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Self-motion in liquid sodium
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The theory of Singwi and Sjolander for atomic motion in classical fluids is used to study
the self-correlations im liquid sodium. The detailed numerical calculations have been done
for the velocity-autocorrelation function and its frequency spectrum using two recently de-
veloped interatomic potentials. The results are compared with those obtained by Schiff and
Rahman from molecular-dynamics experiments. The recent experimental results of Cock-
ing for quasielastic scattering in liquid sodium at 388 'K are also analyzed using the results
obtained from the above two model potentials.

I ~ INTRODUCTION

In recent years a great deal of information on

the time-dependent correlation functions in clas-
sical fluids has been obtained by the neutron scat-
tering experiments and molecular-dynamics cal-
culations. Recently' it has been found that the
velocity autocorrelation decays asymptotically as

' ' leading to a cusp at the origin in the fre-
quency-distribution function. Since then, there
has been renewed interest in the study of self-
correlations in classical fluids. The quantity
of main interest in the study of self-motion is the
velocity-autoeorrelation function which satisfies
an integrodifferential equation of the form

dy(t)
d/

+ dTK(t —T)y(~) =0,

where y(t) is the normalized velocity-autocorrela-
tion function and the kernel K{/) is the associated
memory function. In the past, several functional' '
forms of K (t) were used, which gave good accounts
of atomic motion in liquid argon. But all these
forms are phenomenological and have no theoreti-
cal justification. A satisfactory theory will be to
obtain the memory function from a first-principles
calculation based on the knowledge of the inter-
partiele potential V(y) and the pair-distribution
function g(~). Such an approach has been adopted
by Singwi and Sjolander' {SS)and more recently
by Gaskel. ' In all these theories, calculations
have been done- exclusively for liquid argon and
no attempt has been made so far to apply these
theories to liquid metals.

The main problem in liquid metals lies in the
knowledge of the interatomic potentials. In recent
years there has been some progress in this field.
Shyu et a/. ' have obtained the interatomic potential
for liquid metals using the Aschroft pseudopoten-

tial and the self-consistent dielectric function of
Singwi et a/. " The potential so developed has been
found to give good agreement with the phonon dis-
persion curves in crystalline sodium, and has also
given good results for the equilibrium properties of
liquid sodium. " Another potential is a "model
potential" constructed by Schiff, "which gives a
good description of the thermodynamic properties
and the static structure factor for liquid sodium.
Since molecular-dynamics" " results for both the
potentials are now available, we thought it worth-
while to use these potentials in the calculation of
atomic motion in liquid sodium. Thus the purpose
of the present paper is to apply the theory of
atomic motion developed by 88 to the calculation of
the memory function for liquid sodium using both
the above model potentials. In the 88 theory the
memory function is expressed in terms of the
Van Hove self-correlation function G,(r, t) which
in Gaussian approximation is related to p(t)
Therefore, a self-consistent solution for p(t)
is needed. This has been done in the present pa-
per.

In Sec. II we introduce the relevant expressions
of the 88 theory which are used in the present
calculations. In Sec. III, various results obtained
with both the potentials are discussed. In Sec.
IV we have analyzed the recent experimental re-
sults of Cocking'4 for quasielastic scattering in
liquid sodium at 38S 'K using the Gaussian approx-
imation and the velocity-autocorrelation function
obtained by Schiff and Rahman from molecular-
dynamics experiments.

II. FORMALISM

The equation of motion of a "blue" particle,
moving in the field of the surroundings, has been
obtained by SS by solving the kinetic equation for
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the one-particle distribution function. This leads
to, for the normalized velocity-autocorrelation
function ())(t), the following integrodifferential
equation

+ I'(I —t')(f)(t') dt'
dt

+ r, (t-t') dt' @{7)dT=O. (2)
0 t

potential,

cos2Kpr 8 sin2K&r
V(r}= g+—+(}- r'

+ +@eF-C /„D
r'

where constants have the same meaning as that
of Schiff, into core and soft parts as shown in

Fig. 1. That is,
Bjorkman et a/. "have shown in liquid argon that
1",(t} has only negligible contribution. We assume
this contribution to be negligible for liquid sodium
as well. Thus neglecting the third term, Eq. (2)
reduces to the general form of the integrodifferen-
tial equation (1), where now the memory function
has the form

v, (r) = v(r)+ ~,

=0, r&o'

V,(r) = -~, ~&a'

= V(r),

(10)

{3) where o' is the distance at which the minimum of
the interaction potential occurs.

and

V V,ff (x, t) = V V x —x', t)G, (x', I,) dk'

f vv(x-y)a(» —y}G.(y, t) dy

f o(x —y')G, (y', I) d y'

A. Core-part contribution

At t =0, the expression for the core part of the
memory function reduces to

r, (0) - — $ VV. (x) V);t*) dx,

Here the function o((x —y) is such that it drops
sharply to zero for ~» —y~ &o„o,being the hard-
core radius, and is of the order of unity when-
ever ~x —y~&o, . lt plays the role of excluding a
certain volume corresponding to the hard-core
radius around y. G,(y, t) is the Van Hove self-
correlation function and can be written in the
Gaussian approximation as

()) t) —[go(t)]-&/ 2ev la(() (6

where the width function a(t} is given by

where V, (x} is the core potential. The above
separation of the potential introduces a discon-
tinuity in the gradient of the potential at r =a'.
Therefore, to avoid the second derivative of the
potential, we use Eq. (11) for the evaluation of
the I', (0).

At (=0, the expression for the memory function,
i.e. , Eq. {3), reduces to

r(0) =-— vV(x) vg(x) dx,
sm

(8)

which is an exact result and can be calculated
directly.

It is physically reasonable to distinguish the
effect of the core and soft parts of the potential
on the memory function. However, there is no
unique way of separating the core and soft parts
of the potential. Singwi and Sjolander' and Barker
and Gaskel' have used different prescriptions
suited to their convenience. In the present paper
for simplicity we have separated the Schiff model

I
I

I

I

I
I
I Vg
I

I

I

I
/

I

'l
I
I
'I

Vg

FIG. 1. Interatomic potentials for liquid sodium:
Schiff (solid line) and Shyu et al . (dashed line). The
units of length and energy are 00 ——3.24 A, ~ =599 'K.
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For all times of interest, the function V,'(y}a(y)
(V,' denoting the derivative of V,) has a sharp peak
around y = g, with a width ~~, and has an area C
equal to

~Cf ~0

e'~'I' (t) = — ' dx xg" (x} dx'x'

)
f,"dt(, p, V'.(}))G.(t)—x', t)

V,'(y) a(y) dy = -C .
0

(12)

-&e&lexpf-(x -o.)'/(a + &.)]
V,' x, t) = f"„'oexp[-x "/(a+ t),,)]dx' (14)

where e's dependence on time is implicit. Now

substituting Eq. (14) into (4}and performing angu-
lar integration, one obtains after some sirnplifi-
cation the expression for the memory function

Following SS we shall choose for the above func-
tion the form

V,'(y}a(y) = -C(vt), ,)
'~' exp[-(y —o,)'/d, ,], (13)

which has the correct width and whose area is
C. Further we assume the form of o.(y)
= exp[-V, (y)/keT], t(e being Boitzmann's constant,
which when substituted in (12}gives the area C
equivalent to tteT. With this form of o.(y} we are
left with only two unknown parameters ca, and
v which can be fixed from the knowledge of I', (0}
and the diffusion coefficient. Substituting Eq.
(13) into (5}, and after angular integration using
C=kar, we have

~0

y (t) = — f(ur) cos(dt d(u .
0

(20)

where G,(x, t) is the one-dimensional Gaussian
function,

G, (x, t) = [xa(t)] '~'e * '~", (18)

and V,' is the derivative of the soft potential V,.
In Secs. IIA and IIB we have obtained the expres-

sions for the core and soft parts of the memory
function. Since the computer results for the mem-
ory function are not available, we shall calculate
the velocity-autocorrelation function and its fre-
quency spectrum f((d). The frequency distribution
function can be obtained by solving Eq. (2} by the

Laplace transforms, which gives

Re 1"(((p }
[Rei'((d)]'+[(d —Imi'((o)]' '

where Rei'(&o) and Imi'(a)) are, respectively, the
cosine and sine transforms of I'(t). The velocity-
autocorrelation function is related to the frequency
distribution function as

dxe g'(e, +y a+3,) +@a~

(15)

f(e) (e"*f e ee)=
Therefore at (= 0, we should choose the constant
~g, such that

4 kI', (0) =
3

'
dy f(y}g'(o, +y)t n, )

is equivalent to the value given by Eq. (11).

8. Soft-part contribution

The calculation of the soft-part contribution of
the potential to the memory function I'(t) proceeds
in an analogous way as to the core part. In this
case one need have no knowledge of the function
u(x) since it is of the order of unity for x&0'.
Using Eqs. (3}-(5)after angular integrations, we
have the expression for the soft part of the memory
function

III. CALCULATION AND RESULTS

In order to perform the calculation of the meW-
ory function for liquid sodium, we need to know'

the interatomic potential and the static pair-cor-
relation function. %'e use two different inter-
atomic potentials and corresponding pair-correla-
tion functions obtained by Schiff" and Rahman"
from the molecular-dynamics experiments. Schiff"
has constructed a model potential by fitting the
long-range ion-ion interaction part by an oscil-
latory function and the repulsive core by a Born-
Mayer-type function. Using this potential, he has
obtained from molecular -dynamics calculations
the static pair-correlation function, velocity-
autocorrelation function, and its frequency spec-
trum at 383 'K and density of 2.43 x10" cm '.
The second potential we use is that of Shyu eI; al.'
who have obtained the interatomic potential for
alkali metals using the Ashcroft pseudopotential
and the self-consistent dielectric function of
Singwi et gl. lo For the potential of Shyu et gE. ,
Rahman" has done the molecular-dynamics cal-
culations and has obtained the static pair-cor-
relation function, the velocity-autocorrelation
function, and its frequency spectrum at the above
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density and a temperature of 394'K. Thus me

have tmo sets of "experimental data" for "our
purpose" to compare with the results obtained
for the velocity-autocorrelation function and its
spectral function obtained from the theory of
Singmi and Sjolander. In the foBoming me present
details of such calculations and results obtained.

The effect of core and soft parts of the model
potential of Schiff on the memory function has
been seen separately. To calculate the contribu-
tion to the memory function from core and soft
parts separately, we write Eq. (8) as

ment we disregard the factors e'~' in (15) and

(17). Since a(t) is given in terms of velocity-
autocorrelation function, mhich in turn is related
to r(f ) through Eq. (2), a self-consistent solution
for &gt) is needed. To start with, we have used
Schiff's numerical values for Q(f) and have cal™
cuiated the right-hand sides of Eqs. (15) and (17).
The relaxation time has been fixed from the dif-
fusion coefficient which is related to I (t ) through
the relation

r(o) = r, (o) +r, (o), (21)

where c and s refer to the core and soft parts,
respectively. The values of I;(0) and I', (0),
mhich are obtainable from Eq. (8) through the re-
placement of V mith V, and V, , respectively,
turns out to be 1.507x 10" sec ' and 0.753x 10"
sec ', respectively. Having knomn the value of
I",(0), the parameter ML~ can be obtained from
(16) which gives M4, =0.35 when expressed in unit
of cr, = 3.24 A. As me have pointed out earlier,
there is no unique may of separating a potential
into core and soft parts. %'e have, therefore,
studied the effect of different separations of the
potential on the memory function and compare the
results mith the corresponding separation in
liquid argon. For the separation, shomn in Fig. 1
the respective values of I;(0) and I,(0) in liquid
argon are 51.01x10"sec ' and 2.60x10" sec '.
Gn the other hand, if one divides the potential
into hard and soft cores at the point mhere it is
zero (i.e., r =cr,} then the corresponding values
of F,(0) and I', (0} in sodium are 0.918&10"sec '
and 1.342x10" sec ', and in argon' 35x 10'
sec ' and 25x10" sec ', respectively. These
results shorn that for the same corresponding
separation the ratio r, (0)/r, (0}in argon is much
higher than in sodium, indicating that the poten-
tial for argon is much harder than in sodium as
expected. %'e have also seen the effect of various
mays of fitting the soft part of the potential in the
region r& O'. For liquid argon SS have approxi-
mated it by a Gaussian function which gives the
value of r, (0) =-2.25X lo" sec ', whereas for
the case (as shown in Fig. 1}the value of I",(0)
is 2.60x 10'4 sec '. These results shorn that if
one fits the soft part of the potential by some func-
tion such that it fits the potential mell in the re-
gion r & c', then the value of I', (0) depends on how

this function goes in the region r& o'. From mhat

has been said above, me conclude that the values
of r, (0) and I',(0) are dependent on the way one
separates the potential.

In calculating the ratio I (f )!r(0), for the mo-
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FIG. 2. (a) Separate contributions of the soft and core
parts of the Schiff model potential to the memory func-
tion. (b) Comparison of the memory function obtained
from the potentials of Schiff and Shyu et al.

with D= 4. 4x1 0' cm'/sec obtained by Schiff from
molecular dynamics. Having thus obtained the
result of the memory function, after the first
iteration we calculate the width function a(t) from
Eq. (7) using Eqs. (19) and (20), and repeat the
iteration till the self-consistency is achieved.
For T = 2.10x 10 "sec our self-consistently cal-
culated r(f) gives D=4.42x 10 ' cm'/sec. The
normalized self-consistent memory function along
with its core and soft parts is shown in Fig. 2(a).
In Fig. 2(a) we have also shown the memory func-
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FIG. 3. Frequency spectrum obtained with the Schiff
potential (solid line) and Schiff's molecular dynamics
(dashed line). The area under the curve is normalized
to gv.

tion for 7'=~. From this figure we notice that
the memory function for 7' =~ decreases from its
value at t = 0 to half of its value during the interval
(0-2) && 10 "sec and has a higher long tail. How-

ever, to obtain the correct value of the diffusion
constant, it is necessary to choose the value of the
relaxation time v =2.1& 10 "sec. This is of the
same order of magnitude as the decay time of the
memory function. Therefore, the decay of the
actual memory function shown in Fig. 2(a) is due

mainly to the factor e '~'. This exponential factor

was phenomenologically put into SS theory to ap-
proximate the complicated interaction terms that
could not be treated in a satisfactory way. In
fact, this interaction term gives rise to the effect
of collective motions on the motion of the blue
particle. In liquid-argon calculations v came out
to be much larger than the decay time of the
memory function, and one could then identify the
microscopic origin of the decay as owing to hard-
core collisions. In the present liquid-sodium cal-
culations, the smaller value of v indicates that
the collective effects are more significant.
Therefore, one may not be justified in approxi-
mating the interaction terms through a single
relaxation-time approximation.

With these values of the parameters and I'(t)
we have calculated the frequency distribution
f (~}and the velocity-autocorrelation function
through Eqs. (19) and (20). The theoretical re-
sults, with those of Schiff, are shown in Figs. 3
and 4, respectively. The results are in qualita-
tive agreement with molecular-dynamics calcu-
lations.

We have only numerical values of the potential
of Shyu et al. Therefore, we have calculated the
total I'(f ) without separating it into the core and
soft parts. Using their potential and g'(x) in
Eq. (8), the value of I'(0) comes out to be I'(0)
=2.28~10'6 sec '. Since the amplitude of the
long-range oscillation in the potential of Shyu
et a/. is negligibly small, we assume that
V'(y}a(y} (V' denoting the derivative of V) is a
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FIG. 4. Velocity-autocorrelation function obtained
with the Schiff potential (solid line} and Schiff's molec-
ular dynamics (dashed line).

FIG. 5. Frequency spectrum obtained with the poten-
tial of Shyu et al. (solid line) and Rahman's molecular
dynamics (dashed line). The area under the curve is
normalized to —,'x.
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single-pea'. ed function at y = o0. The half-width
v b, of the function V'(y)a(y) can be determined
in the way described previously, and we obtain
&4=0.30 when expressed in units of o, =3.30 A.
From the potential of Shyu et al. , Rahman has
obtained the diffusion eoeffieient D = 5.8x 10 '
cm'/sec. To fit this value of diffusion coefficient
we need the value of relaxation time 7 =1.1x10 "
sec. Again a self-consistent solution for P(t) is
obtained and is shown in Fig. 2(b). This figure
shows the comparison of the memory functions
obtained from the potentials of Schiff and Shyu
et al. The results for the velocity-autocorrela-
tion function and its spectral function are shown
in Figs. 5 and 6, respectively. The results with
both the potentials of Sehiff and Shyu et al. show
similar qualitative behavior and are in fairly good
agreement with the molecular-dynamics results.

IV. QUASIEI. ASTIC SCATTERING

So far we have compared the results obtained
from the theory of Singwi and Sj5lander only with
the molecular-dynamics calculations. Recently
Cocking" has reported the results for the quasi-
elastie scattering for liquid sodium at 388'K from
neutron scattering experiments. Therefore, we
thought it worthwhile to compare the results ob-
tained from the potentials of Shyu et aL. and Schiff

oo

S,(Q, ~) = — t dte o 't''t4cos(ut,
0

(23)

where a(t) is the width function defined earlier.

with the experimental results of Cocking.
To study the atomic motion in liquid sodium,

Cocking has performed the neutron scattering ex-
periment for different scattering angles using the
incident neutrons of 6.1 A. The scattering cross
section of sodium is, in general, a mixture of both
coherent- and incoherent-scattering components
(o, =1.85 b, &x „=1.55 b). However, in the region
of momentum transfer Q & 1 A ' the scattered in-
tensity is predominantly incoherent. This is due
to the fact that the coherent-scattered intensity in-
tegrated over all energies varies as the static
structure factor S(Q) which falls to a very small
value for @&1A '. The Gaussian approximation
is perfectly valid in this region. Therefore, there
is no theoretical uncertainty of any kind in compar-
ing the theoretical results with the experimentally
observed cross section. The calculations of total
cross section for larger Q values have been done
by Pathak et al. ' using the theory of Pathak and
Singwi" for the coherent part.

The Fourier transform of the intermediate self-
correlation function in the Gaussian approximation
ean be written as

Q.O

0.6

04

0.3

O.a

FIG. 6. Velocity-auto-
correlation function ob-
tained with the potential
of Shyu et ar, . (solid line)
and Hahman's molecular
dynamics (dashed line).

4.i
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r
~m

dt e ~'I&'&~'cos&t
0

+ ate ~"")~'cosset
"&m

(24)

The width function has been calculated using the
velocity-autocorrelation functions obtained by
Schiff and Rahman from molecular-dynamics ex-
periments. For the numerical integration Eq. (28)
can be split into two parts as

dynamics techniques. For the Schiff model poten-
tial the effect of the core and soft parts of the po-
tential on the memory function has been studied
separately. It has been found that the initial values
of I', and I.", depend very much on the way of sepa-
rating the core and soft parts of the potential. It
has also been observed that for the same separa-
tion of the potential the ratio I', (0)/I", (0) in argon
is much larger than in sodium, indicating that the

where f is some value of f from which a(i} attains
its asymptotic value Dt+C; C is a, consta, nt. Equa-
tion (24) further simplifies to

5 (q ~}=- ~ dt(e e"&"~'-e o'&~"'&)cos&uf
m J0

1 q2 DQ
(Dql)2 + ~2 (25)

V. CONCLUSION

%'e have used the above equation along with the
calculated values of a(t) obtained from molecular
dynamics, to calculate the S,(Q, &o}. The results
obtained from both the potentials are plotted in
Fig. 7. Cocking has presented his experimental
data without applying the resolution correction.
Since we do not have the knowledge of his resolu-
tion function, we compare our results with his un-
corrected data which are shown with solid circles.
It has been observed that for the range of momen-
tum transfers considered here the first term in
Eg. (25) is negligibly small compared to the second
term. The consequence of this is that results ob-
tained here are only slightly different from those
which one obtaias from the simple diffusion model.
One can notice that this seems to fit quite we11 for
most of Q and & values. The discrepancy in peak
heights for the scattering angles of RO and 30' may
be due to resolution correction which has not been
applied in the present calculation. It mould not be
unusual for resolution correction to reduce the
peak height by half. The difference between two
theoretical curves is due to different values of dif-
fusion coefficients for the two potentials. There-
fore it appears that the scattering cross section is
not at all sensitive to the details of interatomic po-
tentials. Qn the other hand, the velocity autocor-
relation and its spectral function seems to be more
sensitive to. the interatomic potential.
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In this paper we have studied in detail the atomic

self-correlations in liquid sodium using the theory
of Singwi and Sj5lander. %'e have used in the cal-
culations two different interatomic potentials and
corresponding static pair -correlation functions
obta, ined by Schiff and Rahman from molecular-

FIG. 7. Measured quasielastic spectra for liquid
sodium at a temperature of 388 oK with incident neutrons
of 6.1 A (points) compared with the results of the poten-
tials of Schiff (curve 1) and Shyu et aL. (curve 2). The
indicated Q's (in A ~) refer to the values for cv =0 at
each angle.
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potential is much harder in argon than in sodium.
We find the relaxation time v to be of the same
order of magnitude as the decay time of the memo-
ry function in contrast to liquid argon. This may
be an indication of the inapplicability of 88 theory
to liquid sodium. In this case it wi11 be worthwhile
to use an approach similar to Kerr" who has
solved the Liouville equation for the N-particle
system to obtain an expression for the memory
function which differs from 88 by having a total
correlation function instead of the self-correlation
one.

We have used the molecular-dynamics results
of velocity-autocorrelation function obtained from
the potentials of Shyu t.t aI. and Schiff to calculate
the quasielastic neutron scattering cross sections
in the Gaussian approximation. The results are
compared with the experimental results recently

obtained by Cocking for liquid sodium at 388 'K.
It can be seen from Fig. 7 that the neutron scat-
tering cross sections are not sensitive to the inter-
atomic potentials. The two curves for the cross
sections are only slightly different from, those
which one obtains from the simple diffusion model
with the respective diffusion coefficients. For ex-
ample, the maximum difference in the simple dif-
fusion model and curve 1 is about I+ for the scat-
tering angle of 90'. The maximum difference be-
bveen the simple diffusion model with the experi-
mental diffusion coefficient (4.78x 10 ' at 388 'K)
and experimental results of Cocking is about IOP,

for most of the Q and & values except for the peak
heights at scattering angles of 20' and 30'. The
discrepancy in these peak heights is due to the fact
that we have not convoluted the experimental reso-
lution function with the theoretical expression.
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