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In previous work an expression was developed which partially incorporates the effect of
final-state interactions on thermal-neutron scattering from a many-body system. This ex-
pression is evaluated for a liquid He4 target at momentum transfers of 14.3 and 28.6 A ~.

The experimental results of Nook, Scherm, and %'ilkinson for the scattering of neutrons
from liquid helium are analyzed in terms of {a) a modified impulse approximation which
includes final-state corrections only in the condensate contribution to the scattering and

{b) an approximation which includes final-state effects on both condensate and noncondensate
contributions to the scattering. These calculations substantiate a previous empirical assess-
ment of the condensate portion of the scattering [{2.4+ 1)%1 and suggest that certain barely
discernible features of the experimental scattering are real structures in the condensate
contribution attributable to the structure of the liquid and the interaction potential of the
helium atoms. Other helium properties deduced from the data at 1.2 and 4,2'K are single-
particle momentum distribution, one-particle density matrix, and mean kinetic energy of
the helium atoms. These quantities are compared with predictions from existing Monte
Carlo numerical studies of the ground state of He~.

I. INTRODUCTION

The inelastic scattering cross section for neu-
trons on He4 liquid is given in the Born approxi-
mation' by

d'o
dudS,

= 4;I', S(" "' ' (1)

where hk =5k, -hk& is the momentum transferred
to the helium, S&=8,. —8& is the energy transfer,
o, =1.12 b, ' and S(k, ~} is the dynamic structure
factor. For scattering from superfluid helium at
large momentum transfer it is expected that the
dynamic structure factor will be decomposable into
a contribution from the condensate and a contribu-
tion from the noncondensate. If both the conden-
sate fraction no and the momentum transfer are
sufficiently large, one could hope to experimen-
tally resolve the scattering into a two-part distri-
bution, a narrow peak contributed by the conden-
sate superimposed on a broader peak arising from
the noncondensate.

A recent paper' reported the results of a search
for a Bose-Einstein condensation in superfluid
helium utilizing inelastic neutron scattering with
a typical momentum transfer of k =14.3 A '. Al-
though a cursory inspection of the data does not
show a two-part distribution, the results indicated
structure in the dependence of the scattering cross
section on energy loss which was interpretated

as direct evidence for the existence of macro-
scopic occupation of the single-particle momentum
state P =O. In addition, it was found that a least-
squares analysis could resolve the scattering data
into a two-part distribution. This analysis fits the
energy dependence of the measured dynamic struc-
ture factor~ with the function

where AO, A„.. . , A, were parameters found by the
least-squares criteria of the data taken with the
helium at a temperature of 1.2 K. The data at
4.2'K were fitted by a function of the same form
except that A, was taken as zero; refer to Figs.
1 and 2 and Table 1. The first term in Eq. (2}
was interpretated as the background neutron count.
The sum of the second and third terms was taken
as proportional to the noncondensate contribution
to the dynamic structure factor. The fourth term
was identified with the condensate contribution.
This interpretation of the data yields a condensate
fraction of (2.4 +1)%.'

The present work is aimed at evaluating the
width and shape of the condensate portion of the
scattering and at extracting properties of the
helium liquid from this experiment. The analysis
is based on the following form of the dynamic
structure factor, developed previously'.
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0(0, )=I 0, )t 0, ~ —,-«'„'I, (3) 2pR p'~u

where n~ is the single-particle momentum distri-
bution (the fraction of atoms carrying momentum

p), m is the helium mass, ~„=5k'/2m, V, =k k/m,
and the function R,

incorporates final-state effects on the scattering.
The function R(k, t) may be approximately evaluated
from Eq. (O'I) of Ref. 6:

tt((tt}=—«X,P —JP,(,0; 1r, t, 0) 1 —«XP t [0[r ~ 1r,(t —t ')[ —V( (r, t)}pt ' 0 P, (0, (1, t)[, (5)
Q

where p)(0, V„t) and p, (r, 0, r +V„t, )Oare the
liquid's one-particle and two-particle off-diagonal
density matrices, respectively, and h =-1. For
sufficiently large momentum transfer,
R(k, v —&d, - p V, ) should approach a [) function.
In this limit Eq. (3) becomes the impulse approxi-
mation

S'"(k, (d) = g n, 5(~ —~, —V„~ p).

Assuming there is a Bose-Einstein condensation
(n, p-'0), Eq. (3) becomes

S(k, (d) = (, &fP'n~R(k, &t) —&0) —V ~ p)2') p

+n, R(k, &d —&d, )

and the impulse approximation becomes

S'"(k, ~)=, dp ps~ +n, 5(&d —&v„), (8)
inI

where n, is the condensate fraction, II =(tu —~,)/
V„, and p is the helium number density.

A slight generalization of the impulse approxi-

mation will increase the range of momentum trans-
fer over which it is a good approximation. This
modification is the replacement of the &-function
condensate contribution by the R function

S "(k, ~)=, ~j dp pn, + n, R(k, ur —(d, ).
p~k &i p(

(9)

This approximation will be useful for those values
of k for which the width of the R function is narrow
compared to the width of n~, allowing the replace-
ment of R by a 6 function in the integrated term of
Eq. (I) even though the condensate term may have
measurable width. In subsequent discussion Eq.
(9) will be referred to as the impulse approxima-
tion. It includes the effect of final-state inter-
actions on the condensate portion via the R function
but neglects these effects on the noncondensate
part.

In Sec. II the function R(k, U, Q —V, p) is eval-
uated and compared to the Gaussian form for the
condensate portion of the scattering given in Eq.
(2) and utilized in Ref. 3. In Sec. III the modified
impulse approximation [Eq. (9)] is used to analyze
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FIG. 1. S(k,~) for He4 at 1.2'K. The circles are the
experimental data, Ref. 3; and the solid line is the
empirical fit I((d), Eq. (2) and Table I. The units of the
abscissa are neutron counts normalized to approximate-
ly 20 min of counting time per point.

FIG. 2. S(k, (d) for He4 at 4.2 K. The circles are the
experimental data, Ref, 3; and the solid line is the em-
pirical fit I((d), Eq. (2) and Table I. The units of the
abscissa are neutron counts normaliz& to approximate-
ly 20 min of counting tixne per point.
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II. EVALUATION OF FINAL-STATE EFFECTS

The evaluation of the R function is the central
problem of this approach to the analysis of neutron
scattering. R(k, V, A —V, ~ p) evaluated for p =0
is proportional to the condensate contribution to
the dynamic structure factor, and when properly
convoluted with the momentum distribution [refer
to Eq. (7)] it yields the noncondensate part. In
order to evaluate the R function in a straight-
forward manner, it is necessary to select forms
for the helium-helium interaction potential V(r),
the one-particle density matrix p, (0, V, t), and
the two-particle density matrix p, (r, 0; r+V, t, O).

The results obtained here used the Lennard-
Jones potential V(v') to represent the helium hel-ium

interaction

V (r) = 4@[(oi~)"—(o/~)'), (10)

TABLE I. Parameters from Eq. (2) obtained by least-
squares fitting of the measured data. Parameters giving
peak heights are in counts per run and parameters rep-
resenting peak widths or positions are in mGlivolts.
Width parameters are left unmultiplied by 2 ln2 so that
they can be directly compared with the measured full
width at half-maximum of S(A, ~).

Parameters 12 K

o

A(
A2

A)
A4

Ag

A6

Av
A. 8

Ae

12.90
12.47
106.22
20.76/2 gn2)'"
7.48
106.22
12.82/2 (1n2) i

1.60
106.22
4.92/2 g 2)»2

12.90
11.97
106.22
23.28/2 g 2)'"
5.69
106.22
».48/2 On2)'"
0.0

the noncondensate portion of the scattering data
yielding the following properties of the helium

liquid at temperatures of 1.2 and 4.2'K: the single-
particle momentum distribution for the atoms not

in the condensate, the spatial dependence of the
one-particle density matrix, and the mean kinetic
energy per helium atom. These results are com-
pared with corresponding predictions from existing
Monte Carlo calculations on ground state of super-
fluid helium. Section IV contains an analysis of
the noncondensate portion of the scattering data
when final-state effects embodied in the R function
are included. Qualitative estimates of these effects
on the single-particle momentum distribution
and quantitative estimates of these effects on the
single-particle density matrix are given in that
section. Section V contains a discussion of the
results obtained.

with g =10.22'K and v =2.556 A.' The selection
of the two-particle density matrix was based on
the following considerations. Viewing p, as a
scalar product in (N-2)-p articl eFock space

p, (r, 0; r+V, t, 0)

= &y.lq'(~) q'(0) +(r+V, t) +(0)le.),
where the helium is assumed to be in the ground
state yo; the Schwartz inequality yields

I p. l- & ~.l4'(r}~'(0) ~(0) q (r)i ~.&'"

x & y, ( 4 (0)q' (r + V, t) 4'( r + V, t) q (0)
~ y, ) ' ~ '.

Assuming that the ground state can be represented
by an everywhere positive wave function, p, is
positive and the absolute value symbol may be
removed, so that

p, (r, 0; r+V, t, )0~p'g'~'(r) g'~'(r +V, t), (12)

where g(r) is the pair correlation function. When
t =0, the inequality in Eq. (11}becomes an equal-
ity; therefore we expect p'g'~'(v')g'~'(r+ V, f) to
be a good approximation to p, for small values of
t and all values of r.

For large values of (r) and (r+ V, t) we expect
p, to be given by the Hartree-Pock approximation

p, (r, 0; r+V, t, 0)= pp, (r, r+V, t)

+p, (r, 0}p,(0, r+V, t). (13)

For most choices of (r) and (r+V, t), the direct
term pp, (r, r+V„f}will dominate the exchange
term p, (r, 0)p, (0, r+V~ t), since p, (O, R) =p, (R, O)

= pn, for Rz 4 A (refer to Fig. 9). Neglecting the
exchange term, the approximation we take for
p, which agrees with Eqs. (12) and (13}in their
regions of applicability is

p, (r, 0; r+V, t, 0)=pg'~'(r)gV~'(r+ V, t) p, (0, V~t),

(14)

where translational invariance has been used to
replace p, (r, r+V, t) by p, (0, V, t) Estimates.
indicate that g'~'(r) is essentially zero for r s 2

A, then rises sharply to approach unity at ~ = 3 A,
and exhibits rapidly damped oscillations about
unity for r~ 3 A.' To simplify the calculation
somewhat we replace g' '(r) by a unit step func-
tion, yielding

p, ( r, 0; r+ V„ t, 0) = p8([r[ —r, )

8(x(r+V, t~ —r, ) p, (0, V, t),

where 8((r( —r, ) =1 for ~r[&r„zero otherwise. In
Eq. (15), r, is treated as a parameter which may
be adjusted slightly under the restriction that
8(~r~ -r, ) remains a reasonable approximation to
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g'~'(r}. Since only the ratio p, (r, 0; r+V, t, o)/
p, (0, V, t) appears in Eq. (5}, the above approxi-
mation for p, removes the need to chose a form for
Pg ~

The above approximation to the two-particle
density matrix [Eq. (15)] is most appropriate for
zero temperature because of the assumption that
the state of the helium liquid is described by an
everywhere positive wave function. The R-function
calculation using this approximation will be com-
pared with data taken at a helium temperature of
1.2 K. We are assuming that taking p, to be every-
where positive at 1.2'K introduces an error which
is not incommensurably large compared to the
error introduced by the other approximations used
in obtaining Eq. (15).

Before proceeding it may be useful to make
some comments about R(k, t) By su. itable manipu-
lations of Eq. (5) it may be shown that for isotropic
systems

(16}

R(k, t)=e-' "~"

In our approximation E(V, t) is given by

R*(k, t) =R(k, t)-
implying that the real part of R(k, t) is an even
function of t and that the imaginary part is an odd
function of t. When Fourier transformed to yield
R(k, V~ Q), the real part of R(k, t) will produce the
even part (in Q) of R(k, V, Q) and the imaginary
part will yield the odd part of R(k, V„Q). If in
turn R(k, V„Q) is convoluted with s~ in accordance
with Eq. (2) to produce the noncondensate contribu-
tion to S(k, ~), the primary effect of the even part
of R(k, V, Q) will be to modify the width of the
dynamic structure factor and the main effect of the
odd part will be to change the peak location from
that of the impulse approximation.

Some general observations about the shape of
R(k, t) can be made more conveniently by con-
sidering the negative logarithm of R,

r eV t

E(V„ t) =p dr'e(]r~ —r )0e(~r V+~
~

t—ro) 1 —exp — dy[V(r+y) —V(r+ V„ t)]
V~ -o /

(18)

which is obtained from Eqs. (5) and (15) with the
substitution y =V,(t —t') in one integral. A simple
physical picture may be associated with mathe-
matical operations called for in the evaluation of
Eq. (18). In this picture a helium atom is struck
by the incoming neutron at its initial position r.
The struck helium then travels along a straight
line trajectory from its initial position r to its
final position (r+ V, t) at a velocity V, and in a
time t. During its "flight" the struck helium
interacts with a single helium located at the origin
of the coordinate system. We will loosely refer
to this interaction as scattering of the struck heli-
um. We will also loosely refer to a particular
choice of initial position r as a configuration.

First note that the Lennard-Zones potential V(r')
being used in this calculation becomes highly re-
pulsive as ]r'~ decreases below r, (more precisely
for ~r'~& g =2.556 A, but r, = o) and that it is gener-
ally weakly attractive for r, a ~r'~& R, where R
is some distance beyond which the potential is
insignificantly small for the purposes of this cal-
culation (in actual computations R was taken to be
8 A though its value depends somewhat on k and t)
Also note that the unit step functions in Eq. (18)
remove all configurations for which the initial
and/or final position is within the core defined
by a sphere of radius ro about the origin of the
coordinate system. This means that for small
V, t, V, t «2&„ the hard repulsive part of the poten-
tial does not contribute to the scattering. The

value of E(V, t) is therefore small, being deter-
mined by the weak attractive part of the potential.

For the repulsive part of the potential to contrib-
ute, the path of the struck particle, from r to
(r+V~t), must pass completely through the core
of radius v, . As V, t approaches 2r, these con-
figurations begin to contribute and soon to provide
the dominant portion of the value of E(V, t). For
large V, t it can be shown that E(V, t} is dominated
by a term linear in V, t,

E(V, t)- [-,'per„, +t4v(p/k)Re f(k, k)] V, t+C',

where 0~, is the total helium-helium cross section
and Ref (k, k) is the real part of the forward-scat-
tering amplitude, both evaluated in the eikonal
approximation, and C' is bounded. The term
Qp(7$ j is just twice the reciprocal of a simple esti-
mate of the mean free path and therefore this term
is reminiscent of the results of phenomenological
arguments which yield V, po„, as an estimate of the
width of the condensate portion of the scattering.
Lt should be noted that the factor —,

' and the additive
terms in Eq. (19) will make the width of R(k, t)
significantly different from the estimate I/po„, .

The value of E(V~ t) was determined by numerical
integration of Eq. (18) for selected values of k, t,
and ro. The results for the real part of E(V, t)
are shown in Fig. 3 and the imaginary part is
shown in Fig. 4.

The real part of Eq. (18) appears to be well be-
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haved with small computational error and so a
smooth curve has been drawn through the com-
puted points in Fig. 3. The imaginary part of Eq.
(18) is not as smooth and there is noticeable error
in its evaluation at large values of V~I;. For this
reason, no attempt has been made to connect the
computed values of the imaginary part by a curve,
refer to Fig. 4. %here significant, the upper-half
of the error bar (numerical error only) is shown
for k =2S 6 A ', r =2 5 A; and the lower-haB of
the bar for k =14.3 A ', ~ =2.5 A. A crude check
of E in the region 8 A V„t & 10 A indicates that
the slope of the real part of E corresponds to a
total cross section [according to Eq. (19)] of
=35 A2 for 0 =14.3 A ' and =31 A2 for 0 =28 6 A

in rough agreement with the experimentally mea-
sured cross section. '

Figure 8 contains R(k, V„Q) for selected values
of k. Plotted in terms of Q, the width of R(k, V, Q)
narrows rather slowly as a function of k. From
Eq. (9) it is evident that the width in terms of Q

of the noncondensate contribution evaluated in the
impulse approximation is independent of k. The
practical implication of this is that if an experi-
ment performed at a given value of k is repeated
with a slightly higher value of k one can only ex-
pect a very slight relative sharpening of the con-
densate portion over the noncondensate. This
observation may be slightly ameliorated by the
fact that the Lennard-Jones potential used in this
calculation is known to be somewhat more repul-

sive than the actual helium-helium interaction
for small distances. ' Somewhat pessimistically,
we do not expect much relief from this nuance
for values of momentum transfer attainable with
present experimental techniques.

On a more optimistic note, the function R(k, V, Q}
shown in Fig. 5 exhibits a nonmonotonic behavior
as a function of A. This characteristic is easily
traced back to the short-time behavior of the
function E(V, t) defined in Eq. (17) and exhibited
in Figs. 3 and 4, which is radically different from
the linear in V, t behavior given by Eq. (19) for
long time. Clearly, this occurs because the struck
helium particle initiaBy finds itself in an environ-
ment of other helium atoms strongly conditioned
by the liquid's local structure and can travel on
the average some distance (-2-8 A) before suf-
fering significant collisions with other helium
atoms.

Finally, Fig. 6 in this section presents our re-
sults for the condensate portion of S(k, so) evaluated
for the conditions corresponding to the experiment
of Nook, Scherm, and Vfilkinson. The condensate
part of S(k, ~) was obtained from n, R(k, V, Q) as-
suming that the condensate fraction is 2.4%. Fig-
ure 6 also contains the best fitting Gaussian form
for the condensate A, exp[-(~ -A, )'/A,'], refer to
Eq. (2), and that portion of the data judged to be
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FIG. 3. Real part of E(Vi,t): solid line fork =14.3 ~ '
and ro —-2.5 A; long-dashed Hne A =14.3 A. and ro ——2.4
A; short-dashed line@ =28.6 A ~ and r =2.5 A.. Errors
indicated where significant.

FIG. 4. Imaginary part of E {V&t): circles, k = 14.3 A
and ro —-2.5 A, lower-half of error bar shown; triangles,
A. =14.3 A and ro —-2.4 A; squares, k =28.6 A ~ and ro

0=2.5 A, upper-half of error bar shown.
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contributed by the condensate. The "condensate"
part of the data was obtained by subtracting the
first three terms of Eq. (2) from the actual data.
The function no R(k, V, Q) is approximately 1'l%
wider than the best-fitting Gaussian form for the
condensate (after the experimental resolution
function has been deconvoluted from the Gaussian).
The data may be able to support this extra width
in noR(k, V, Q). The peak location of s,R{k,VsQ)
is approximately 1.2 meV higher than the best-fit
locat1on and approximately 0.5 meV higher Q1an

the peak of the impulse approximation. It is ex-
perimentally well established that the peak of the
dynamic structure factor occurs at an energy loss
slightly below the impulse approximation. "~ It
appears that the physical mechanism(s) which
dominate the determination of the peak location
are not taken into account by the approximations
being used here to evaluate n, R(k, V, Q). It is
evident that if noR(k, V, Q) were used in place of
the "condensate" Gaussian in Eq. (2) that the best-
fitting value for the condensate fraction would not
be substantially different from the previous esti-
mate' of (2.4 el)%.

The structure in the energy dependence of the
experimentally obtained dynamic structure factor
is discernible in this figure in the vicinity of 101
and 111 meV. The function N, R(k, V, Q) also has
structure which is suggestive of the structure in
the data, but the structure in n, R is located too
far from the peak and is less dramatic. The struc-
ture in our evaluation of the condensate contribu-
tion could be made more pronounced by choosing
a significantly larger value for r„but then the
theta functions e(~ r( —r ) and e(( r + V, f

~

—r, ) used
in Eq. {15)would no longer be a reasonable ap-

proximation to g'~'(r) and g'~'(r+V~t) A. more
precise evaluation of R, in particular the structure
in its wings, will yrobably require a more accurate
approximation to p, (r, 0; r+V, t, 0) than was used
in this evaluation.

III. EXTRACTION OF HELIUM LIQUID PROPERTIES
UTILIZING IMPULSE APPROXIMATION

Based on the analysis of the experimental data
in Ref. 3 and the results of the analysis in Sec. II,
we judge that the condensate contribution to the
dynamic structure factor has a full width at half-
maximum (FWHM) of approximately 5 meV at
4 =14.3 A ', while the FTHM of the noncondensate
part is roughly 16 meV. In the formulation being
used here the noncondensate part of the dynamic
structure factor is given by

Ssc(k, (s))=,. it
dp~ n~R(k, V~Q —V, p). (20)

2Ã)sp J

From the above discussion the FWHM of S„cis
approximately 16 meV while the width of R is
roughly 5 meV. This suggests that the modified
impulse approximation IEq. (9)] may be used;
recognizing that the final-state effects implied
by the width of 8 will be small, though not nec-
essarily negligible {see Sec. IV).

Using the impulse approximation, the extraction
of the noncondensate contribution S~ from the
experimental data provides an input from which
the single-particle momentum distributing the
one-particle density matrix, the mean kinetic
energy per atom in the heI. ium liquid may be cal-
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FIG. 5. R(A;, VzQ) for & =2.5 A. : solid line, 4=14.3 A. ~;

long dashed line k=-28. 6 E ~; short dashed line, k-=57. 2
A. '; alternating long and short dashes, phenomenologi-
cally obtained Lorentmian vvith half-width at half-maxi-
mum of po. Helium number density taken to be p =0.022
atoms A 3, helium-helium cross sec+on taken to be
o=35 A'. Q=(~-~„)/V~.
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FIG. 6. Condensate contribution to the dynamic struc-
ture factor: circles, "condensate" portion of the data
(see text); solid line, theoretical estimate of condensate
portion taking no=2. 4% and ~0=2.5 A; long-dashed line,
theoretical estimate of condensate portion taking n, o
=2.4$ and F0=2.4 A. ; shor t-dashed line, best-fit Gaus-
sian with experimental resolution removed. The the-
oretical estimate has been arbitrarily translated in en-
ergy so that its peak coincides with experiment.
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culated. This is discussed in this section.
Taking the partial derivative of the nonconden-

sate part of Eq. (9) with respect to ~ at constant
k yields

energy transfer, and scattering angle are inter-
related by

)ta(8, to}=2M/28, [l —(l —~/8, )'~a cosa] —coj,

(2l)

The experiment divas conducted at constant scat-
tering angle 8 of 135'. The momentum transfer,

where M is the neutron mass. Using Eqs. (9) and

(22), a somewhat uninteresting exercise in partial
derivatives leads to

0+g =-4n' PVk + — — 1 -Vk 1+— (23)

where Q =(~ —~,)/V, . As previously noted, the
data, as presented in its final form in Ref. 3 and
reproduced here, are proportional to the dynamic
structure factor broadened by a resolution function
with a FTHM of about 2.1 meV.

For convenience we choose to use the appropriate
portion of the empirical fit Eq. (2) rather than the
actual data points in the application of Eq. (23},
i.e., we identify

Cf„c(~)= (wl ) '—~'

(24)

series solution to an integral equation in the form
of Eq. (24). This series solution is discussed in
Appendix A. The effect of approximately decon-
voluting the term I, A, exp[-(&u -A, )'/A', ] in
Eq. (25), producing thereby the function P(m) is
illustrated in Fig. V. Plotted in the figure as a
solid line is the first derivative with respect to
energy loss of the term I,. The corresponding
derivative of the deconvolution of this term P(~)
is indicated by the dotted line in the figure. The
adequacy of the five-term approximation to P(ru)
is tested by convoluting this P(~) with the experi-
mental Gaussian resolution function, which should

(25)

I' = (2.l}'/(4 ln2) represents the width of the experi-
mental resolution function, and C is a constant to
be determined by normalizing the single-particle
momentum distribution obtained from Eq. (23):

(2'l)

where

The following approximation to the solution of
Eq. (24) was used:

S„c(8,to)=C[AIe ' "a' ~"a +P(~)],

A,' = A, A, /A,', (28)

(29}

0.5-
0.4—

As may be verified by direct substitution, the
Gaussian term in Eq. (2'i) exactly reproduces the
Gaussian in Eq. (24) after convolution with the
resolution function. The polynomial P (~) approxi-
mately reproduces the term A, exp[-(E -A, )'/A', ]
of Eq. (24) after resolution broadening, as verified
by numerical integration. The function P(~) was
obtained from the first five terms of an infinite

0.0

0 1

i I I I i i I i I

2 3 4 5 8 7 I 9 10 11 12 13
I w-A5 ( ENERGY {meV)

FIG. 7. Energy resolution correction: solid line,
derivative of A4 exp[- ((cu -A5)/Aa]4}; short-dashed

line, (d derivative of P ((d), Eq. (30); long-dashed line,
resolution-broadened ~ derivative of P(~) in region
where it is distinguishable from solid line.
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then reproduce the term I„or, as well, its &

derivative. Figure 7 shows that the results for
dP(~)/d&u so convoluted (the dashed line in the
figure) are graphically indistinguishable from
df, /d~ except in the ~egion

~

~ -A, )& 10.25 meV.
The use of Eq. (27) in (23} yields the single-

particle momentum distributions shown in Fig. S.
Along with the two distributions obtained in this
analysis, Fig. 8 also contains the distribution found
from a Monte Carlo calculation which assumed a
Jastrow ground-state wave function. ' To facilitate
comparison with the Monte Carlo result, the n~

values determined from the experimental data have
been normalized taking the helium density to be
0.022 atoms/A ' and the condensate fraction to be
0.11 at 1.2'K. Evident from the figure is the large

o
number of atoms carrying a momentum P -0.'7 A '
which are not present in the Monte Carlo calcula-
tions. Of course, the momentum distributions
n, determined from this experiment corresponds
to the temperatures 1.2 and 4.2'K, whereas the

Monte Carlo calculations were performed for the
ground state, T =O'K. However, we do not think
it likely that the differences in the n~ distributions
at T =O'K and T =1.2'K shown in Fig. 8 are due to
this difference in temperature. ' Some insight into
the possible source of this discrepancy is afforded
by comparison of p, (0, r}, the off-diagonal one-
particle density matrix, related to n~ by

p, (0, r) = pQ n~ e'~' " . (31)

For the Monte Carlo calculations, p, (0, r) is also
related to the assumed form of the ground-state
wave function %,(r„,r„.. . , r„) by

x 4,(r, r„.. . , r„)dr, ~ ~ ~ dr„. (32)

Figure 9 compares values for p, (0, r) from the ex-
perimentally determined n~ values with the Monte
Carlo results. The excess atoms carrying mo-
mentum -0.7 A ' in Fig. 6 give rise to the dip in

p, (0, r) near r-6 A, resulting in a nonmonotonic

p, (0, r), contrasted with the monotonically de-
creasing p, predicted by the computer studies.
We believe that the monotonic behavior of p, (0, r)
is due to the use, in Eq. (32), of a Jastrow ground-

.625
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03 p
62-

.615

O

.010

FIG. 8. Single-particle momentum distributions:
solid line, distribution found from 1.2'K; long-dashed
line, distribution found from 4.2 "K data; short-dashed
line, the result of a Monte Carlo calculation, Ref. 7.
Estimated error shown for i.2'K distribution. The be-
havior of the error bars at small values of p is explained
by first noting that the error bars in pn& are (approxi-
mately) directly proportional to the error in the experi-
mentally determined slope of S(k, ~), refer to Eq. (21),
and therefore of the same order of magnitude for the
NSW experiment over the range of p. Secondly, note
that the process of obtaining n& by dividing pe& by p
"amplifies" the error for small values of p.

FIG. 9. Off-diagonal one-particle density matrix:
solid line, obtained from 1.2 'K data; long-dashed line,
obtained from 4.2'K data; short-dashed line, result of
Monte Carlo calculation, Ref. 7.
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state wave function

4'( ")= II f(„)
1~i & f-N

for which the assumed form of f(r) is a mono-
tonically increasing function of r, i.e. , f(r)
=exp[-(s/r)']. Such an f (r) does not account for
attractive interactions, which should cause a
"bump" in f (r) at an s value roughly corresponding
to the range of the attraction, e.g. , f(r)
=exp[-(a/r)'+(b/r) ], b&0, m&0. Graphical
estimates of p, (0, r) from Eq. (32) indicate that the
bump in f(r) can produce a nonmonotonic p, (0, r)
We think it would be interesting to repeat the
Monte Carlo calculations allowing for the effect
of attractive interactions between the helium
atoms'0 to see if nonmonotonic behavior of p, (0, r)
results.

The mean kinetic energy per helium atom is
readily obtained from the momentum distribution
by calculating the mean-squared momentum. We
obtain the results 12'K/atom at a temperature of
1.2'K and 16'K/atom at 4.2'K. Other estimates
for this quantity obtained from Monte Carlo results
for the ground state'" or from experimental data
at about 1'K (Ref. 12) range from 10.6 to 15.8'K/
atom.

IV. FINAL-STATE EFFECTS
ON THE NONCONDENSATE

In Sec. III final-state effects were ignored in
obtaining the single-particle momentum distribu-
tion and related quantities. In this section we will
discuss, somewhat qualitatively, the modification
of previous results brought about by including the
final-state effects embodied in the R function.

The starting point is an expression for the non-
condensate contribution to Eq. ('7),

S„c(k,~}=, p' dp np
1

4w p
1

X dVR(k, V„Q —V„PV},
-1

which has been written in terms of polar coordi-
nates with the change of variable V =cos8', 8' the
polar angle. To obtain a formula analogous to
Eq. (21) one takes the partial derivative of Eq.
(33}with respect to s& holding k constant

-4w pV~ = dPPnqR(k, V~Q —V~P)
aS

0

dppn, R(k, V, Q+V,p). (34)

The above equation can be written, in a sl, ightly
more compact form by replacing p by -p in the

y SNc

-1+V~ dppn~R(k, V~Q —V~p)
ek
~~ e-

Bk
+V, dp k n, R(k, V, Q- Vp)

Boo e

+ V~ dP P~n& (36}

where

9R 8
R(k, VqQ —V~p)Bk Bk y p y p

To proceed with determining n~ from the scattering
data, one must determine or assume a form for
sR/sk. If one wished BR/sk could be calculated
in a manner similar to the technique used in Sec.
II. The expectation that the final-state effects
will be small suggests that results of sufficient
accuracy could be obtained by just assuming a
convenient form for R(k, V, Q) rather than investing
in a long, cumbersome evaluation of sR/sk. The
authors choose to assume a Gaussian form for
R(k, V~ t),

R(k~ V~ t} e-&v~ s) / (37)

which when Fourier transformed yields

R(k, V, Q) -[(vi')"/V ]e-""
This form leads to a considerable simplification
of Eq. (36). From the results of Sec. II it is ob-
vious that a I' may be chosen to yield the correct
width and qualitatively the correct shape to mimic
the R(k, V~Q —V~p) evaluated in that section. From
Fig. 5 it can be seen that the width of R(k, V, t) in
terms of V, t changes by approximately 8@ as k

goes from k =14.3 to 28.6 A '. It therefore appears
safe to assume that I' changes negligibly over th~
range of k values which are significant for the
experimental data being analyzed. Taking I' as
independent of k and inserting Eq. (38) into (36)
yields

second integral and artifica1. ly extending the defini-
tion of n~ to negative values by the prescription
n ~ =n~. Equation (34) becomes

J
BS

dPPnqR(k, VqQ VqP) = 4v pVq

(35)

The analogous formula for constant scattering
angle 6} is obtained by taking the partial derivative
of Eq. (33) with respect to ~ for constant 8 using
Eq. (22) to inter-relate k, ~, and 8. The result is
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dPPn R k, V„Q —P„P =-4q py, 1 y, (39}

where approximate equality = is indicated to em-
phasize that this equation is based on the assumed
Gaussian form of R(k, V, t).

The results of Sec. III may now be reexamined
using Eq. (39). In that section the right-hand side
(RHS} of the above equation was identified as equal
to Qn„, refer to Eq. (23) and Fig. 8, rather than
the convolution of R with pn~. From the general
shape of R one mould expect that the convolution
of R with pn~ mould be broader with less well
defined features than pn~. This means, for ex-
ample, that the actual single-particle momentum
distribution may have a noticeably sharper peak
in the vicinity of p 0.7 A than indicated in Fig. 8.

It is somewhat easier to make a quantitive cor-
rection for final-state effects on our assessment
of the off-diagonal one-particle density matrix.
The results for this density matrix presented in
Sec. III, Fig. 9, were obtained from

] c"
p, (0,r)=,

~

dQsinAr [RHS of Eq. (39)].
4 ~oo

(40)

In the impulse approximation the RHS of Eq. (39)
is On„[refer to Eq. (23)] and in that approximation

P, is quickly shown to be equal to the off-diagonal
density matrix p, (O„r). In the present approxima-
tion in which R(k, V, i) is assumed to be a Gaussian,
the RHS of Eq. (39) is taken as f dp pn~
XR(k, V, A —V,P) and Eq. (40) becomes

P, (O, r}=p, (O, r)R(k, V, t =r},

effect, implying significant deviations of p, from
its ground state shape due to population of excited
states. Another, probably more plausible, ex-
planation may be that the negative values were
artifically introduced by errors arising from the
finite accuracy of the data and the computational
procedure used in the analysis. For example,
theoretical calculations indicate that n~ ~ I/p for
small P." It is impractical to expect an experi-
ment of the type being discussed to detect this
feature. Adding a term to n~ which behaved as
I/p for small p would tend to add a positive con-
tribution to p(0, r) which would diminish the size
of the negative values of the density matrix.

V. DISCUSSION AND CONCLUSIONS

In this work we have tried to make an honest
calculation of the effect of final state interactions
on thermal neutron scattering from superfluid He4

to compare with the Nook-Scherm-Wilkinson (MSW)
experiment. These effects are contained in the
function R(k, t) and we make no a priori assump-
tions on its shape. However, as described else-
where' we do approximate the exact R(k, t}by Eq.

where p, (0, r) is the result of the calculation con-
tained in Fig. 9 and p, (0, r) is the "true" density
matrix. Figure 10 presents the results obtained
from p, (0, r) under the assumption that R(k, V, i)
is a Gaussian w'ith I" =53.5 A', the value of I being
chosen to give a fit to the experimental data com-
parable to the fit afforded by the condensate
(fourth) term of Eq. (2).

Figure 10 has been drawn assuming that the
condensate fraction n, is 0.11. If a. significantly
smaller value had been chosen for n„ for example,
no =0.024, a value more consistent mith the previ-
ous results; then the resulting p, (0, r) would have
negative values for r = 6 A. This would be incom-
patable with the assumption that the mave function
of the helium is everywhere non-negative, a zero-
temperature assumption utilized in Sec. II to obtain
R(k, V, t). Noting that p, (0, r) was evaluated from
data taken at a temperature 1.2'K, the negative
portions of the density might be a real temperature

.01S

~00S

FIG, 1.0. Off-diagonal one-particle density matrix:
solid line, obtained from 1.2'K data corrected for final-
state effects; dashed-line, obtained from 1.2 K data
with no final-state corrections.
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(5), which accounts for multiple binary collisions
of that helium atom struck by the neutron with
other helium atoms, the latter treated independent
of each other during their interaction with the
struck helium atom. This binary collision approxi-
mation neglects the effects of clustering between
the passive helium atoms. One other approxima-
tion in addition to the binary collision hypothesis
is contained in the expression for R(k, t) given by
Eq. (5). This consists in the neglect of the motion
of a passive helium atom while interacting with
the helium atom struck by the neutron. Another
approximation utilized in evaluating R(k, t) of Eq.
(5) consists of representing in only a crude fashion
the off-diagonal two-particle density matrix p,
appearing in R(k, t) This .p, forms the weight
function for configurations of initial (r) and final
(r+V, &) relative coordinates of struck and passive
helium atoms. We believe that these two above-
mentioned approximations do not alter the quali-
tative shape of the scattering cross section. How-
ever, a better treatment of either one could change
its quantitative aspects. Since there seems to be
qualitative agreement between the present theory
and the MS% experiment concerning the structure
in the condensate contribution to the scattering,
it mould be quite interesting if the experimental
uncertainties in the condensate shape could be
even further reduced, thus providing information
on the quantitative deficiencies described above.

If our present results are correct, very little
relative sharpening of condensate over noncon-
densate scattering is gained by experimentally
feasible increases in neutron momentum transfer.
A previous prediction of ours" which came to an
opposite conclusion in this regard is incorrect,
due to inadequate treatment of the strong repulsive
forces between the helium atoms in the earlier
work.

In view of the relative insensitivity of the shape
of the condensate portion of the scattering to
neutron momentum transfer k, it may be more
profitable for future experiments, to consider
varying not k, but rather the absolute temperature
T of the superfluid. It has usually been judged
that the condensate fraction n, (T) slowly decreases
with increasing T (in a way similar to the known
temperature dependence of the superfluid fraction)
so that its value at T =—1.2 K is only a bit less
than its value at 7.

' =O'K. However, there is, to
our knowledge, no satisfactory proof of such
temperature behavior of n, (T). Therefore it ap-
pears worthwhile to consider appreciably reducing
the superf quid temperature.

We have no good explanation for our predicted
shift in the peak of the scattering toward energies
higher than the free-particle peak. This result

is contradicted by both the experimental observa-
tion, as well as other theoretical estimates. For
example, phenomenological forms for S(k, ~)
which are adjusted to agree with estimates of its
third frequency moment predict the experimentally
observed peak shift to lower energies. It is some-
what curious to note that the approximation eval-
uated here formally satisfies the third and lower
moments of the incoherent (self-} contribution
to the dynamic structure.

Hohenberg and Platzman's original proposal of
the use of high-energy neutron scattering to ob-
serve the condensate" accounts for final-state
broadening of the condensate contribution to the
scattering by introducing a "lifetime" effect as an
imaginary part of the single-particle energy S~,

The theory employed here makes contact with this
phenomenological theory for large times, as may
be seen by examining Eqs. (3), (4), (1 t), and (19).
As observed previously, this agreement holds im-
perfectly even at large times, and breaks down
completely for short to moderate times. A sig-
nificant result is that the effect of final-state in-
teractions is not to just broaden the condensate
part of the scattering into a Gaussian or Lorentzi-
an shape, but instead to broaden the condensate
into a function n,p(k, V~A) with some structure.
This observation does not rest solely on the re-
sults of the calculation discussed in Sec. II, which
as discussed above may be faulted for using a
crude approximation to the off-diagonal two-parti-
cle density matrix. The observation that Gaussian
or Lorentzian is deficient is substantiated by not-
ing that for the incoherent part of the dynamic
structure factor to be given in the form of Eq. I'3),

the zeroth and third moments of R (k, v —v, } must
be nonzero while its first and second moments
must vanish. These features cannot be obta. ined
with Gaussian or Lorentzian line shapes and may
provide some indication that the structure in the
experimental scattering data around 101 and 111
meV could be contributed by the condensate.

The most direct way to compare this theory to
experiment wouM be to take theoretical results
for the momentum distribution, for example Mc-
Millan's Monte Carlo calculation'; convolute this
distribution with the function g and thereby produce
a prediction of the energy dependence of the scat-
tering for comparison with experiment. We in
fact oxiginally proceeded along these lines, how-
ever it soon became apparent tha, t the use of Mc-
Millan's momentum distribution in this theory
would yield results for the dyna, mic structure fac-
tor outside the experimental error of the MS%
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measurements. One could attribute this failure to
the theory presented here„ the Monte Carlo mo-
mentum distribution, the experimental results, or
some combination of these three.

Since this direct approach proved unsatisfactory,
we chose to use the theory developed here and the
experimental data to determine a single-particle
momentum distribution. This approach forces one
to decompose the dynamic structure into a con-
densate and a noncondensate contribution. Treat-
ing the momentum distribution as an unknown func-
tion makes this decomposition nontrivial. This
problem was settled, somewhat arbitrarily, by
taking the empirical fit given by Eq. (2} and the
decomposition it implies as the correct represen-
tation of the dynamic structure factor. Ignoring
the complexities introduced by the experimental
resolution, the constant k to constant scattering
angle transformation, and final-state effects on
the noncondensate; the empirical fitting procedure
may be thought of as simultaneously choosing a set
of parameters A„A„A„B,, B„B„andB,
so that the function A, exp [-(ru -A, )'/A', ] yields
the best fit to the condensate part of the scattering
while the function B, exp[-(p/B, )']
+B,P' exp [-(p/B, )'] is adjusted to give the best fit
to the noncondensate momentum distribution. In
support of the procedure, the width (4.92 me'i/',

refer to Table I) of the best-fitting Gaussian to the
condensate contribution is in rough agreement
with the theoretical assessment of the condensate
contribution, refer to Fig. 6. On the detrimental
side, the function used to fit the noncondensate
momentum distribution was chosen arbitrarily.
It is quite likely that this function is grossly defi-
cient for small values of the momentum p, while
being more acceptable for moderate values of p.
Considering the sensitivity of the quantitative re-
sults on the assumed form of the momentum dis-
tribution and the condensate contribution, we can-
not claim confidence in much of the detailed, quan-
titative results of this analysis. %'e do have con-
fidence in the following qualitative and semiquan-
titative results:

{i) The final-state effects in liquid helium in-
clude physical mechanisms which do broaden the
condensate contribution to the dynamic structure
factor so that its FTHM is approximately 5 meV
for the conditions corresponding to the MS% ex-
periment. The (final-state-broadened) condensate
contribution has structure and is most probably
not positive definite.

(ii) A condensate fraction of approximately 2.4%
is compatible with the MS% experimental data.

(iii) There is preferential occupation of the mo-
mentum states near p =0.7 A ' at temperatures
both above and below the A. transition.

APPENDIX A

f(m) = lim
1 yI' " d'"P((u)

I+ 0 Pg e 4 de

is a solution to

(A2}

(A3)

for sufficiently well-behaved functions E(&()}. To
demonstrate that Eq. (A2) is a solution to E(l. (AS)
consider the function

e)2
R (~ —(u') = [wI'(1+y)] +'exp

I"(1+y)

Expand 8& in a Taylor's series about y =0:

(A4)

n ~n
Ry((u —(u') = (wI') ~2+—

(

(() ((1
x

i
(1+y) ~'exp I, (A5)I' 1+y

where in this and subsequent equations n will be
used as the summation index running from 0 to ~.
Note that

I 2

()+e) "'ee)&( () ) )

82 e)2

, (1+y) ~'exp . (A6)4 8' I' 1+y)

By an obvious inductive argument

g/2 -((e) —(e) )„(1+y} exp

Therefore,

2„(1+y) exp
( )

. (AV)

R ((d —(u') = (wI") Z
n g2n

4 g~2n

(-( — ')')

This Appendix gives a derivation of the function
P(e)) of E(l. (30), which approximately represents
the deconvoluted form of the term
A4 exp(- [(&u -A, }/A,]'j in E(l. (25), a part of the
empirical fit to the scattering data. P(&u) is ob-
tained by taking the first five terms of the follow-
ing series:

( e ) e Aeee( ((&e A )/A. ]')

(Al)

This is in turn based on the claim that
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Treating F(~') as a known function, write

F((u'} =
J

d(u 5(ru —(u')F((u) . (A10}

Representing the 5 function by the 5 sequence given
in Eq. (A9) yields

F((u') = lim (wI') '~' AuF((u)
g ~~] ~ OO

~ 1 yl " &2"exp[- (&u —cu'}2/I']'~—.. 4 g ~2'

(All }

Assuming that F(&u) is sufficiently well behaved to
allow term-by-term integration, integrate by
parts to obtain

F(&u') = lim (wi') '~'Q —
tn& 4

-(u) —(u')2 dw "F((u)

(A12)

where it is assumed that the boundary terms van-

As is well known, R& forms a 5 sequence as y ap-
proaches -j., therefore

ff g2tl

5(&u —(u'}= lim(wI') ~ Q—
tn t 4 ~co'"

-((u —(u'}'
x exp

ish, i.e.,

2(r d F(~)lim e

for all integers m. Again assuming that limit
and summation may be interchanged with the inte-
gration operation

F((u') =(wI') ' ' d(u lim Z —,
~ 1 yI" "d'"F(~)

j+ Pj ~ 4

(-( — '1*

}
which demonstrates that the expression in large
square brackets,

f((u) = lim Q —,
1 yI" " d'"F((u}

n ~ 4 d~'"

is a solution to
oo I

F((u') = (wI') '~' d(uf((u) exp I

The above derivation of the form of the decon-
voluted function f(&u} from the experimental data
F(&u) is clearly not rigorous, since it has not been
demonstrated that F(&u) behaves smoothly enough
to validate the interchange of orders of integra-
tion, summation, and limit. However, our five
term approximation f(&u) in Eq. (30) of the text
[there called P(&u}] is clearly a. very good numer-
ical solution, as Fig. 7 indicates.
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