; see, e.g. , Refs. 37-43.

pling effects into the elementary theories of the
ir and Raman spectra of diatomic solutions. ' '0

Qn the other hand, this theory replaces, in the
case of dilute solutions, the theories which have
been proposed to describe the rotation-vibration
coupling effects in the Raman spectra of dilute or
moderately dense gases. " " Many results of the
moment-analysis theory" are also reproduced,
although the theories are formally entirely differ-
ent.

APPENDIX A

The purpose of this Appendix is to show that, if
two classical dynamic variables A(t), B(t) contain
very different frequencies in their Fourier expan-
sion, their correlation is weak. The proof uses
stochastic arguments and goes as follows. (i) Let
A. (t), 8(&) be two stochastic functions, stationary
over all time intervals of practical interest; for
simplicity, they are assumed to be real and to

&&)I

1.0

E. Comments

The following comments can be made about the
present theory. This theory can be viewed as
representing a generalization of two sorts of
theories. It introduc es the rotation-vibration cou-

I

+ t& ra iTT

Opb) C

+10 +20 +30 ~p ')

FIG. 11. Effect of the rotation-vibration coupling on
anisotropic Raman spectra: free classical rotation and
vibrational broadening. Profile a is associated with the
0-1 anisotropic Rarnan transition perturbed by the ro-
tation-vibrio, tion interaction, and curve b reproduces the
same quantities in the absence of this perturbation. The
calculations are made by applying Eq. (22) of the text
[G. = 0 5T 2 n = 0.02T 3 P = 10T 2 C {n) = 0.01,0Tj,

FIG. 12. Effect of the rotation-vibration coupling on
anisotropic Raman spectra: rotational diffusion, no
vibrational broadening. The profiles a and b and the
corresponding correla. tion functions are associated with
the 0 —1, 0 2 anisotropic Raman transition perturbed
by the rotation-vibration coupling, and curves c re-
produce the same quantities in the absence of this per-
turbation; the correlation functions refer to the shifted
band origin. Calculations are made with the help of
Eq. (24) of the text [6 = (2A TfIp) C(G.) = 0.4 0.8 OT

o.g = 0.004, 0.016, OT; o.'~ = 1T; 7' g = T~ = 0.025 Tj.
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have zero mean value. Their Fourier transforms
are written A[~], B[&d]. (ii) The correlation
functions involving A(f}, B(f) are G""(I)=&A(f)A(0)),
GAB(f) =&A(f)B(0)), GBA(t)=&B(f)A(0)), GBB(f)
=&B(t)B(0)) T.he Fourier transforms of GA"(t),
GAB(f) GBA(f) GBB(t) a e GAA[~] GAB[~] GBA[~]

G B[&d]. (iii) The stationary property of A(f), B(f)
implies that the averaged products of Fourier
components A[Cd], B[cd] are related as follows

(see Ref. 44):

&A[Ca&]A[Cd ])=G [Cd]5(Cd+Cd ),

&A[Cd]B[&d']) = GAB[~]i)(&d y&d'), etc.

Considering points (i)-(iii) and applying the
Schwartz inequality gives the following estimate
I» I

G"'(f)I [or I G'"(f)l]:

IG"'(f)l = G"'[~]B '"d~ = &A[ ]B[-~j)e 1"d~ - 1&A[~]B*[~])ld~
~ &&&2 ~ oo

a & a+~ '~~d& - ca& ~ G""~ G»

Conclusions

If the overlap 8 between these subspaces of the
~ space, in which G "[cd], G [&d] are essentially
nonvanishing, tends to zero, G "B(f}tends to zero
as well; this also holds true for the correlation
coefficient

GAB (0)
(G AA(0)GBB (0))c/2

On the other hand, S will generally be small if
A(f), B(t) have very different correlation times;
thus in these circumstances the correlation be-
tween A(f), B(f) is weak.

u), t dt ( 1) («d2))1 /2

((&d2))c/2r» I Q E D
I

1 1 («d2))l /2 1 1

In the fast-modulation limit &,«7 and over the
major portion of the time interval of interest
(rc« f) this gives

which the mean square deviation of the random
function f,

'
cd, (f ') df' becomes comparable to unity.

In the slow-modulation limit r» v „&d,(t) - &d„

which gives

APPENDIX B
Np

, &t&dt ')=f f «, t&,&v»ed&'
p p

The purpose of this Appendix is to rederive, by
applying the method of Sec. II C, the slow- and fast-
modulation conditions (&cd21))'/2rc» 1, ((~2&))'/2v',
«1 familiar, e.g. , in the theory of NMR relaxa-
tion. ' '3 The derivation implies the following steps.
(i) I.et G(f) =&exp[- if,' (t&'d) cdt']) be the correla-
tion function under study and 7, T, the correlation
times of G(t), cdc(t), respectively; for simplicity,
one puts «d, )=0. (ii) To express T in terms of
&cd'1) and r„eornecalls that r is that time for

= 2(&d2) sr - I - r 1
1 1 &~2)T

7' «T-T « -(«d2))C/2T «1. Q.E.D.1 1 (Cd2)T 1
'

1

The conclusion is that, in the one-dimensional
case, the existence of the conditions ~, » &, 7,«&
implies the existence of the conditions (&d2&)c/2rc

»1 (~ ) 21/2«r1
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