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Y. Ben-Aryeh anal A. Postan

Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
(Received 10 August 1973)

The relaxation of vibrationally excited diatomic molecules of one kind is studied hy second-
quantization methods. The relaxation processes are described by interactions of the vibra-
tional degree of freedom with translational and radiationai heat baths. General quantum-
mechanical expressions are developed for transition rates in vibration-translation, vibra-
tion-vibration, and vibration-radiation processes. These expressions include the broadening
of spectral lines in a nonequilibrium gas. The line broaden~~~ is affected by the correlation
function of both the dipole moment and the density matrix. In the interaction of the vibrational
degree of freedom mth a radiationa/. heat bath, cooperative effects are studied. Cooperative
molecular effects do not influence the induced emission and absorption, but lead to changes in
the process of spontaneous emission.

I. INTRODUCTION

In the present work we study the relaxation of
the vibrational degree of freedom in a diatomic
gas of one kind. At room temperatures (or higher),
the thermal equilibrium of the gas is described
by the Boltzmann vibrational, translational, and
rotational distributions. %e assume that an ex-
ternal perturbation is applied to the gas for a
short time, leaving it in a vibrational nonequilib-
rium distribution, whereas the rotational and the
translational degrees of freedom return to the
Boltzmann equilibrium distribution immediately
(in a very short time}. We may describe our sys-
tem as being composed of anharmonic oscillators
prepared initially in a nonequilibrium vibrational
distribution. After the external perturbation has
been removed the system of oscillators relaxes
to its final vibrational equilibrium distribution by
collisions and by radiative transitions. These
processes represent energy exchanges between
the nonequilibrium vibrational degree of freedom
and either the rotational-translational degrees
of freedom or the radiational field. The rotational-
translational degrees of freedom and the radia-
tional. field, which are assumed to be in thermal
equilibrium, are represented by a very large
number of closely spaced energy levels, and their
interactions with the relaxing vibrational degree
of freedom practically do not change their equilib-
rium temperature. In view of these considerations,
the rotational-translational degrees of freedom
and the radiational field, act as heat baths" for
the relaxation processes of the vibrational levels.

Such relaxation phenomena have recently become
of practical interest in relation to the problem of
population inversion in diatomic gas lasers.

The transfer of vibrational energy to or from
the translational kinetic modes is made by two
kinds of binary collisions. In a binary vibration-
translation collision (VT process) only one mol-
ecule is vibrationally deexcited or excited. In
a binary vibration-vibration collision (VV process)
one molecule is vibrationally excited, and the
other deexcited. The exchange between two mol-
ecules of a single quantum of vibration is the
dominant process and occurs more frequently
than do exchanges of multiple quanta of vibrational
energy. Therefore we neglect vibrational mul-
tiple quanta transitions. In this approximation
we use the energy levels of an anharmonic os-
cillator with the selection rules of a harmonic
oscillator. The mathematical methods which will
be developed here may be easily applied also to
multiple quanta transitions„but this would com.-
plicate the calculations without significantly af-
fecting our physical conclusions. Because we use
energy levels of an anharmonic oscillator, VV
processes introduce energy defects. These defects
in energy are balanced by changes in the transla-
tional and rotational energies, so that the total
energy of the colliding molecules is conserved.
After VV and VT collisions the system is restored
very rapidly by elastic collisions to a translational
and rotational equilibrium.

%'bile studying the vibrational relaxation of a
diatomic gas many authors' ' started their
research from the master equation
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dn„" =P„„„~„g—exp — ".+' " n„n -P„, , n„n —exp — ", " ' n„,n
dt " " +

+Q Pg-g r+&; s, ~ "r+iss i exp pZ

Here n„and n are, respectively, the population
density of the vibrational quantum level r and the
total number density. F-„ is the vibrational energy
of the r state. P~+&, ~ ~+&n is the rate of produc-
tion of r state molecules from x+1 state mole-
cules, owing to VT energy exchanges. P, , „+, , „
xn„+,n, , is the rate of production of x and s state
moiecules from @+1 and s-1 state molecules.
The difference due to anharmonicity between the
two quanta (E„„—E,)-(E, E, ,) i—s exchanged
with the translational modes. In Eq. (1) the prin-
ciple of detailed balance has been used, viz. ,

Z„„„=S„„„exp[-(E„„-E„)/ur],
(2)

„,, ~, =P, , „exp[-(E, +E, —E„—E„)/kT)].

Relaxation dissipation and fluctuation of the
present system are discussed in the present work,
using second-quantization methods. The master
equation for vibrational relaxation is studied,
using a quantum-mechanical description of the
translational heat bath. The quantum-mechanical
derivation of Eq. (1) shows its validity conditions
and gives quantum-mechanical expressions for
the rate coefficients n„+,+l „+, „and ~„+,+, ,

In the special case where the
binary collision is isolated from other perturbing
processes, and assuming that the "memory" of
the heat bath is shorter than all other time con-
stants of the system, we obtain the common ex-
pressions for transition rates. ' " The present
methods enable us to derive new results for broad-
ening and shifts of levels which are especially
important in a dense gas. The expressions for
the broadening take into account the time depen-
dence of the density matrix. In the equilibrium
condition of the gas our expressions are reduced
to results similar to those obtained by other au-
thors.

In the present work we also discuss the relaxa-
tion of the vibrational degree of freedom by a
radiational heat bath (nonlasing modes). There
are fundamental differences between the quantum-
mechanical description of the translational heat
bath and the radiational heat bath. In a radia-
tional heat bath the operator B or B~~ destroys
or creates a photon with frequency cu, while the

corresponding translational heat-bath operators
B„and B~ change the relative energy of a col-
liding pair of molecules and therefore act as shift
operators. In a translational heat bath the cc,l-
lisions represent random processes, and cooper-
ative effects are neglected. The many-body for-
malism is reduced to a treatment of bimolecular
processes by using a mathematical method of
contraction. ' For a radiational heat bath we show
that cooperative effects in the gas lead to coherent
spontaneous emission. "'4 %'ithin the general
assumptions about the radiational heat bath, the
induced emission and absorption are not changed

by cooperative effects of the gas. Neglecting the
cooperation effects among the molecules, and

using (in the mathematical formalism) the method
of contraction, we get the usual expression for
noncoherent spontaneous emission. In conclusion,
cooperative effects might influence significantly
the vibration-radiation relaxation rates of the
diatomic gas.

II. HAMILTONIAN FOR VT RELAXATION

Our system consists of N diatomic molecules
confined to a volume, V, and we are interested
in the limit N, V -~, with the density s = N/V
remaining constant. The translational wave tunc-
tions are assumed to be periodic in the normaliza-
tion box of volume V. According to our assump-
tions the translational and rotational degrees of
freedom are in a thermodynamic equilibrium.
Therefore from now on, when we refer to transla-
tion we take into account (without mentioning it
explicitly) also the rotational degree of freedom.

In a binary collision the forces between the
molecules depend only on the internal and relative
coordinates of the particles. The center of mass
of the two molecules moves like a free particle,
and the internal energy is coupled by the interac-
tion only to the relative motion of the molecules. "
In a VT binary collision. only one molecule loses
or gains vibrational energy, and this amount of
energy is added to or subtracted from the relative
energy of motion of the two molecules. The ki-
netic energy gained or lost by the reduced mass
of the molecular pair is "smeared" by many
elastic collisions on the Boltzmann distribution
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of the heat bath. The "smearing" process is very
rapid in comparison with all other characteristic
time constants of the system. The exchange of
energy between the vibrational and translational
degrees of freedom depends mainly on matrix
elements for strong collisions. The effect of
rapid elastic collisions is expressed in our Ham-
iltonian by the assumption of the heat bath's short
memory.

%e assume that all the diatomic molecules are
in the electronic ground state. The total wave
function of one molecule is described by the
quantum numbers of vibration, rotation, and
translation. According to quantum mechanics
two molecules in the gas mith the same quantum
numbers are indistinguishable. Since, in our
system the gas is at a translational room tern-
perature (or higher), we may assume that Boltz-
mann, Fermi, and Bose-Einstein statistics mould
give equivalent results. Using this assumption the
gas is represented in our model by an ensemble of
bosons characterized by the quantum numbers of
vibration and translation (including rotation).

The Hamiltonian operator H„, for the ~hole gas
may be mritten

fft.t =ffox +ffos +ffvra+~
where H» is the unperturbed vibrational Hamil-
tonian for the N rnolecules and H~ is the un-
perturbed Hamiltonian for the heat bath. HvT
and B~ represent, respectively, the interactions
with the heat bath by VT and VV collisions. In
the present section we take into account only VT
interactions and postpone the treatment of the VV
interactions to Sec. VI.

The vibrational free part of the Hamiltonian
can be written in the second-quantization formal-
ism as

B,„=Q B( bt(i)b(i) = Q 5+,b" (i)b(i), (4)

where i refers to the i vibrational level, b (i)
and b(i) are, respectively, the creation and annihi-
lation operators for the vibrational state i.
represents the energy levels of the diatomic an-
harmonie oscillator.

In the description of the heat bath for VT inter-
actions we consider colliding pairs of molecules.
In our model me divide the gas into pairs of mol-
ecules so that the VT interactions take place
only between the two molecules of each colliding
pair. The VT energy exchanges occur only in a
small part of the pairs, namely, in the pairs in which
the collisions are very strong. The translational
Harniltonian of the gas can be separated into the
Hamiltonian of free particles moving with the
center-of-mass velocities of each pair, and into
quasiparticles with the reduced mass of each pair
moving relative to fixed scattering centers. "'"
The translational Hamiltonian of the free particles
is not coupled to the vibrational degree of freedom
and can be mritten

HOB = S+'J3~ u, k8 u, k.

Here B (&u, k) and B(e, k) are, respectively, the
creation and annihilation operators of the boson
quasiparticles which have translational energies
S~ and are characterized also by a set of other
quantum numbers k (including rotation, orienta-
tion of the bimolecular quasiparticle, etc.). In
the folloming discussion we shall use the com-
mutation relations:

[B((usk), B ((v', k')] = 5~ ~isa a ~, (6)

[B(~,k), B(~,k')]=[B'(~, k), B'(~, k )] =0,

[b(i},bt(j}]= 5„,
[b(i ), b( j)]= [b'(i ), b'( j )]= o

(7)

(8)

(9)

B(u&, k) and B (&u, k) operate on the basis state
vectors of the translational quasiparticles in the
Fock space which have the form

~ n(~„k, ), n(~„k,),
. . . , n(e;, k&). . .&. Here ~„e„.. . refer to the
quantized translational energies in the normaliza-
tion box, and k„k„.. . are all the other quantum
numbers characterizing the bimolecular quasi-
particles. n(e„k, ) n(~„k,). . . are the corre-
sponding occupation numbers. According to sec-
ond-quantization def initions

B(~„k,) In(~„k,), n(~„k,},. . . , n(~„k, ), . . .&
= [n(~„k,)]"In(~„k,), n(~„k,), . . . , n(~„k, ) —1, . . .&,

Bt (e&, k& ) ~ n(u&„k), n(~„k), .. . , n(&u„k&}, . . .) = [n(~„k&) + 1]' ~ '
( n(u&„k, ), n(~„k},. . . , n(~„)k+j1, . . .& .

In a similar may me have

b(i ) ( n(1), n(2), . . . , n(i ), . . .&t
= [n(i )]

' '
( n(1), n(2), . . . , n(i ) —1, . . . &

b (i) (n(1), n(2), . . . , n(i}, . . .& =[n(i)+1]' '(n(1), n(2), . . . , n(i)+1, . . .&,

(12}
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where n(i) is the occupation number in Fock space
for the molecules in the ith vibrational state.

The VT coupling bebveen the translational heat
bath and the vibrational degree of freedom is
given by the Hamiltonian of interaction:

H~ =a+ b'(i -1)b(i)m& ~, ,
f

B„= g Bt(e', k')B(e'+ v, k)K i,„».
4, A~

and, then, we get the VT interaction Hamiltonian
in a shorter notation:

H~ =kg b (i —1}b(i}M((, Q B„

Q B ((u, k}B((u',k')K
+g Q bt(i)b(i —1)M), q Q B, . (19)

+g P b'(i)b{i 1)—bf. . .

Mg, ] =M]~g „
+tLl', a', g, a e, a; tt)', a' '

(15}

(16)

The complex conjugate is denoted in the present
work by an asterisk. The operators 5 and B be-
long to different quantum-mechanical systems and
are commuting operators:

[b, Bt] =[bt, B]=[bt,Bt]=[b,B]=0 (17)

for any operator b(i) and B(&u, k).
In the rotating-wave approximation we assume

(d —e'= v&0 and neglect in the Hamiltonian of
interaction terms for which v- v'& 0. Using this
approximation we define new operators of the
translational heat bath

B~t = Q Q B ((u'+», k)B((o', k')K~. »
~ . ~.~„»,

a, a'
( 18a)

x Q Q B"((g', k')B(~, k)K~ », ~~ »i .
(u, ru' », »' ('14)

As was explained in the introduction, we take
into account only single-quantum transitions.
The first and second terms of H~ represent,
respectively, excitation and deexcitation of mo-
lecular pairs by one vibrational quantum. The
matrix elements of interaction are separated into
products of vibrational and translational parts.
M«, represents the vibrational matrix element
of the molecular pair, where one molecule is
deexcited by one vibrational quantum. K„»,~ »i

is the translational matrix element for the transla-
tional quasiparticle which is excited from the state
e, k to a new state ru', k'. The second part of H,

is the Hermitian conjugate of the first part, and
we have the relations

III. EQUATIONS OF MOTION FOR VIBRATIONAL
OPERATORS b (i) IN UT RELAXATION

The general Hamiltonian of the present system
(neglecting Hvv» interactions) can be written

H =Ha~ +Hos +H~», (21)

where H, , H,s, and H~ are defined by Eqs. (4),
(5), (18), and (19). Using the Heisenberg picture
the equation of motion for the operator b(r) can
be written

ia „, = [b(r), H] =[b(r), H,.] +[b(r), H„ ]
db(r)

+ [b(r), Hvr»] . (22)

The first term on the right-hand side of Eq. (22)
gives

[b(r) Ho„] [b(r) Q geo& b (i)b(i)]
f

= )f ~, (b(r) b'(r)b(r) —b'(r) b(r) b(r)j
=I~„b(r) .

According to Eq. (17) we have

[b(r), H„]=0 .

The third term on the right-hand side of Eq. (22)
is calculated by using the following commutation
relations for the 5 operators:

Here again the operators B„and b(i) belong to
different quantum-mechanical systems and there-
fore are commuting operators:

[b(z },Bt] =[bt(i), B„]=[bt(i), Bt] = [b(i), B„]=0.

[b(r), g b (i —1)b(i)]= b(r+1) (since the contribution is only from i —1=r),

[b(r), g b (i)b(i —1)]= b(r-1) (since the contribution is only from i =r).
f

(25)
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As b(r) and B„(orB„) are commuting operators [Eq. (20)] we get according to Eqs. (19) and (25):

(b(~l((~, ( = N~((( Q, b'(( —((((()~a. —,2 (('}~ (((~&,((Q ("((((((—((~a-„. Z ((}
4 V V

=Sb(r+1)M„~,
~ „QB„+Sb(r—1~,~ „QB„. (26)

Using Eqs. (22)-(26) we get

iS
d

=S(L(„b(r)+Sb(r+1}M„+,„QB„db(r)
dt

+Sb(r —1)M, „,QB„.
A similar equation of motion is obtained for bt(r}:

I d
=-S&o„b (r) -hb (r+1)M„„„db (r)

x P B„-Sb~(»—1)M„„,+ Bt.
(28)

Formal solutions for Eqs. (27) and (28) can be
given as

b(r, ((=b(r, 0)e "4' —( I dt s' " ''5(r'+(, ( )M . , ('(')$.. ((.(t')

t
a&'e-'~&'-"S ~-1 t' I t' a, t',

0 V

t
b'(r, t) =b'(r, o)e"+'+i dt'e"+~'-' 'b1(r+1, t )M„„,(t') g B„(t')

0 V

+i dt'e'~&' "&b'(r —1-, t')M„,„,(t') Q B„'(t') .
0 V

(29)

( 30)

Here we inserted matrix elements which may depend on time due to external perturbations on the binary
VT interaction (like elastic collisions with distant molecules). We shall use later the formal solutions to
discuss the vibrational relaxation phenomena.

IV, EQUATIONS OF MOTION FOR OCCUPATION NUMBER OPERATORS OF VIBRATIONAL STATES

The occupation-number operators of the vibrational states change during the relaxation process ac-
cording to Eqs. (2V) and (28) by the rate

ih —[b (r)b(r)] = iS b(r) +iSb (r)
d t . dbt (r) . t db(r)

=-Sb'(r+1)b(r)M„„„QB.-Sb (r-1)b(r) M„„,P Bt+Sb'(r)b(r+1)M„, „gB'„
V V

+hb'(r)b(r-1)M„„, g B.. (31

%e shall assume that B„and Bv~ are Markoffian
so that ensemble averages of products of either
B„'s alone, 8„'s alone, or of odd products in which
Bv and B, appear alternatively, vanish. Using
this assumption, we shall take into account only
the products B„B„and8,B„and ignore all other
products of B„'s and Bv~'s according to their ap-
pearance in the calculations. ' For the operator
B, defined in Eq. (18b) we have the equation of
motion

I d,
" = [B„,B, ]+[B„,H„]+[B„,B~]. (32)

dB,

with the vibrational operators, the first term on
the right-hand side of Eq. (32) vanishes. The
third term gives, according to Eq. (19}, the re-
sult

[B„,B~]=Sg bt(t-l)b(t)M. . . g [B„BJ,]

W g 0 (( ( ( (( —((nr. . . P (((., ((..()
i v'

=S g b'(i —1}b(i)M, , g,(B)

Since the operators of the heat bath B„commute +SQ b (i)bt(i)M(, (g„(B) (33)



2116 Y. BEN-AHYZH AND A. POSTAN

f, (B) and g, (B) denote in short notation the terms
in the large parentheses which are functions only
of the heat bath and their evaluation will not be
needed here.

The second term on the right-hand side of Eq.
(32) gives

[B„,H„]

P P B (e', t(B)B(&u'+ (d, t()X i„„e
~
„.B,

~l I tilt

B„(t) = B,(O)e-'"'— dt'e "' "&

i —1&i M

+ Q b (i)b(i —1)M, , ;g„(B}, (37)

The formal solutions of Eqs. (35) and (36) are

xg S(dB (~, k)B(ru, k) =tt(tB„.
QP ~ k

(34} B,'(t ) = B„'(O}e'"'+t
0

+b Q bt(i)b(i —1)M. . .g„(B) (36)

and, in a similar way, we have

dI3t
i5 " = —S(dB„—tf Q b (i)b(i —1)M(, ( f„(B)

i

-t( Q bt(i —1)b(i)M( ( .gBt(B). (36)

Here we used the commutation relations according
to Eqs. (6) and (t).

%e finally get the equation of motion for B„as

I " =h(dBB+I Q b (i —1)b(i)M, ( j'B(B)

X & &~~ —1Mi X i v~B

+ Q b"(i —1)b(i)M ((,gt(B), (38)

where the terms in the large parentheses are func-
tions of the time t'.

Let us substitute the formal solutions of Bv and
B„ into Eq. (31) and order these operators (to
the left of the nearby operator b) so that they will
always appear between the two vibrational oper-
ators b. This procedure is allowed (as the oper-
ators b and B commute) and appears to have
computational advantages. One gets

IB [0 (r)b(r)]= —Ifb (r ~ I) EB„(0)e b(r)M,'"', „—Bb (r —I) QB(0)e") b(r, )M
V V

Ifb (r) E B„(0}e'"' b(r ~ 1}M,„,~ I!0 (r} PB„(0)e '"'] b(r —1)M. . .
V V

—Bbt(r I) —'f dt'E e '"I' 'I Eb ( — (l))b(Mf, ( )'B
I 0 V

+Q bt(i)b(i-l)M(, (g,(B) b(r)M„„, ,

—lib'(r —1) i

t
+t(bt (r) i

dt'g e'"" ' ' p b (t)b(i —1)M. . .f „(B)
V

Q bt(i —1)b(i)M. . .BI(B)) b(r)M. . .

dt Qe "I' ' I ('Qb ( )b(i —1)M. . .f„(B)'
+ Q b (i —1)b(i )M ( ~ (,g Bt (B) b(r + 1)M„„„

i

+debt(r) —i tft'g e ™( ( P b (i —1)b(i)M(, ,f„(B)
0 V

+g b'(i)b(i-1)M. . .g„(B) b(r-l)M, , „. (39)
i
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Here we shall use the idea of contraction as
formulated by Haken. ' The collisions are random
processes and, by neglecting cooperative effects
between the molecules products of the four opera-
tors, b should satisfy the general relation

(b (t)b{j)b (b)b(l)) ={b (t)b(t)}5,, (40)

where {f;(B)}is a mean value of {f„(B)). After
integration over time, and using the well-known
properties of the function 5(t -t'), the products
of the vibrational operators b (i- 1, t')b(i, t')
and b~(i, t')b(i-l, t') tend, respectively, to the
values b"(i-1, t)b(i, t) and b (i, t)b(i-l, t). A
more detailed discussion of this procedure will
be given later, in our treatment of the radiational
heat bath. The mathematical formalism there is
simpler, but the conclusions are of general va-
l,idity to heat baths. We obtain therefore in the last
four terms of Eq. (39) the products:

b~(r +1}b (i —1)b(i)b(r);

b'(r + 1}b~(i)b(i—1)b(r)

b~(r —1)b"(i—l)-b(i) b(r);

b~(r)b~(i}b(i-1)b(r +1);

This property of the algebraic x'ing of operators
b can be verified directly by using a one-molecule
wave function: ~n(I) =O, n(2) =0, . . . , n(m-1) =0,
n(m) =l, n(m+1}=0, . . .}. The use of contraction
might be incorrect for molecular interactions
with radiational heat bath (see Sec. VII).

In the last four terms of Eq. (39), the functions

f„(B)and g,(B) contain summation of pairs such as
B,(t')B „,(t'}. We assume that the ensemble average
of such products of heat-bath operators cannot
contain a rapid phase factor. Therefore the
ensemble average of f„(B)or g„(B) is a slow-vary-
ing function of v. The summation over closely
spaced values of v may be exchanged by integra-
tion over v, and we use the relation'

-b (r)b (i —1)b(i)b(r —1);

-b ~(r)b ~(i)b(i —1)b(r —1)

(all operators at time t). All the terms of this
kind vanish according to Eq. (40) (after they have
been put in the order of Eq. (40}. Finally we ob-
tain that the four last terms in Eq. (39) are equal
to zero. One should take note of the fact that
although b(t) commutes with B,(t), b(t) does not
commute with B,(0).

Since the last four terms of Eq. (39) vanished
we continue with the first four terms by using the
following procedure: %'e substitute the operators
b and b by their formal solutions [Eqs. (29} and
(30)] and order the operators B,(t') or B~(t') which
appear in these formal solutions (to the right or
the left of the nearby vibrational operator) so
that the translational operators will appear always
between the vibrational. operators. Then we sub-
stitute the formal solutions of B„and B, [Eqs.
(37} and (38)] and assume that the heat bath has
a short memory. The operators B„are Markoffian,
and therefore ensemble averages of one operator
B„or odd products of operators B„vanish. Only
even products of B~ and B„contribute to the ensem-
ble average. Using these properties we proceed
in our calculations, excluding the terms which
contain the functions f„(B)or g„(B) [which enter
bythe substitution of the formal solutions of B„(t'}
and B„(t')].If these terms were included, the calcula, -
tions would be more complicated and tedious, but
would lead to the same result [Eq. (43)] . Part
of the terms containing the functions f„(B)or
g, (B) would vanish on ensemble averaging, and
part would be included in the operators b~(r + 1, t )
and b(r, t) which appear in Eq. (43). It is empha-
sized that we do not use in the present work the
approximation B„(t)= B( }0-'s"' (although it might
seem so from the final results). The complete
equations of motion for B, and B~ are used, and
only by certain ordering of the operators and by
using Markoffian properties, second and third
terms in the expressions for B, and B„[Eqs. (37)
and (38}] are excluded. By the present method
we therefore obtain a certain ordering of the
operators B„(0)and B„(0), which is very important
in evaluating the correct results. Without this
ordering of operators the results would be the
same, but the mathematical development would
be much more compl. icated. In order to illustrate
the methods of the calculation mentioned above,
we show in great detail the treatment of the first
term in Eq. (39). The second, third, and fourth
terms are treated in a similar way. Using Eqs.
(29) and (30 we get
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b'( .1, 1)(PB„(0)e-'")b(»,t)M„.,

b~(0 +1, 0)e'~&+"+ i ~) dt'e'~r+b&' "&0'(v+2, f')M„„„„(f')QE„(0)e-'"'
0 V

(

~
' Br "' ""0 (, t )M„', ,(r)QB(0)e' ( QB (0)s '"')

~o V V

x bgOe " —i dt'e ' Bv~ Oe "' br+1 t' M+„„t'

-i dt'e-'"~' ' ' B„Oe '"'br —1 t' „,„t') „,t).
0 V

(41)

Averaging and taking into account only the double products of the operators B„and B~, we get

bt(r ~ 1 t}(QB(0)s t"')b(r t)M, „,) = (bt( ~ 1, 11)
' "M"(t)(,Q„,B(0)e '

)V
V

~t
dt e t(vg(t t ) gl O

kvt -y 1 tP ~ t
0

t
+ ~ dt e™«~~'-'~O' ~, t' m t' a„' O e'"'

0 V

xM, (t)(Q „B(, ) 0e'"')b(r, b)e '"" (42)

We can exchange in E(l. (42) the terms b~(x+1, 0)e' ~+1' and b(r, 0)e ' "', respectively, by b~(r+1, t) and
b(r, f) (as we add by these substitutions vanishing terms of triple products of B„). Using these properties
of Markovian processes we finally get

0"(„1,1)(PB(0).-")D(., t)M. ..,)= b'("1,1)M„...(t)(PB(0).-'")

x (-;
t

St et'+t' ' & Q Bt(0)'e'"' b(t 1, t')M„, „(t))'
+ ~ dtl e4)~+j(t-t )yf + ti ~ t ~1 O elva

0 V

x be, ,„(t ) (g B„(0)e "') b(r, t )) . '

In deriving Eq. (43) we have not so far used the perturbation theory, and the result is based only on the
assumption that the heat bath has a short memory (Markoffian process) and on contraction (vibrational
interaction with one representative molecule). By continuing the calculations in the second, third, and
fourth term of Eq. (39) we get the complete results
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ia
d [at(r, t)i&(rt),])

l s r ~ r ~I f l ~
~i~~

I
~ t ~ ~1

t
ts dt s "'t -'&'a-t(r t &M, . .(t') .I; B (o&e„'"-a"i. . .(t) P B'(0)e„'"') a(r, t)

0 V Il

t
essa'(. (, i)a-i. . .(t& I Bt(o)e&" r dt e-'"»-"g B(o&e ''a-(r"ti-)M, (.t .&).

Il 0 Il

t
—(S dt e'" 'i' "'a'(r-t )M ',, („t ) P, 'B'(O)e'""„at..., (t& P B (O&s '"„') a(-r t),

0 It I/

t
~ ilia&(r+), t)M, „,(t) I 8 (0)s ' f"'dt e''»' ' I BJ(0)e'"' 0( ~ i, t )M , '(t'))„,

V 0 Il

+N dt'8 " ~b x+1 t' M„„~~ t' 80 8 " M+~ „ t pe„O 8" b r+I t
0 Il Il

t
—isa'(r t)M... , (t) QB'(0)s'"' f dt s' " '" '

& I, B (0)e ' a(r "t')M„('t ))... '
It 0 fl

t
bio dt' e' " '

(
& 0- r, )& t„M(t ) I. , B'.'(0&e'"' M. ,„(t ) I.B.(0)e '"') a(r - (, t )

0 II V!
iaa&(rt)M-. . .(t,) (I B,(0)e '"')( dt e' ' '" ' PB„(0)s 'a(r, 't")M . .('t'))). .

(44)

V. FUNDAMENTAL EQUATIONS FOR VT RELAXATION OF DIATOMIC GAS

We can get from Eq. (44) higher-order terms by repeating the substitution of the b operators according
to Eqs. (29) and ($0). To get the second-order perturbation theory, we cut off this iteration procedure
We shall use the relation

b(r, t)=b, (r, t)e-' ".
Here b,(r, t }is a slowly varying function of time, and the rapid changes with time are included only in
e ' r'. In the products of summations over &t, in Eq. (44), we take into account only resonant terms (with
the same (t). In the first stage of the calculation we take an average value of B'„(0)B„(0)near the resonance
frequency and leave the rapid fluctuating term e"" ' ' ' of the phase unchanged. Equation (44) is then re-
duced to the fundamental equation of VT relaxation in a diatomic gas

iS —btg, t b, t

dt exp[t((d„, —(t&„+v}(t—t')]bt(r, t')b (r, t}M, (f')M, ( )(tB(0}Bt(0)}

r d t' exp[- t (&, —~„—(d) (t —t')] bt (r —I, t)b, (r - I, t')M„, „(t')M„„,(t)(Bt (0)B„(0)}

r «'exP[t(~„, —~, -~)(t -t')]b', (, t'}b,(r, t)M„, „(')t„M„,(t)(Bt(0)B„(0)}
0

J
t
dt' exP[-t (&u„- &u„„+v)(t- t')]bt (r + I, t}b,(r + I, t')M„„„{t')M„„(t)(B(0)B&(0)}

exP i(4P -40 +p (g -t' b +] t g' g g 0 gyp O

r
t

xp[-t(~" a -4', -&d)(t -t')]b, (r, t)b, (r, t')M, „„(t')M„„„(t)(BJ'(0)B(0)}
t

J
" "p['(~.-".-& -")(t-t')]b (r - I t')b (r - I t)M (t')M, „(t}(BJ'(0)B(0)}

l t
' '"P[-'(".-a -~.+"}( - t'}]b'(r, t)b.(, t'}M„„a(t')M„a „(t)(B„(0)Bt(0)}I .

I



2120 Y. BEN-ARYEH AND A. POSTAN

In Eq. (46) the terms &B„(0)at(0)& and &Bt(0)
B„(0)) are average values of the translational part
of the interaction, which has a very slow depen-
dence on energy. (We shall develop later the trans-
lational part of the interaction. } The vibrational
part shows line-broadening effects near the reso-
nance frequencies of the various vibrational transi-
tions. In each term we have the correlation in
time of the dipole M(t')M(t) and another correlation
of the form boy(t')b, {t). This result for the line
shape describes general behavior which in cases
of equilibrium reduces to the known expressions

from other works on spectral line broadening. ""
Qur general result is valid for nonequilibrium as
well as for equilibrium conditions. For nonequi-
librium conditions the line-shape expression con-
tains correlation in time of parts of the density
matrix b, (t')b, (t) Th.e dependence of the matrix
elements on time can result from external pertur-
bations in the gas to the VT binary collision. "

Neglecting also memory effects of the vibrational
part of the interaction, the summation over v in
Eq. (46) introduces the function 6(t —t'), and Eq.
(46} is reduced to

dt[bt(r, t)b(r, t)] =v( —2bt{y, t)b (y, t)IM, (t)l (B (0)at(0)&

+2bJ(r I, t)b, (r —I, t)IM„„,(t)l'&BJ'(0)a„(0)&„~ ~ „

—2bt(r, t}b (r, t)IM, , (t)l'&Bt(0)a„(0)&,

2bt(r+I, t)b, (r+I, t)l~t„„,(t)l'(a, {0)a„'(0)), .„„).
Using the relation bot(y, t}b,(r, t) =bt(r, t)b(r, I).
The comparison between Eq. (47) and the VT tran-
sition rates in Eq. (I) is straightforward. We sub-
stitute for &bot(y, t)b, (r, t)) the number of molecules
in the vibrational state y at time f. . The transla-
tional parts of the interaction can be developed as
follows:

&a„(o)a.'(o)„. . .

=n g Pss&PIB. {0)l~&&&IK(0}IP&.

Here B„(0)is an energy-shift operator. n and ti
are the many-body quasiparticle bimolecular
states. The translational energy of the state P is
lower in energy h(~„—~, , ) relative to a. Since
the translational degree of freedom is in thermo-
dynamic equilibrium at temperature T we have

where, here again, the translational energy state
P is lower in energy ft(&u, —&u„, ) relative to a.
For this term we have

&a„{0)a,(o)&„~, ,
="- Pe-' /"le, .I'.

Each term in
& B(0) B(0t)& is larger by a factor

ets" s" 'I/'r tha-n the corresponding term in &Bt(0)
B,(0)), and therefore

(Bt (0)B„(0})„

(B (0}at(0)& e-(Ey-Er-g)/AT (54)

Let us use the following definitions:

(a„'(o)a„(o))„..
P8, = {I/~)s ""', (49)

where z is the translational partition function. The
transition probability of the translational interac-
tion in Eq. (48) is given by

(B,(0)at(0))„

=- g e-s-/"lz„, l'=-nz„, „, (55)

It's. I'=&Pla, {0}lo&&~IX(0)IP&.

We get the final result

&a {0)B1'{0)&— Q es 84/riff ]2

8

In a similar way we get

&Bt (0)B„(0)&,

(50) ss/'rlK~ I'=nK„„,. (56)-
8

From these relations we get the detailed-balance
ratio

K =K e {Er ~r-»~" T
r -z, r r, r-l

By similar definitions and considerations for the
spectral transitions y™y +I we have

=n p p .& alat(0)lp& &pla„{0)la&, (52) e -{Er+y
-Er) jA T

r, r+1 r+ I,r (56)
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Substituting Eqs. (54)-(58) for the transitions y +1
—r and y- y —1 into Eq. (47), we get

=2v]tt/t„„, ~'K„, „[n{r+i)n e i"--""-'n(r)n]

-2v~M„„,~'K„„,[n(r)n-e &s "-»"-n-{r —i)n].

(59)

All the terms in Eq. (59) are defined for the same
time t, and this equation is equivalent to the VT
part in Eq. (1}.

Vibration-translation transition probabilities
have been calculated in great detail, by many au-
thors for various molecules. Usually in practical
calculations of the matrix elements (mostly for
the squared absolute values) one cannot take into
account a full description of the interactions in the

gas, and various approximations are used. The
term which is equivalent to ~M„„„~' (in our work)
is often taken to be equal to the squared absolute
value of the harmonic oscillator matrix element.

The term K„„„defined in our work by Eqs. (55)
and (50), turns out to be very complicatef, and it
was evaluated by other researchers only in sim-
plified cases. The fundamental equation of VT re-
laxation of diatomic gas given in our work [Eq.
(46)] is more general than usual expressions
[equivalent to Eqs. (59)]. Although usually Eq. (59)
is a good approximation for Eq. (46), the effects
of broadening and the external perturbations to the
VT relaxation might be important in studying the
fine details of population inversion in diatomic gas
lasers. These effects must also be important in

dense gas systems far from thermal equilibrium
(e.g. , high-pressure lasers).

VI. VV RELAXATION IN DIATOMIC GAS

The theory of vibration-vibration relaxation cou-
pled to a translational heat bath can be presented
by the same methods given for the VT relaxation.
Here we outline only the main results and the quan-
tum-mechanical analogs for the VV expressions of
Eq. (1). The quantum-mechanical expression for
the rate coefficients n„„n, ,P, , „„., „ is given by

t t
dt'[e px[-i{~„+co,—~„„—~, , +v)(t —t')]bt(r+1, s —1; t)b, (r+1, s —1; t')/Vt„„, , „,(t')ill„, .„„,, (t)I

v "0

e-sa/AT+

8
z

t
+ P J

td'fe px[i(~, +&@, —~„„—~, , +v)(t —t')]bt(r +1, s —1; t')b, (r +1, s —1; t)M„, „„,,(t')M„„. , , „,(t)].

e -Es/AT 2

8

e -ss/AT~K ~2

= {bt(r +1, s —1; t)b, (r+1, s —1; t))]M„„, , „,{t)~' s." . (60)

One can verify that this expression is the analo-
gous expression for the fourth and fifth terms on
the right-band side of Eq. (46). Here the vibra-
tional transition is characterized by the vibrational
quantum numbers of the two molecules. The sum-
mation over v shows the distribution of the radia-
tive transition near the resonance frequency
v0= (~, —~, , ) —(co„„—cv„). (According to the ro-
tating-wave approximation v0 will always be posi-
tive. ) I, , „„., „ is the dipole moment for the vi-
brational transition of two molecules. The trans-
lational part of the interaction is equal to that
presented in VT relaxation. ~K& ]2 is defined by
Eq. (50) and s is the translational partition func-
tion. The right-hand side of Eq. (60) is obtained

by neglecting memory effects also for the vibra-

tional part of the interaction. The expectation
values of the operators 5 on the right-hand side of
Eq. (60) are given as

( bat {r+ 1, s —1; t)b 0(y + 1, s —1; t)) =n„,n,

The complete treatment of VV relaxation can be
made by exchanging all rate coefficients of Eq. (1}
[as illustrated for one term in Eq. (60)] by quan-
tum-mechanica1 expressions. The fu11 treatment
of VV relaxation is similar to that of VT relaxa-
tion, and one can easily deduce the complete ex-
pressions. In the present work we do not treat
resonant VV interactions (y. —1, y - p. , y —1) which

do not change the vibrational population of the gas.
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%'e can use the present methods only for cases in
which the VV interaction is coupled (due to the
anharmolucity of the diatomic molecule) to a trans-
lational heat bath.

N =K(e„b(r)+lb(r+1)M„„„+g~~db (y)

+ttb(r —1)M„,„Qg~~.

VIL VIBRATIONAL RELAXATION SY
RADIATIONAL HEAT BATH

The Hamiltonian operator H, for the whole gas
may be written in the present case as

(62)

where H~ is defined by Eq. (4). H~e is defined by

Hose= Q tt(oat~~, (62)

where the summation is over all frequencies of
the radiational heat bath. '0 B~ and B are the crea-
tion and annihilation operators of a photon with

frequency &. 8 „~can be written

H „s=8' Q bt(i —1)b(i)M. . . Q gott
f l'd

+ti Q bt(i)b(i - l)M. . . Qg~, (64)

where g is a slowly varying function of the e~lergy
A~. M. . . is the dipole matrix element for radia-
tive transition (we neglect in the present work the
Doppler broadening); g„ includes constants which

appear in the usual theory of matter-radiation in-
teractions. The radiational heat bath represents
an equilibrium state of the radiation w'ith a con-
stant frequency distribution. For example, this
distribution might be equal to that of a blackbody
radiation or to that of nonlasing modes in a cw
laser. Equation (64) describes the matter-radia-
tion heat-bath interaction, which is analogous to
the vibration-translation heat-bath interaction de-
scl'lbed in Eq. (19).

Using the Heisenberg picture the equation of mo-
tion for the operator b(r) can he written in the
present case as

it " =[ br){, ,H] [+b{)r, H,„ ]I[+(br), H„„]s,

(65}
where

[b(r), H,„,]=0, [b(r), H,.]=a~„b(r), [t {r),H.„,]
is evaluated according to Eqs. (25} and (64}. We
get

Equation (66) is analogous to Eq. (2V), where the
radiational term Q„g 8 exchanges the transla-
tional term Q„B„.The equation of motion for 8
is given by

ia „, =[a H„, ]
dB

=[a H ]+[a H,„,]+[a H „], (6V}

where [B H~] =0 and [8 H,„e]=tt(dB„Her.e we
use the commutation relations

[a B.', ]=6... .

Our treatment of the radiational heat bath is dif-
ferent from that of the translational heat bath in
two fundamental points. The use of Eq. (66) sim-
plifies the treatment of the radiational heat bath,
but, on the other hand, we shall avoid using here
the contraction and shall consider the possibility
of cooperative effects between molecules (while
in the treatment of the translational heat bath such
effects were excluded).

Using Eqs. (64) and (68) we evaluate the expres-
sion [8 H „s]and get

itl „=5~8 +fig* g bt(i -l)b(i)M, , , (69)

The formal solutions of B and B~ can be written

a (t) =a (o)e
tidt'e -'"~' '&g* P b-t(i -l)b(if'

0 f

8 (t}=8 (0)e' '

+& dt e j (t-t')+ bf(& b &

(Vl )

Eqllatlons (Vo} Rnd (Vl ) for radiational heat-hath
operators are analogous, respectively, to Eqs.
(SV) and (36) for the translational heat-bath opera-
tors, but here the expressions are simplified due
to Eq. (66). We insert the formal solutions of 8
and Bt into Eq. (66) (ordering the operators 8
to the left of operators b), and then we get

(a ~( =a,)(r) ~ )( I dr gs'""-"I(;.I' p)'(, r)(( - s) y ~ (,(e((
0 4t j

t
dt' g e ' &' "[g ]'P bt(i —1 t')b(i t)b(r -I t)M PI

0 td

++ g~t 0 b +~ „+, , +5 g B 0 ' by-1 (V2)
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Equation (V2) is simplified by using the relation

P y ('e' &'-"&= g Ig ('8 ' &' "=2»5(t t'-)

where» =vls~lw. We obtain

ik =k(db(r)+than Q b~(i)b(i —1)b(r+1)M&, ,M„„„-iK»Qb~(i —1)b(i)b(r —1+. . )M„, „
i

+a g+a'(O)e' ' b(~+1 „„„+k g a (0 -' S~-1

AII operators in Eq. (V3} are at time t, and memory effects are neglected by this approximation. In
a 81Dlllar O'aY,

db~ rig = —R&u„b "(r) —iS& gb" (r —1)bt(i)b(i —1)M, , &M„„,+ih» g b~(r+1)b~(i —1)b(i)M. ( )M„„„

—gbt(r — B)t (Q. .g.„gt(0)e' ' -gb"(r ))M. ,... ( Q gg( lD, e'"').

The formal solutions of Eqs. (74) and (75) are

b(r, t) =b(r, 0)e ' r'+», dt'e ' '&' ~ gb~(i, t')b(i —1, t')b(r+1, t')M. . .(t')M„„„(t')

t
dt'e ' "" ' ' P b'(i -l, t')b(i, t')b( -1, t')M. . .(t')M„, „(t')

0

I ~ ~ I

~~

~

~
~ /

y ~ ~ ~ j r

t
&t'8-"+&'-'& g~' 0 '"' S(y+1, t'~„„„t'

I ~ I

~ ~S
~ e I ~

t r I1 I r

t
et e' te ' 'Qg 8 .(Dle '" )0( —1, r)M. . .(r)

0 4J

b~(r, t) =b~(r, 0)e"+'-» '„dt'e'""" "p b~(r —1, t'}b~(i, t')b(i —1, t')M. . .(t')M„„,(t')

( t
+» ' dt'e' " ' ' ) g b~(r +1, t'}b~(i -1, t')b(i, t')M«, (t')M„„,(t')

f

+t Jl
dt'e' "' ' 'b (r+1 t')M (t') gg~ (0}c-'"'

0

The rate of change of the occupation-number operators of the vibrational states during the vibration-
radiation interaction process is given by

ig—[b'(r}b(r)) =in b(r) +t ttb'(r). db~(r) . db(r)
de dt dt

(VV}

= -itt» Q b~(r —1}b~(i)b(i l)b(r)M, , ,-M. . .+tit» Q b~(r+1)b~(i —1)b(i}b(r)M. . .M, „,

+ih» Q b'(r)b~ (i)b(i -1)b(r + l)M. . .M„„„—i k» Q b~ (r)b~ (I —l)b(i)b(r —1)M. . .M. . .
—0bt( —1lM. . . g 'g Bt(ble b(rl "—gbt(r'"+'(lM , (Qg„B„(0)e "')b.( „)

gb (r)(Q g~ (0)e'"' 0( ~ 1)M ~ Irb (r) Q g~ (0) '"' 0( —1)M, , (10),
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In deriving Eq. (V8) we used Eqs. (V4) and (75), where all the operators 5 of this equation are at time t
Substituting Eqs. (76) and (VV) in Eq. (V8}, and using the Markoffian properties of the radiational heat-bath
operators B in an analogous way to that vrhich has been used in developing the translational heat-bath
equations, we get

0 —
, (0 ' (, t)b f, 1)))
d

= ia» g f '(r, t)h'(i, t)f (i —l, t}f (r+I, t)W. . .(t}M„„„(t)

iIiK-Q bi(r —1, t}fbi(i, t)b(i —1, t)b(r, t)Af. . .(t)M„, ,(t)

-il~ g f '(r, f)f '(i —1, f)f (i, t)f (r-1, t@S. . .(f).if„, „(t)

+iIi& g h'(i +I, i)t '(i -1, t)fi(i, t)t (~, t)M. . .(t}&„„,(t)

t') g Ja 0)e-'~' M, t) g ' 0)e' ' b r, t)
0 4J (d

+i)let( —l, t)M'(t)(I ,0"B (0} t')(0f dt e"""g'g B„(0) '"0( —l, t }M . .(t'))'.
Qf Cd

dl'e' ""' ' 0'f 1')M (t )I 0 B (0')e'"')M, „\t) Q g ,B(0} '„'},b(, ti
0 4) (d

t
~ lgb'( ~ l, t)ll .. (t)(Q g B.,(0) ' ' , dt "' '' I 'g„'Bt(0) '"' 0( l, t )M... (t',

0 4J

t
+~a m e'."-' 'b' r+i, t )~„„„(t) g. 0}e-"' g.*a.' 0)e'" b(r+~, t)»„, , „(t)

0 l~) QJ

—ikb~(r, t) g*B' 0)e' ' dt'e ' "" ' ' g 8 {0)e ' ' b{y, t')&„„„t')»&„, , „(t)
QJ 0

Cd

t
at e'""-' 'b'(r-, t ) „„,(t ) g.a.'( )e'" g., a.(0)e"' b(r-&, t)W„, „(t)

0
Cd

t
— Irb'(, l)M. ..(t) Q B(0) g' )( dt'e, ' "' '''Q g,'B'(0)e"'l(, t )M .it}'.. '

0

The use of the Markoffian properties in deriving Eq. (79) is made in the same way as was illustrated in
Eq. (41). Equation (79) is analogous to Eq. (44), but here we get additional terms [the first four terms of
Eq. (79)] since we do not use contraction [Eq. (40)]. One can proceed in the same way as was described
in Sec. V and derive formal results for the broadening. The memory effect (i.e. , the broadening) has
already been neglected in the first four terms of Eq. (79}by using Eq. (73}. Neglecting the memory
effects in other terms in Eq. (79) we can proceed in a way similar, although not equivalent, to that which
has been described in the translational heat-bath treatment.

In the products of summation over (0) [in Eq. (79)] we consider only resonant terms with the same ~.
We take the averages (B (0}B (0)) (B~(0)B (0)} out of the integral signs evaluated near the resonance
frequencies and then introduce the 5 function using Eq. (73}. These calculations give the results
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N = N —[b'(r)b(r)]dn(r) . d

di

N~gb~(r)bt(i)b(i —1)b(r+1)M. . .M„„,—NKg b (r —1)bt(i)b(i —1)b(r)M, «M„»,
f

-i gag bt(r)b t(i-1) b(i) b(r —1)M«P1, ~ „+Numb (r+1)b "(i—l)b(i)b(r)M, (,M, „+,

+2N((n(r —I)[M„,„p&B (0)B (0)) = „„,-2&«n(r)IM. .. I'&B (0)B (0)&

+2N~n(r+1)[M„„„)'{B(0)Bt(0)), -2Nnn(r))M, „,J'&B (0}B„(0)&

=neap„.

&oiB.'(0)lo& &0IB (0) lo.&

~» ~»-i4 & (81)

where
~ n & are all the photon states with energy

In Eq. (80) all operators b are at time t, and we

again substitute (b (r)b(r)& =n(r). The first four
terms of Eq. (80) describe coherent spontaneous
emission, "' a,s will be shown later. %'e shall
now show that the last four terms of Eq. (80) de-
scribe the induced absorption and emission and
the usual spontaneous emission. The averaged
nonvanishing products of the radiational heat-bath
operators can be developed as follows

&B.'(0)B.(0)&. . .

&u = &u„- ~, , ) 0& is the radiational vacuum state,
and n is the total density of the photons in our
system. f(e„—m„„) describes the result of the
summation over one-photon states with energy
~ = x„—cu„,. According to its definition
nf(u, —ur„, ) is proportional to the density of the
photons at the resonance frequency co„-co„,.

Using the commutation relations of B and B~
we ha,ve

(B.(0)B.'(0)&. .„.„,=(B'(O)B.(0)). . . +1.
(82)

Other products of radiational heat bath operators
are calculated in a similar way. Substituting these
results [Eqs. (81) and (82) into Eq. (80), and order-
ing the operators b in a different way [Eqs. (8) and

(9)] we get

ebb "(r)b(i —I)b»(z)b(r+1)M(, (M, , „—rgb (r -1)b(i-l)bt(i}b(r)M, , qM„„
Ch

-zgbt(»)b(i)bt(i —1)b(r —1)M, ;,M„, „

Q(& ( ~ ) (('&) "((&'&—l)(&( 1&». . .M, „,)t

+2((nf(&o„—e„,)[M, „,)'[n(r —1) -n(r)]+2a[M, „J'n(»+1) —2n[M„„,['n(r) .

-2~~ M„„,J 'nf ((u„„—(u„)[n(r) —n(r + 1)] (83)

The last two terms in Eq. (83) describe the

usual spontaneous emission from levels r +1 and
respectively, to r (a positive term) and r —1

(a negative term). The induced emission and ab-
sorption have opposite signs for certain radiative
transitions and are described in Eq. (83) by the
terms which are proportional to the total photon
density n. For a blackbody radiation heat bath
we have the relation nf(~„—&u», ) =[e" ~ —1]

On ensemble averaging, the first four terms of
Eq. (83) will contribute only diagonal expressions
in the vibrational quantum numbers. By the pres-
ent approximation of a diagonalized form for the

statistics, l density matrix, we neglect cooperative
effects between radiative transitions and take into
account only products of matrix elements which
belong to the same radiative transitions. Using
this approximation we get for the first four terms
of Eq. (83) the result

= 2&mb t(r)b(r)bt(r +1)b(r +1)&[M,„„)2
SCE

-2&~b'(r —1)b(» -I)b'(r}b(r}&~M, „,~'.

(84)

The index SCE refers to spontaneous coherent
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emission. We can evaluate Eq. (&4) by various
approximations. By using contraction and assum-
ing one-molecule states [Eq. (40)], the expressions
for spontaneous coherent emission in Eq. (84)
vanish. By using many-body states and assuming
maximum coherence between molecules, we get

-2gn(r)n(r —1)[M„, ,~'. (85)

This result is interesting as it shows the possibil, i-
ty of cooperative spontaneous emission which
depends on the population density of both the upper
and lower levels of the radiative transitions. Co-
operative radiation effects (which are proportional
to the squared values of population numbers) are
well known from descriptions of super-radiance,
Bloch-type equations, etc."'" The amount of
spontaneous coherent emission in a real case
should be much smaller than in the idealized many-
body case expressed in Eq. (85). The many-body
formalism has a physical meaning if we take into
account the number of molecules that "build" the
photon cooperatively. In our system the wave-
length A, is much larger than the mean distance
between molecules, and cooperative effects are
important. However, collisions between
molecules, including resonant effects (which are
possible among identical molecu1. es) tend to de-
stroy the cooperative effects. In passing from
Eq. (79) to Eq. (80) we assume short memory
approximation and neglect the effect of collisions.
Practically, collisions may decrease the volume
in which cooperative effects are important.

VIII. SUMMARY AND CONCLUSIONS

The vibrational relaxation of a diatomic gas by
vibrational and translational heat baths has been
studied by second-quantization methods. General
methods have been developed for treating the
various heat baths that have a short memory.
New expressions are developed for the broadening
of a gas which is in a nonequilibrium state [Eqs.
(48) and (V9)].

The fundamental equations for VT relaxation of
a. diatomic gas are presented in Eq. (44) and are
much more general than previous semiclassical
expressions. The methods developed here for
treating a translational heat bath are useful also
for treating nonresonant VV relaxation. The rate
of production of molecules in one state from
molecules of other states is described in the pres-
ent work by quantum-mechanical expressions.

A many-body formalism is developed for treating
the relaxation of the diatomic gas by radiation.
The cooperative effects in the gas do not change
the rate of induced emission or absorption, but
can change the rate of spontaneous emission.
In addition to the usual spontaneous emission we
get a spontaneous coherent emission. [Eqs. (80)
and (85)] . The authors hope that experimental
studies will be made on the broadening of a
nonequilibrium gas, and on the possibility for a
coherent spontaneous emission in a diatomic gas.
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