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Ne have carried out a rigorous asymptotic analysis of the thermodynamic behavior of an
ideal Bose gas confined to an arbitrary, finite cuboidal geometry under periodic boundary
conditions. Our investigation, which is based on the grand canonical ensemble, leads to the
construction of an abstract, thermogeometric space in which the process of Bose-Einstein
condensation appears as a "collapse" of the lattice points of the space towards its origin.
In an infinite geometry, the collapse is accomplished in an infinitesimally small interval of
temperature; this results in the appearance of mathematical singularities in the thermo-
dynamic functions of the system. In a finite geometry, the "collapse" proceeds gradually
and is spread over a temperature range AT such that AT/To = 0(l/4&), where / is the mean
interatomic distance while Lq is the length of the shortest side of the assembly; accordingly,
the thermodynamic functions of the system remain smooth throughout. Special events, such
as the specific-heat maximum, occur when the "lattice parameters" of our thermogeometric
space acquire certain characteristic values which depend only on the shape of the system
and not on its actual size. This leads to a new law of corresponding states for Bose-Einstein
systems of finite size.

I. INTRODUCTION

Following the work of Osborne, ' de Groot et al. ,
'

and Ziman, ' several authors have investigated the
behavior of ideal Bose-Einstein systems confined
to restricted geometries. 4 " The motivation for
these investigations stemmed mainly from the
following considerations.

Firstly, one hoped that the study of finite Bose-
Einstein systems would provide insight into the
behavior of actual samples of liquid He' confined
to restricted geometries. Ziman, ' for instance,
found that the so-called accumulation temperature
of a finite Hose-Einstein system was a function of
its dimensions and approached O'K when some of
the dimensions were infinite and at least one di-
mension finite. This finding, however, was in
disagreement with the experimental data on liquid
He' films. " To remove this discrepancy, Ziman
proposed that the system under study be regarded
as composed of a large number of noninteracting,
finite cubic assemblies —the so-called min&mal

assemblies —whose physical dimensions were
chosen to yield the best agreement with experi-
ment. The physical significance of the proposed
dimension (-700 A) has, however, remained ob-
scure. In any case, the relevance of an ideal
Bose-Einstein gas to the problem of liquid He'
is, from the very beginning, limited. At the same
time, one cannot ignore the role played by the
phenomenon of Bose-Einstein condensation in
providing an understanding of the behavior of
liquid He4, sohatever the geomeh"y of the container.

Secondly, Bose-Einstein systems constitute a
class of their own, for they exhibit a phase transi-
tion in which interparticle interactions do not play
a decisive role. Consequently, these systems
are amenable to analysis by rigorous analytical
means, leading to a general theory for finite-
size effects in such systems. Progress in this
direction has been rather slow. However, we
have nom developed a formulation, based on the
grand canonical ensemble, which treats the pro-
blem in considerable generality and throws an
altogether new light on the phenomenon of Bose-
Einstein condensation.

In our previous papers'4'" we analyzed the
critical behavior of an ideal Bose gas confined
to a thin-film geometry (~ x ~ x D) in the asymp-
totic region D» A., where A. is the mean thermal
wavelength of the particles. We now report a
substantial generalization of that analysis so as
to encompass an arbitrarily finite cuboidal geo-
metry (I., x L, x f.,), with I.&» X. A distinctive
feature of the new analysis is that it is correct
to al/ powers of the variables (A/f. &); the errors.

-(I. /X 2
involved are only of the order of e ~~' "~ which,
in the asymptotic region, would be completely
negligible.

The mathematical form of the various expres-
sions obtained in this analysis leads us to the
construction of an abstract thennof, eometr&c
sjace, with a lattice structure whose "lattice
paramters" y, are determined by the thermo-
dynamics of the system as well as by its physical
dimensions. The phenomenon of Bose-Einstein
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condensation then appears as a "eol.lapse" of the
lattice points of the thermogeometric space to-
wards its origin, such that the relevant y,

' s in
the critical region are of the order of unity. If
we consider an infinite system, the collapse is
abrupt and takes place over an infinitesimally
small range of temperatures —essentially at a
unique temperature T,(~). For a finite system,
on the other hand, the "collapse" proceeds grad-
ually, extending over a finite range of tempera-
tur es. Special events associated with the phenom-
enon of condensation, such as the specific-heat
maximum, occur over this range and a.re char-
acterized by values of y& which are unique for a
given shape of the system, indePendently Of its
actual siam'. This behavior can be viewed as a
"law of corresponding states" for finite-sized
Bose-Einstein systems and is intimately related
to the Fisher-Barber" scaling theory for finite-
size effects.

tern can be expresssed in terms of the functions
G„G,', etc., where

(n ) (e&K+8(/&r &l)-1

Glt
8 (4)

II. FORMULATION OF PROBLEM

%e consider a Hose-Einstein system of non-
interacting particles with mean occupation num-
bers (n&) for the single-particle energy levels

It has been shown previously'4 that the various
thermodynamic quantities pertaining to this sys-

g being the chemical potential of the system. For
instance, the specific heat C„and its first deriva-
tive with respect to temperature are given by

C„=k(G, —G2/Go)

and

—2 G —~ + G'-3 G'+3 ~ G' — G'

In addition, we have for the relevant temperature derivatives of the chemical potential

(8)

3 G, G~G2 3 G~G~ G~

G3O Go Go

It is important to note that the foregoing formulas
hold irrespective of the dimensionality of the sys-
tem, its size and shape, and the nature of the
boundary conditions imposed on the wave functions.
The characteristic influence of these factors
enters through the functions Z, whose evaluation
constitues the central problem of our investigation.
This evaluation, in the case of an arbitrary cuboi-
dal a,ssembly (of sides L„ I.„and L,) has been

carried out by a proper use of the Poisson sum-
mation formula; see Appendix A. The result,
for periodic boundary conditions, turns out to be

~ "'&-&&' "'*I&») «0&
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the new function S,(y/} is given by

OQ ~-2z(q)

ft(q)
~X.2, S =

&(q) =(ely', +qly2+q'. y3}",
the parameters yz being defined as

y, =v'/'u'/2(L, /X) (j = 1, 2, 2).

(12)

The primed summation in (12) implies that the
term with q = 0 is excluded.

From Z, we obtain

L,L L, 1(s+—')
Gs y3 1(3) 83+1/2(~)

where X [=h(2wP/M)' '] is the mean thermal wave-

length of the particles, I'(x) is the F function of

x, while g„(5) are the familiar Bose-Einstein func-
tions"

" x" 'dx
g. (~) =

I(„) 0

T,(~) = h'(2vmk l ') '[g(2)] '/';

here, g( —,') is the Riemann g function of order —,'.
Defining e =[T—T,(~)]/T2(~), we obtain, see
Appendix B,

3[g(&)]2/3~1/3e (1» e»~-1/3) (19)

(20)= 0.973. . . (e =0)

the~mogeometrzc sPace, with a lattice structure
characterized by the thermogeometric parameters
y„y„and y» see Fig. l. As the temperature of the

system decreases, these parameters decrease
monotonically and, as a result, the lattice points
of our structure in the thermogeometric space
move progressively towards the origin (q = 0). The
onset of Bose-Einstein condensation is character-
ized by a "collapse" of the lattice points onto the
origin, which occurs over a temperature range
determined by the geometry of the system.

In an infinite system, say a cube with L(= L» 3)
—", the paramter y(= y. . .) displays a singular
behavior as T passes through the critical tempera-
ture T,(~), which is given by the expression"

s''(-1)' ' 'i'(2 ss))
( v)1/2[g( }]-1/3~ -1/Gi ei -1/2

(e&0, I» (e~»l"-1/3) . (21)

S.(y/) =

x(2', (-,
' —22)S, s(s —l)S, ]),

(15)

~Z, 2, 3 =

~-28(q )

8"(q)

1(s+ —,'} r i + z/2I 1is ~ -Sl z

Clearly, the transition from y =O(N'/3} to y
=O(N ' ') takes place over a temperature range
AT such that

~T/T ( ) =O(~-"3}. (22}

in this range, the value of y has to be obtained
numerically. For an infinite system, the transi-
tion is indeed sharp and appears literally as a
eollaPse of the lattice points of the thermogeo-
metric space toward its origin; at the same time,

The special case Z, =N deserves a closer scru-
tiny. We have

g —~ 1 2 3[g (~)+v1/2~1/2S ]
I. I. L

The first term, (V/"3) g3/2(u), corresponds to the
customary bulk results, exclusive of the conden-
sate; the second term, therefore, includes all
characteristic effects arising from the finiteness
of the geometry as well as the contribution from
the condensatef, The behavior of this term is
governed by the function S„defined in (12), which
formally resembles the expression for the "screen-
ed Coulomb potential, at the origin, owing to an
infinitely extended lattice distribution of point
charges, with lattice constants py p2 and p3 This
resemblance prompts us to construct an abstract,

9y3"
8yl"
Tya"
6yS" «0

P (q„q„q,)
4y3"

~A"

Zy,
= (q) p))

(q, Y, )

FIG, 1. Thermogeometric space of a Bose gas con-
fined to a cuboidal enclosure (Lf + +2K +3).
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the thermodynamic functions of the system en-
counter singularities characteristic of a phase
transition. In this connection, we observe that
for T & T,(~), when y~« 1, the function s, may
be evaluated by replacing the summation over

q. . s by an integration, with the result

2m A,

e' ' I. L e'"& 1
(24)

e
-28(q ) ~ e-2B

3 ~ dsq-
It(4)

(12')

and hence

V 1N~ —,g2y2(u) + —,
as is indeed expected. It is instructive to note
that in the usual formulation the first term in
(17'), which accounts for the particles in tbe ex-
cited states, arises as a result of an integration
over states instead of a summation; in our formu-
lation it arises from the single term corresponding
to the origin (q. . .=0) of the thermogeometric
space. Conversely, the second term, which ac-
counts for the paxticles in the ground state,
customarily arises from the expression for the
mean occupation number (n ), with a«1; here,
it results from an integration over the thermo-
geometric spa, ce exclMEAfg the origin,

In a finite system the transition from y&»1
to y& &&1 is spread over a finite temperature
range,

where I1,(s) is a modified Bessel function of order
zero. Expression (24) is identical with a cor-
responding result obtained earlier by Krueger"
following different mathematical techniques. It
is, however, important to note that this result
is valid only for L,»I.,»I„, and not for L, ~ L,
~ I.„as claimed by Krueger. Accordingly, this
result cannot be applied to the case of a narrow
channel for which I,-, 12 and I s are gen-
erally comparable in magnitude. In that case, we
must go back to E(l. (1V) to obtain

x/2 x/2

Z/2
Q(Q 23I @ + 4f 12f 2)

X s s
(q2y2 + qy2)2l )2

2 ~ 3

The special case of a thin-film geometry can
likewise be obtained from Eq. (1V) as

V osis
g2)2(a) + v'~2a '~2

&sos+sar ~(20

(26)

where I, is the length of the shortest side of the
container; the thermodynamic functions of the
system in this case remain smooth throughout.
The "onset" of Bose-Einstein condensation can
now be defined in a variety of ways, some of
which will be considered in the sequel; in each
case, the phenomenon of condensation takes place
when y, [=v'~2a'~2(L, /X)] is of the order of unity.

III. SPECIAL CASES

First of all we consider the case L, »I, &+Ls
for which, obviously, y, ~g y, ~& ys. Referring to
Fig. I, and keeping in mind the functional form of
the variable A(q) appearing in the definition of
S„see Eq. (12), we observe that the summation
over q in this case may be approximated as fol-
lows: (i) for q, =q, =0, we sum over q„(ii) for

O and q, wO, we sum over q, but integrate over
q„and (iii) for q, 220, we sum over q, but inte-
grate over q, and qs. %'e thereby obtain

which is identical with E(l. (17) of l. This result,
of course, can be obtained legitimately from Eq.
(24) as well by letting L» -~.

IV. RESULTS AND DISCUSSION

Qf the various criteria that can be invoked for
the onset of Bose-Einstein condensation in a finite
system, '"' "we consider here two which are based
on the intensive quantites Cr/Nk and (82p/9 T2)„~ .
ln an infinite system, Cr/Nk possesses a sharp
maximum (with a discontinuous temperature deriva-
tive) at the critical temperature T,(~), while
(8 g/ST )2(, 1, possesses a sha1'p mlnlmum ac-
companied by a discontinuity in value. In a finite
system, where no discontinuities can occur, one
intuitively looks for the (smooth) maximum of
C„/Nfl or the (smooth) minimum of (82ll/ST2)„
Starting from E(ls. ('7) and (9), we obtain, after
some straightforward but tedious calculation,
equations involving the lattice sums $„(over the
thermogeometric space), which determine the
characteristic values of the thermogeometric pa, -
rameters y& pertaining to the criterion employed.
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For (Cr/Ãk)~ we obtain, to the lowest order in

~/L„
1 + S~+2$, 10m i(~5)

(1+$.)' 3 [C(k)]'

and for (S'p/ST')

2S, (1+$0) —3$,(1+$0+2$,) =0 . (28)

TABLE I. Characteristic values of the thermogeome-
trio parameter y& for various shapes of the cuboidal
assembly.

It may be mentioned here that, for the case of a
thin-film geometry, the characteristic equation
(2V) reduces to Eq. (31) of l.

Equations (27) and (28) have been solved for a
variety of cuboidal shapes —in particular, a thin
film (~ x ~ x L}, a square channel (~ x I, x L}, and
a cube (L x L & L}. The relevant results for y,
are displayed in Table I; for comparison, the
respective values of y& at T = T,(~) are also in-
cluded. These results can be converted into the
characteristic temPeratures T,(L&) with the help
of the basic relation (17) or, preferably, (B8).

The most important thing to observe here is that
the actual size of the given system does not appear
explicitly in the characteristic equations (2V} and

(28); it appears only implicitly through the thermo-
geometric parameters y~. Once the shape of the
system, as given by the ratios L,/L, (=—y, /y, ) and

L,/I„(-=y, /y, ), is specified, the characteristic
equations involve only y, (which we have preferred
to denote by the symbol y, ). Now, the fact that
special events, such as the maximum of C„/NA
or the minimum of (S'p, /ST')„~, take place at
certain characteristic values of the parameter
y, (which, apart from the criterion employed,
depends only on the shape of the system and n01
on its actual size) enables us to establish a thermo-
dynamic correspondence between Bose-Einstein
systems of similar shape but different sizes. %e
thus obtain a new /au of corresponding states,
according to which "two Bose-Einstein systems
A and B, similar in shape but different in size,
are in corresponding states when (y&)„=(y&}s."
A reference to Eq. (13) reveals that when the y's
of A are equal to the y's of 8 the respective tem-

peratures, T& and T~, of the two systems are
generally different; they depend upon the actual
sizes as well.

We note that the foregoing statement (of corre-
spondence) may be expressed in terms of the
reduced chemical potentials of the two systems, "
llety

PP ML~ g h MI a

The physical nature of this equality suggests that
a similar result may be valid for establishing
thermodynamic correspondence between two sim-
ilar systems which are not necessarily cuboidal
and in which interparticle interactions are not
necessarily negligible. %e propose to investigate
this matter in detail in a subsequent communica-
tion.

In II, we discussed the relationship between our
parameter y& for a thin-film geometry and the
corresponding scaling variable z of Barber and
Fisher, "namely,

s=(L,/f ) f, (30)

i = [T- T (L,)] /T, ( ),
T JL,) being the temperature corresponding to
the specific-heat maximum. Such relationships
can also be established in the more general case
being studied here. However, we shall avoid being
repetitive and simply state that (i) the law of cor-
responding states emerging in our formulation
and (ii) the Fisher-Barber scaling theory for finite-
size effects" both stem from a common physical
orlglQ.

APPENDIX A

%e shall first evaluate the function Z„ from
which Z, can be derived in a surprisingly simple
manner. In this evaluation we shall assume Peri-
Odic boundary conditions; generalization to other
boundary conditions is straightforward, " though
the resulting formulas would be rather cumber-
some.

By definition,

Thin film Square Chszmel

( x~xi, ) {~xL,xL)
Cube

(L, xi xL, }
Z =~=+ (s s -1) =g Pp J( s)

0.48~

0.85~

1.72

x& P'0(~)j 0.76

y, (c„/vu } 1.14
x& (8'I /'8&')~ 1.86

~This result may be stated explicitly as sinh" ~
~2

[y {~5+1)]= 0.4812... .
This result was first reported in I.

0.97
1.35
1.99

2 2 2
&~F2 g ~~~"3

f=1 ll~ SS tt3
(A1)

(A2)
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with

k, = (2v/f. , )n, (n( = 0, +1, +2, . . . );
the parameters so,. are given by

2PS g A.

ML L

r(n) = g s(q), (A5)

where 6:(q) is the Fourier transform of F(n).

where A. [=A(2vP/M)' '] is the mean thermal wave-
length of the particles. Now, by Poisson's sum-
mation formula, "

-f~n2Choosing E(n) to be e ~ ", we obtain the remark-
able identity

e ~ =2 g cos(2vqn) e ~ "dn
n=-~ q -oo 0 (A6)

(
~ ),-,vii. (AV)

It is instructive to note that the q= 0 term in (AV)
is precisely the result one mould obtain if the sum-
mation over n mere replaced by an integration,
as is normally done for an infinite system; the

q ~0 terms, therefore, represent corrections
arising from the discreteness of the single-par-
ticle states. Using (AV), we obtain

gS/2

(sv, w, u,)"'
~l, 2, S= -"

~ ~ ~

e fcf' @2' g2q2 ~2q2
exp — . + . + (A8)

L,L2Ls
A.
'

g2q2 2 2

Z, ... ~ Z'
f=1

2 s=-" f =ll 1 ~

where the primed summation in the second set of terms implies that the term with q =0 is excluded. Now,

setting P =jo. and y, = w'i'a'i'(L& /I), we may write

LlL2Ls
0 As

|/a ~ ~
d

~ expl. - (I/P)(qiP |+ q2$2+ qadi s)]
gs/2(&) + ~

0
(A10)

the replacement of the summation over j by an

integration over P introduces errors of the order
-L2/ Xof e ~ which, for L, ~&X, are negligible. At

this point it is important to note that no errors
of order (A/I, ,)" are committed here.

%e now make use of the tabulated Laplace trans-
form

To derive Z„we observe that, since

Z, = P g e-' (pe)'e '"
f=l

l/2
g -0 /&t

ts/2 (A11)
g e-fe-f 6& (A15)

w ith s = 1, to obtain the desired result me have the folloming mathematical relationship:

0
=

~3 4'si2( ) " & &|(» yai xs)l
L,L2Ls l/2 l/2

(A12)
+s pS +0 (A16)

where

&|(»i 3'2i $3) =

~l, 2, S =-~
(A13)

Consequently, the desired expression for Z, may
be derived by differentiating the expression (A12)
for Z, with respect to p (s times), integrating with
respect to o. (s times), and finally multiplying by
P'. Performing this calculation, and making use
of the fact that 3, is an explicit function of the
ratio n/P alone, we obtain
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1.,1.,1., I'(s + —,')
+s ys T( 4) Zs+3/2(

2

solve the characteristic equation

S,(y) =2 . (810)

y vl/2( 1)s ~4+1/2S (A17)

as quoted in Eq. (10) of Sec. II.

APPENDIX 8

To establish relations (19)-(21), we start with

(17), namely,

For a cubic geometry, the solution is y= 0.973;
solutions for some other geometries are included
in Table I. It follows that for a given class of
systems, similar in shape but different in size,
the y(T) curves (for various sizes) pass through
the unique point y]T0(~)), which is the solution
«Eq. (810). In passing, we observe that at T
= T (oo)

1 2 2
[g (~) +v1/2~1/2g ]

I L, L

For a«1, we may write

(81)
y-zo, (811)

(a) g(3) 2vl/2+/2

whereby Eq. (81) becomes

1 2 3 [l(3) 1/2 1/2(2 s )]Xs

or, equivalently,

(Z/& )'=l-(-') —2/'"a "(2-S )

(82)

(82)

Returning to the cubic geometry, we further
note that, for T sufficiently above T(0~), y»1
and we may neglect S„ in comparison with 2,
in Eq. (86). We then obtain

3 [g(3 )]2 /~31/ se

with the condition

(818)

where l is the mean interparticle distance. Now,
if A (~) corresponds to the bulk transition tempera-
ture T (~0), then'4 "

In this case, for a specific value of T,

y-N', n-N (814)

(sv)1/2[l(3)] 1/3N 1/s~ 2( I/2 (87)

with the condition

(BS)

%e observe that, for a specific value of T in this
region,

y-N '~ (89)

as expected in the region of Bose-Einstein con-
densation.

To locate the value of y at T = T (~),0we must

(&.(-)/I )' = l(-') .
Combining (84) and (85), we obtain (to first order
in I/L, )

=( ~ —', [((-')] ' '
y~) (2 —s, ) . (86)

0

Restricting ourselves to a cubic geometry and

denoting the y~'s by a common symbol y, we note
that, for T sufficiently below T (~0), y«1 and

the function I, approaches the functional form
v/y', see Eq. (12'). Consequently, letting [T

(T~0)] /T0(~) = e, Eq. (86) yields the relation

that is, cr now becomes a truly intensive variable.
Previous authors"'" have attempted to evaluate

a at, or close to, T (~)0by solving the relation
(17'), namely,

V I—,g, /, ((2,) +

with the help of the approximation (82)—disre-
garding the fact that this relation is in error by
terms O(i)/3/3). In the customary treatment this
error arises from the replacement of the summa-
tion over states in Eq. (AI) by an integration,
leading to the familiar function gs/2((2); in our
approach, it arises from the replacement of the
lattice sum 6, by the functional form v/y', as in
(12'). Now, at T = T (~)0, the term I/e in (17')
is itself O(i)/2 '); consequently, a cannot be evalu-
ated accurately from this relation, except to an
order of ma, gnitude. Ne finally note that the
(erroneous) value of y(T0(~)] resulting from the
expression for a obtained by these authors is
(sv)' 3; this is tantamount to replacing S„ in
Eq. (810), by the functional form v/ys, which is
valid eely f«y«1, to obtain a, value of y which
is O(1)!
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