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Van der Waals forces and zero-point energy for dielectric and permeable materials

Timothy H. Boyer
Department of Physics, City College of the City Unit)ersity of Neu' Yor&, New: Fork, Xeu, pork 1003&

(Received 17 December 1973)

It is pointed out that symmetries of Maxwell's equations under interchange of electric and

magnetic fields can be exploited to convert calculations of van der Waa1s forces between
e1.ectrically polarizable particles and dielectric materials into results for magnetically po-
larizable particles and permeable materials. In particular, the forces between perfectly can-
ducting materials calculated from ideas of zero-point radiation are the same as the forces
between infinitely permeable materials. Combinations of dielectric materials and permeable
materials can lead to repulsive van der Naals forces. For example, two infinitely permeable
parallel plates are attracted together with exactly the same force as obtained by Casimir for
the van der Waals attraction between two perfectly conducting plates. On the other hand, two

parallel plates of area A and separation d, one of which is a perfect conductor and one of
which is infinitely permeable, are repelledbya force E = gz2hcA/240d4, differing in magni-
tude by a factor of g from Casimig's attractive force. A calculation of the repulsive force is
given based on ideas of classical electromagnetic zero-point radiation.

INTRODUCTION

Casimir' first pointed out that two uncharged
conducting parallel plates should be attracted
together by electromagnetic forces associated
with the zero-point radiation field. In this paper
we note that due to these same zero-point fluc-
tuations, two uncharged permeable parallel plates
are attracted, but two parallel plates, one of
which is a conductor and the other of which is a
permeable material, are repelled. %'e carry out

a calculation for this last situation, in the limit
of perfect conductivity and infinite permeability.
The final part of our calculation is analogous to
Casimir's original work on zero-point energy.

The van der %'aals forces between macroscopic
objects have been explored extensively theoreti-
cally and experimentally since Casimir's original
calculation of the attraction of two conducting
parallel plates. Lifshitz' extended the work to
dielectric objects. Also the work has been con-
nected with the van der %'aals forces between
polarizable particles, ' ' between polarizable par-
ticles and conducting walls, '"and between
polarizable particles and dielectric walls."The
calculations refer to dielectric behavior of the
materials, but make virtually no mention of the
permeability. Of course, it is right that this
should be so, since for most materials of interest,
van der %'aals forces a,re dominated by the dielec-
tric behavior. Nevertheless, it is at least a
curiosity that permeable material. s give effects
analogous to those of dielectric materials. More-
over, combinations of dielectric and permeable
materials can lead to repulsive van der %'aals
forces.

ATTRACTIVE AND REPULSIVE
Van der WAALS FORCES

The original Casimir-Polder calculation for the
van der %'aals force between two electrically
polarizable particl. es was extended by Feinberg
and Sucher' to include terms in both electric and

magnetic polarizabilities, and by t,ubkin' to in-
clude a crossed polarizability term. The full
formula for the potential between particles A and

8, holding asymptotically at large separations
is

U»(r) = (ac/4wr')[ —23(ning + n"„n~)

+7(n~n~ +n"„a~)—60n~n„]~ (1)

where a~, o.~~ refer to the electric polarizabili-'
ties; ot„,e„referto the magnetic polarizabili-
ties; and ex, ex to the crossed polarizabilities.
%'e note that if all of the polarizabilities are
positive, then two purely electrically polarizable
particles are attracted together, as are two pure-
ly magnetically polarizable particles. However,
a purely electrically polarizable particle will

repel a purely magnetically polarizable particle.
The Casimir-Polder formula' for the attraction

of an electrically polarizable pa, rticle to a per-
fectly conducting wall has also been extended to
include magnetic polarizability. ' The potential
holding asymptotically at large separations is

U~~, (r) = —(38c/Bar') (n~ —n„).
Here again if 0.~ and a„areboth positive, then
an electrically polarizable particle is attracted
to the conducting wal. l but a magnetically polariz-
able particle is repelled. If we regard the per-
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fectly conducting wall as obtained from the limit
of a dielectric wall where the dielectric constant
e becomes large e-~, then the attraction and
repulsion obtained here fit qualitatively with those
just noted above for polarizable particles.

D-B, E-H, 8- —D, H ——E. (3)

Indeed the equations are invariant under the more
general rotation

D' = D cosP+BsinP, E' = E cosP+8 sing,
)~B' = —D sinP + 8 cosP, O' = —E sinP + H cosP.

Since van der Naals forces can be derived from
ideas of macroscopic electrodynamics, we ex-
pect there to be a close connection between forces
involving dielectric materials and those involving
permeable materials. This symmetry can al-
ready be seen in Eq. (1}for the forces between
two polarizable particles. The formula is invari-
ant under the transformation (4). Indeed I ubkin'
added the final term in +~~X based upon this sym-
metry.

It is interesting to note that this symmetry can
also be applied to a polarizable particle outside
a conducting wall to obtain a polarizable particle
outside a permeable wall. In the limit of infinite
permeability p — for the wall, we have from
Eq. (2) interchanging the electric and magnetic
polarizabilities

U~~„(r)= —(3gc/Bwr') (a„—o;~) .

Hence me expect that if all the polarizabilities are
positive, a. magnetically polarizable particle will
be attracted to a permeable wall while an electri-
ca11.y polarizable particle mill be repelled. Again
this result for attractions and repulsions is in
qualitative agreement with Eq. (1) for the forces
between polarizable particles.

The calculations involving forces between mac-
roscopic dielectric objects can also be converted
to expressions involving permeable objects based
upon the interchange symmetry of the electric
and magnetic fields. Ne merely replace the di-
electric constants ~& by the permeabilities p.

&
of

the corresponding objects. Also the limiting situa-
tions & -~, p, -~ involving perfect conductors
and infinitely permeable objects can be obtained.
In the limit c —~, Lifshitz's force between parallel
dielectric plates becomes Casimir's attraction

SYMMETRY OF MAXWELL'S EQUATIONS

In the absence of free charges and free currents,
Maxwell's equations for the electromagnetic fields
in matter are invariant under a transformation
which carries

between two perfectly conducting parallel plates
of area A and separation d, given by the potential

U«(d) = —w~kcA/720d'.

This same potential U»(d} holds between two in-
finitely permeable parallel plates.

FORCES BASED ON ZERO-POINT ENERGY

Now Casimir's original calculation' for the force
between two uncharged perfectly conducting par-
allel plates is based upon the change in electro-
magnetic zero-point energy due to the presence
of the conducting plates. The zero-point energy
is Q 2g&a, where the frequencies &u are the clas-
sical radiation normal modes imposed by the con-
ducting plates. Because of the symmetry (3) for
the interchange of elective and magnetic fields,
it is easy to see that the frequencies (d of the ra-
diation normal modes are unchanged when all of
the perfectly conducting surfaces are converted
to infinitely permeable surfaces. For the con-
ducting surfaces, the boundary conditions require
that the tangential components of E vanish at the
surfaces; for the infinitely permeable surfaces,
the tangential components of H must vanish. There
have been a number of calculations' of van der
%aals forces based upon zero-point energy
changes due to various geometries of perfectly
conducting surfaces. The results apply immedi-
ately to infinitely permeable surfaces.

REPULSIVE FORCE BETWEEN PARALLEL PLATES

The use of previous calculations together with
the interchange symmetry (3) is limited. For ex-
ample, the force between one permeable and one
dielectric plate cannot be found from the inter-
change symmetry plus a calculation for two di-
electric plates. Rather this force must be ob-
tained by a full recalculation which meets the
appropriate electric and magnetic boundary con-
ditions.

Now the force between a dielectric surface and
a permeable parallel surface seems a simple
and intriguing problem. Hence, me will perform
the calculation in the limit ~-™,p-~. In this
case the problem becomes analogous to that orig-
inally considered by Casimir. ' The calculation
can be carried out using the ideas of zero-point
energy. Since the radiation normal modes are
different from the case of perfect conductors
considered by Casimir, the zero-point energy and
hence the force is different. It turns out that the
force between a perfectly conducting plate and an
infinitely permeable plate is repulsive. This is
in qualitative agreement with the remarks above
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involving combinations of electrically and mag-
netically polarizable particles and also involving
polarizable particles outside conducting and per-
meable walls.

CLASSICAL ZERO-POINT RADIATION

In work published recently'0 on "random elec-
trodynamics, " referring to the theory of classical
electrodynamics with classical electromagnetic
zero-point radiation, it has been emphasized that
there is nothing inherently quantum mechanical
in the idea of zero-point radiation. If we change
the traditional boundary condition on classical
electron theory so as to include random classical
electromagnetic radiation, with a Lorentz invari-
ant spectrum, then a number of phenomena usually
thought to require explanations in terms of quanta,
are found to be easily comprehensible in classical
terms.

As an illustration of this point of view, we will
proceed to calculate the force between a perfectly
conducting plate and an infinitely permeable par-
al.lel plate starting from the assumed presence
of classical electromagnetic zero-point radiation.
Part way through the calculation, we wi11 recog-
nize that we have arrived at the starting point of
Casimir's procedure' which merely assigns an
energy Q&u per normal mode of the classical
electromagnetic field. %e will complete the cal-
culation in analogy with Fierz's recalculation"
of the Casimir force between conducting plates.

In random electrodynamics, we assume that
the fundamental homogeneous boundary condition
on Maxwell's equations consists of random clas-

sical electromagnetic radiation of the form"

i, (,i)=Q fd'Si(), i)i(c, i)

xcos[k' r —(c)t+ 8(k A.)]

B,.(.-, t) = d k""'„'""t(k,.)
=1

&& cos[k. r —(dt + 8(k, &)],

with the familiar notation for plane waves

C (R, X) k = 0, e (ks P ) ' e (k, X' ) = 5 g g. I

Q e ((k, X)et (k, X) = 5(t —k, k) /k, (d) = ck, (10)
&=a

and the scale of the spectrum given by

wit)~(k, X) =Q(d.

Here we have expanded the random radiation in
terms of transverse pl, ane waves with the random
character of the radiation described by the random
phases 8(k, X) independently and uniformly dis-
tributed on [0, 2w]. The one multiplicative con-
stant for the Lorentz invariant radiation spec-
trum has been chosen to correspond to an energy
of Qv per normal mode.

If we assume that an infinitely permeable plate
is located in the yz plane, then the random radia-
tion pattern must meet the boundary conditions at
this plate. Hence the random radiation E~ must
include the reflected waves, giving, in the region.
x&0,

E (,i)=Z f d Sic[-'c, sicd, ssi (SS I, * —tsl S) ~ (js, src)code, *coo(SS+S,* — I ~ S)),
a„&0

(12)

kxE kxe - kxC
Bx~„(r,t ) =~ d'k t) 2 t cosk„xcos(k,y+k, z —~t+ 8} —j „+K sink, x

kg &0 x y g

&& sin(k„y +k, z —(d)t+ 8}

The expression for x& 0 is found by changing the
integrals to run over values k„&0. The expres-
sions here meet the boundary conditions that the
tangential components of the magnetic field H
vanish at the infinitely permeable wall

plane x=d, then the tangential components of the
electric field must vanish at x =d. From expres-
sions (13) holding in vacuum, we see that this
restricts the value of k„to

i & Bxps (0 yix t) 0

with B =H in vacuum. (14)

If a perfectly conducting wall is located in the

k, = (n + ~)v/d, n = 0, 1, 2, . . . .

Thus in the region between the plates, the ex-
pression for E in Eq. (12) becomes a sum over
modes in k„,

(15)
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+ (je, +ffe,) cosk, x cos(k, y + k, z —(dt + 8)],

with k, given by Eq. (15), and the expression for
B in Eq. (13) is modified in analogous fashion.
The constant w/d arises because of the change
from the integral involving k„over to a sum on
n„,where the appropriate differential connection
corresponds to

dk„=(v/d)& n. .

CONNECTION KITH THE IDEA

OF ZERO-POINT ENERGY

The force on the conducting plate can be found
by evaluating the Maxwell stress-energy tensor
over a closed surface S surrounding the plate.
By symmetry, the average force will be along
the x direction. Then choosing the surface S to

consist of two plane surfaces each of area A at
z =d, , z =d, just outside the conductor at z =d,
we have

())= fd))T

=i dy dz T„„d,, y, z, f))

dy dz (T„„d,y, z, t ),
')

The average is over the random phases 6(k, ~}.
The two integrals in Eq. (18) have the same basic
structure and hence it is sufficient to consider in
detail the form of one of these. Thus,

dy dz T„d,y, z, t =— dy dz E„,' -E„„'-~„'+~„„'—&„,' —~„'),1

with E and B as given in Eqs. (12), (13}, and (16), evaluated at x =d.
The term involving (E„,'}, for example, is of the form

~s oo

dy dz E„„'=— dy dz — dk, dk, — dk„' dk,'

x e,e„'t) t) '4 ( cos(k, y + k, z —(dt + 8}cos(k', y + k,' z —~' t + 8' )}

dy dz — dk, dk &2,4x —,
'

=EJ d),, d),„—()— (20)

Here we have averaged over the random phases
8(k, )).), 8(Tt', ))'),

( cos8(k, &) cos8(k', &') ) =( sin8(k, X) sin8(k', X'))

= z((f/)7)5u, ~- 5(k. - k' )

x5(k, —k', ),

In free space the averaging gives

( cos 8(k, X) cos 8(k, A')) = -,'5~ ~ 5'(k - k');

the change to the discrete index requires

5(k, —k„')-6(nt)/d —n't(/d) =—5

(23}

(24)

( cos 8(k, &) sin 8(k', )).
' )) = 0 . (22}

Evaluating each of the terms in (19) in analogous
fashion, we find

J Abc k„
dy dz T„„d,y„z,t) = dk„dk, +n=o '

dna dna gk(d q

0
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where

(n, + ~)m
' n„w ' n, n

(2fi)

Thus, the term corresponds to the derivative with

respect to the separation d of the zero-point en-
ergy 2)I&a per normal mode contained in the volume
dxLxL, .

The second term involving (T,„(d,, y, z, t )) can
be found easily from the electric fields reflected
from the conducting plane at x =d,

d'k fi(k, X) 2( i e„cosk,(x -d) cos(k„y+ k, z —~t + 8) —(je, +K@, ) sink, (x —d)

x sin(k„y +k, z —&et+ 6}J, (2t)
o

k&0 kxC - kateP»s(r, t) =Z d'kg(k, i)2 i -„sink„(x—d) is(nk, y+k, z -mt+&) + j +&
kg &p r u g

x cosk„(x—d) cos(k, y + k, z —(ut + 6) (28)

The result is

dy dg 7„„d„y,z, t)

QPlq de~ dPlg ~ 25& q 29
Bd p p

sheet can be completed easily in analogy with the
method of Fierz" for conducting plates. %e will
take the potential function as the change in zero-
point energy relative to the value when the con-
ducting partition is halfway across the box of
length 8,

U,„(d)=8(d} +$(A -d) -28(&A),

where here

N + g g Ply1T Plg 'F

(30) S(d) =g-,'kv

A =L', A»d, and we neglect terms in' '. This
corresponds to the zero-point energy of a volume
(R d}xLx-L

Thus the force on the conducting plate can be
regarded as given by a potential function which
is the zero-point energy of a large box A& L xL
with infinitely permeable walls and a movable
perfectly conducting partition located a distance
d, w'ith d»A from one end. This is analogous
to the idea of zero-point energy which Casimir'
used as his starting point in calculating the force
between two conducting parallel plates. Here we
have been led to the same view by the idea of
classical electromagnetic zero-point radiation.

CALCULATION OF THE REPULSIVE FORCE BE&VEEN
A CONDUCTING AND A PERMEABLE PLATE

The cal.culation for the force between a perfectly
conducting mall and a parallel infinitely permeable

b(d, A) =-,'kc2+
n=p

with

(33)

The factor of 2 in Eq. (33) comes from the two
independent polarizations.

In evaluating b(d, A.), we first change the vari-
ahles of integration to I' =n„/L, Z =n, /L, and
then introduce polar coordinates

is the zero-point energy of a box d~ L, XL when the
conducting end is separated by a distance d from
the opposite permeable end. %e mill introduce a
temporary cutoff parameter ~ depending upon the
wavelength of the radiation, and at the end of the
calculation will go to the no-cutoff limit ~-0, .
Thus here we will work with 8(d, X),

n+&
- i/a

dg + Y +g~ exp —A. + Y +g~

exp —~
d

+r'
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Now setting

z =[d/(n+-,')]'r',
I

S(d, X) =—f.'Kc Q — ' (1+z)'~' exp —A.
' (1+z)'~

2 „o2 d d

LQ@ 1 (37}

The sum over n involves a geometrical series giving

~(I + ')' exp[- (~/2d) (I + z)'~]
1 —exp[- (X/d) (1+z)1']

(38)

Now taking one of the derivatives in ~ into the inte-
grand,

A. -O. In the limit in which the box enclosing the
system is large, A-~, we have

h(d, X) = L'Kc2P

ex~ o 2(1+ z}~'

8 z(I +z)'~
s[X(1+z)"'/2d] 2d

Ne now write

cschz = 1/z z z +g+gz & ~ z +

Thus, we arrive at the expansion

E(d, x)=a*i.*lr —,+ — „,o(x*1) .
3d 7

8 720d'

If we set

u = A(1+z)'~'/2d,

then

dg
$(d, &) = ——1.'8c—'——cschu

4 BX~ ~f|'~& ~ du

(39)

(41}

(42)

(43)

U, „(d)=~sz hcA/'120d', (45)

writing the a,rea A as I.' =A. . This is to be com-
pared with Casimir's potential between two per-
fectly conducting plates given in Eq. (6}. Thus the
repulsive force between a perfectly conducting
plate and an infinitely permeable parallel plate is
'; of the magnitude of the attractive force between
two perfectly conducting plates or between two
infinitely permeable plates.

REMARK ON THE EXPERIMENTAL SITUATION

van der %'aals forces are extremely small for
most laboratory situations, and hence are difficult
to measure. However, the attractive forces
between conducting plates and between dielectric
surfaces have indeed been measured directly. "
It seems interesting that the unexplored repul-
sive aspect of van der %aals forces may also be
accessible to measurements in terms of the forces
between macroscopic combinations of dielectric
and permeable materials.

If we now substitute this expression for h(d, a)
into Eq. (31), we find that the terms in X ' cancel

d +(R —d) —2A/2 =0,

while the terms of order ~' and higher vanish as
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