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The Atkins theory of the temperature dependence of the surface tension a in superfluid He* has been
improved by including the effects of compressibility, phonon dispersion, and Gibb’s “surface adsorption”
or “surface mass” in the calculation of the spectrum of the surface excitations or “ripplons.” The
theoretical ripplon spectrum is found to have a minimum close to the roton minimum in the empirical
phonon spectrum. The results of the theory, which should be accurate up to a temperature of ~1.3 K,
are presented in terms of the ripplon and phonon contributions to the surface entropy (—da/d T).
The ripplon spectrum and the surface entropy are found to depend on two phenomenological
parameters: a length & which is the surface mass per unit area divided by the density, and an area a
which is the derivative of 8 with respect to the curvature of the surface. In principle, both & and a
can be obtained from static measurements on curved surfaces. The theory is compared to new
measurements of the surface entropy near 1 K and, assuming that § is small, a is found to be about
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I. INTRODUCTION

The purpose of this paper is to extend the simple
“classical” theory of the surface excitations in
superfluid helium, the so-called “ripplons,” to
higher wave numbers, where the effects of com-
pressibility, phonon dispersion, and the curvature
dependence of the surface tension become impor-
tant. We also examine the ripplon (and phonon)
contributions to the temperature-dependent part
of the surface tension, Aa=a(T) - a(0). At the
end of the paper we compare the theory with some
new measurements of the surface entropy —da/dT.

A ripplon contribution to the surface tension of
liquids was first proposed by Frenkel,' following
the work of Mandelstam? on light scattering. The
idea was applied to liquid helium by Atkins® who
treated the superfluid phase as a classical in-
compressible nonviscous liquid. In this case the
relation between angular frequency w and wave
vector & is

w? = (ay/po)k?, 1)

where a,= a(0) is the surface tension at 0 K and
P, the density at zero pressure. The ripplons
produce a temperature-dependent contribution to
the surface free energy (surface tension) which
is given by

Aag=kyT [ In(1—e”®) a%/@n), 2)

where 3=1/k,T. In an incompressible liquid there
is no phonon contribution to the surface tension so
that using Eq. (1) in Eq. (2) gives Atkins’s result,

Aa=Aag=-0.1340(p,/ ag#2) 3 (k,T)"?. (3)
With a,=0.378 erg cm™2,* this gives Aa=(-6.50

X 10737"3) erg cm™2.

In comparing theory and experiment, it is some-
times advantageous to consider the surface en-
tropy (per unit area) SS= -da/dT. According to
Atkins’s result S$=0.01516T%3 ergcm™2deg™?.

The general expression for the ripplon entropy
per unit area is

S$/ky= f [Brw/(e B - 1)
-1n(l - e B")] g%k/(2m). (4)

Measurements of the surface tension®~7 show a
temperature dependence which is larger than that
predicted by the Atkins formula. The assumptions
in the Atkins theory were examined by Brouwer
and Pathria,® but without reaching any definite
conclusion about the disagreement with the ob-
served temperature dependence of a.

Recently Reut and Fisher® have shown that better
agreement with experiment is obtained if one intro-
duces an additional rotonlike branch to the spec-
trum. Their analysis, which again neglects the
compressibility of the liquid, suggests a minimum
in this branch at about %w/k,~2 K. The relation
between these hypothetical “surface rotons” and
the ripplon spectrum [Eq. (1)] is left open in their
paper.

We shall see that the modifications of the Atkins
theory presented here lead naturally to a minimum
in the ripplon spectrum but at a much higher value
of w—in fact, close to the roton minimum in the
bulk spectrum. We also demonstrate that an effect
envisaged by Gibbs' in his general thermodynamic
treatment of any liquid surface, namely, the exis-
tence of surface “adsorption” or surface mass
even in a pure liquid, may account for some of
the observed deviations from the Atkins theory.
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In calculating the spectrum, we treat the liquid
at the absolute zero so that all effects due to the
vapor and normal fluid can be neglected. Seiden'
has discussed the effect of the normal fluid on the
surface waves quite extensively and has confirmed
that, apart from damping, the normal fluid has a
relatively small effect on the ripplon spectrum.
The effect of finite temperature is further dis-
cussed at the end of this paper.

II. RIPPLES IN COMPRESSIBLE CLASSICAL
LIQUID

We begin by considering the spectrum of small-
amplitude ripples on a compressible irrotational
nonviscous liquid of equilibrium density p,. The
velocity field can be represented by a velocity
potential v=grad¢, and the linearized equation of
continuity, the Euler equation, and the equation
of state give

%%+p0v2¢:0; (5)
—po%?=1’=cz(p-po), (6)

where P is the pressure and c is the velocity of
sound.

In the usual treatment of the surface boundary
condition the Kelvin (or Laplace) equation, P
= a,(r7! +7;'), where », and 7, are the principal
radii of curvature at the surface, combined with
Eq. (6) and differentiated with respect to ¢, gives
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Pogpr = =% 552 tayr ) 2t2=0- (M

Substituting ¢ = Ae'?sin(kx — wt) and eliminating
p and P, Egs. (5)-(7) give

w?= (R - 1), (8)
w?=(ay/py)k%1. 9)

The resulting spectrum w(k) and the & dependence
of the inverse penetration distance !/ are shown as
the dashed curves in Figs. 1 and 2. For small %,
!l ~k and we recover Eq. (1). For large &, that,
is kA>>1, w/k-=c and IA—~1, where the length

A= ay/p,c®=0.464 A for liquid helium.

In a more complete treatment of the surface
boundary condition we must take into account the
mass associated with the surface, which we call
T (per unit area). This mass, originally intro-
duced by Gibbs, is usually neglected since it is
of the order of the mass of a single layer of atoms.
For instance, in liquid argon, Kirkwood and Buff'?
have calculated theoretically that the length §,
defined as 6=T"/p, is +3.5 A. A 5 equal to +0.7 A
has been used by Jortner, Kestner, Rice, and
Cohen?? in calculating the electron bubble radius
in Hell. (This value was based on the theory of a
classical hard-sphere fluid of Reiss, Frisch,
Helfand, and Lebowitz,'* which cannot be quan-
titatively correct for liquid helium.) I and 6 are
related to the dependence of the surface tension
on the curvature of the surface and they can be
determined from the Gibbs adsorption equation*®

20 T T [7

— FIG. 1. Ripplon fre-
quency expressed in de-
grees, Zw/kgvs the hori-
zontal wave vector 2. The
empirical phonon spectrum
wy(R) is shown for com-

= parison. The other curves
are short-dashed, calcu-
lated using w= cq (con-
stant velocity of sound);
solid, calculated using the
empirical phonon spectrum
w= wgy(g). The values of

a are in Az; 6 was assumed
to be zero.

2.5



2072 EDWARDS, ECKARDT, AND GASPARINI 9

da=-I'dy - S°dT , (10)

where u is the chemical potential per unit mass.
At T =0 this becomes

da=-Tdu=~(T/p)dP=-6dP. (11)

For instance, one could obtain § by measuring
the chemical potential or pressure in very small
drops of liquid as a function of their mass.!® As
far as we know, there have been no experimental
measurements of § or I'" for any liquid; however,
as we shall see, it may be possible to obtain a
value for Hell from the behavior of the ripplon
spectrum.

The surface mass I' arises in Gibbs’s thermody-
namic treatment'®'” because the “surface of ten-
sion,” whose area determines the surface energy,
is not necessarily coincident with the “dividing
surface,” which is usually defined so that its vol-
ume times the bulk density of the liquid gives the
correct total mass. The distance between these
surfaces is just 6. For instance, in a small spher-
ical drop the radius of the surface of tension would
be obtained from the pressure using the Kelvin
equation » =2q/P, while the radius calculated from
the mass and the bulk density would be the radius
of the dividing surface (r +§).

In treating the surface boundary condition, taking
the surface mass I' into account, let us assume
that the undisturbed surface of tension lies at
z =0, and, in the presence of a small amplitude
wave, at z=¢(x, v,t). The linearized equation of
continuity at the surface is

m(i—f—é)#w %}{—vﬂ) (12)

and the linearized equation of motion is

-, 2 _ ( ' ii) 2
P w (532 +ay2 +I'z. (13)
For a wave of the form ¢ =Ae’*sin(kx — wt), Eqgs.
(5) and (6) and (11)-(13) give

w?=c¥(k*-1%), (8)
w? = (ay/po)k?® — w28 (1 +£%6 — aw’p,/ ay)
(14)

where we have defined the new quantity a =(a/p?)
xoT /o = ~a(6®a/8P?), which has the dimensions
of an area. For a spherical drop of liquid a would
be 3856/8(1/7), where r is the radius of the drop.
Clearly Eq. (14) reduces to (9) when @ and 6 are
both zero. Eliminating I between (8) and (14) and
expanding to second order in k% we obtain

w?=(0p/p) k1 = SNk +R* (N2 +X6 =62 —a) +.. . ).
(15)

Since A = a,/p,c” is the only length which appears
in the first-order correction term in the spectrum,
it might be thought that the compressibility of the
liquid would be the dominant effect in the correc-
tions to the Atkins formula, Eq. (3). However, the
contribution to « from the phonons tends to cancel
the change in the ripplon contribution caused by
compressibility, so that the final result for A«

is still sensitive to a and 6. Moreover, we find
that to get accurate results for the surface en-
tropy and Ac, it is necessary to solve Eqs. (8)
and (14) rather than use the approximate equation
(15). The phonon contribution to the surface en-
tropy is calculated in Sec. IV below; before pro-
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[ inverse penetration dis-
y tance, in A™! vs the hori-
/ zontal wave vector k for
/ the ripplon spectra shown
in Fig. 1. The dashed line
was calculated using a con-
stant velocity of sound,
-] w = cq; the full lines were
calculated using the em-
pirical phonon spectrum,
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ceeding with it we consider a generalization of the
theory to take into account phonon dispersion.

11I. MODEL WITH PHONON DISPERSION

Clearly, we cannot expect the theory described
in Sec. II to resemble liquid helium for 2= 0.5 At
since, as is shown by the well-known Landau spec-
trum®® in Fig. 1, the phonons are then strongly
dispersive and we cannot treat the velocity of
sound ¢ as a constant. To solve this problem we
could use the semiphenomenological theory of
liquid helium proposed by Ginzburg and Pitaev-
skii,'® Gross,? and others, called the “Hartree
liquid” theory. In this model the energy of the
liquid is written as a functional of a single-particle
“wave function” ¥(F, {) = (p/m)"2e"*"  where
o(T, t) and ¢(T, £) are the density and velocity po-
tential, respectively, and m is the mass of a He*
atom. The energy functional is?!

E - E,=(k*/2m?) f(erp)z d3v +% fp(v¢)2 d%r
c@/zm?) [ [ @ - poVGE - )

x[p(r) - po) d®r" d3r. (16)

The density and velocity potential fields at any
time ¢ are found by minimizing E subject to the
normalization [ (p —p,) d* =0 and the equation

of continuity, Eq. (5).

To make the frequency of small-amplitude den-
sity waves correspond to the empirical phonon
frequencies wg4(g), the potential V(r) must have
a Fourier transform V, which satisfies the equa-
tion®

wolq) = (Bg?/2m)? +poq® V/m?] V2. (1

As is well known, this model gives values of the
surface tension ¢, which are quite close to the
empirical one. However, such calculations usually
involve a rather artificial boundary condition;
for instance, in the calculation of Amit and Gross?
the density is put equal to zero on a plane z=0
representing the surface. With this boundary con-
dition, because of the so-called “quantum-pres-
sure” term (the first term in the energy function-
al), the density function p(z) which minimizes the
energy drops smoothly to zero in a distance of
the order of //mc~0.7 A of the boundary. The
increase in the energy above the bulk value E,
gives the surface tension. Since the boundary
condition is rather artificial and because the cal-
culations would be quite complicated, we have not
attempted to solve the problem of a boundary
undergoing ripple motion in the complete Hartree-
liquid formalism. Instead, we have deleted the
quantum-pressure term entirely, and we repre-

sent its effects by the classical Gibbsian surface
tension specified by the parameters o, 6, and a.

In principle both 6 and a can be determined from
the Hartree-liquid model or more fundamental
theories by solving the equations appropriate to a
curved surface. Saam® has already made a rough
estimate of 5 from the Hartree-liquid theory and
finds that || is probably less than 0.1 A. There
have been no calculations of «, but one can esti-
mate its order of magnitude by considering a
single isolated He* atom as a spherical drop. The
radius of the surface of tension » is given by
4mr*a~ L, where L is the latent heat per atom.
The radius of the dividing surface (r +6) is given
by imp(r +6)*=m. The result is »~1.5 A, 6~0.6 A
and, if one accepts Saam’s estimate that, for a
nearly flat surface (» =«), 6=~0, then one con-
cludes that =% 85/8(1/7)~ +0.5 A%,

Returning to our simplification of the Hartree-
liquid theory [which we may call the “phonon-
dispersive” (PD) model], since we omit the quan-
tum-pressure term for consistency Eq. (17) must
be modified to

we(q) = (po Vo) 2/ m . (18)

The normalization condition, the equation of con-
tinuity, and the minimization of the energy func-
tional now lead to an Euler equation,

;@_if/- -, -, _ -,
plbvipe V(r —r")[p(r’, ¢) —po|dr’, (19)
which replaces Eq. (6) in the classical theory.
These equations are satisfied by a solution of the
form

p —po=Bet?cos(kx - wt), ¢=Ae'?sin(kx - wt),
provided
w=wylq), =k -1%, (20)

which takes the place of Eq. (8).

As far as the surface boundary condition is con-
cerned, since we have decided to treat the surface
according to the classical theory of surface ten-
sion, we have the same equation of continuity
[Eq. (12)] and the same equation of motion [Eq.
(13)] as in the classical theory. With Egs. (5)
and (11) we recover the classical result Eq. (14),
so that the ripplon spectrum in the phonon dis-
persive theory is determined by Egs. (20) and
(14):

w=wylq), F=r-1%, (20)
w? = (apk®/py = W?6) (1 + k26 —aw’p,/ a,) . (14)

The result of solving these equations for w(k) when
a and 6 are both zero is shown in Figs. 1 and 2 for
comparison with the classical calculation with
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c=const. The curve of w(k) is asymptotic to the
phonon spectrum w4(k) and has a minimum which
is very close to the roton minimum. This fea-
ture is qualitatively independent of the values of
a and 6, as is shown by the curve with a=+1 A2,

Of course at best the results of this calculation
cannot be more than qualitatively correct at high
wave numbers, particularly in the region where
[~!, the penetration distance, is predicted to be
comparable to an atomic spacing. In addition, the
curve for g=+1 A? has unphysical features at high
wave numbers in that, for large k, the ripplon
frequency w is multivalued, and the group velocity
becomes infinite at two values of 2. For 5 <0,
Eqs. (14) and (20) also have the unphysical solution
I=k=-56"'; w=0. However, if |6| is small this
will occur at very high 2. For all values of § and
a one can expect that the ripplon lifetime will be-
come short for k greater than ~1 A"1.% In view
of these limitations the main usefulness of the
results in Eqs. (14) and (20) is in assessing the
importance of phonon dispersion for comparatively
low wave numbers, below 1 f&“, so that we can
disentangle the effect of ¢ and 6 on the temperature
dependence of «. This question is discussed fur-
ther in Sec. V.

In Fig. 3 we show the ripplon contribution to
the surface entropy calculated with representa-
tive values of & and a using both the classical
theory, with constant velocity of sound, and taking
into account phonon dispersion using Eqs. (14)
and (20) to obtain the ripplon frequency. These
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FIG. 3. Ripplon contribution to the surface entropy S3
compared to the value calculated from the Atkins formu-
1a SZiins, @S a function of temperature. The curves are
dashed, calculated using w = cq (constant velocity of
sound); solid, calculated using the empirical phonon
spectrum, wy(g). The values of a are in A%, ¢ is in &;

6 is zero unless otherwise stated.
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results were obtained by numerical integration
up to £=2.9 A~! using a Hewlett-Packard 9830A
calculator. Where the ripplon frequency for «

=1 A? is multivalued we have used only the lowest
frequency.

IV. PHONON CONTRIBUTION TO SURFACE
TENSION

So far we have ignored the effect of the surface
on the phonon modes in the liquid. If one takes
this into account one finds that the phonon modes
are modified in the presence of a surface, thus
giving rise to a surface energy which is in addition
to the contribution due to the ripplons. To calcu-
late this we consider a sample of liquid helium
between two rigid parallel plane walls. A cut
parallel to the walls and through the middle of the
sample produces two free surfaces and, as well
as introducing a set of ripplon modes, also changes
the frequencies of the remaining phonon modes.

If the new surfaces were completely free, i.e., if
a,, 0, and a were all zero, the boundary conditions
on the velocity potential in either the classical
case (Sec. II) or the quantum -hydrodynamic case
(Sec. II) show that, on the average, each phonon
mode has its wave vector q increased by a vector
A of magnitude m/4H directed perpendicular to the
surface. Here 2H is the thickness of the original
sample of helium. At finite temperature T the
resulting change in the phonon entropy and tem-
perature-dependent free energy must be attributed
to the introduction of the free surfaces, and forms
part of the surface entropy and surface free en-
ergy. The phonon contribution to the surface
tension using this “completely free” boundary
condition is then®**

a - (W
Aa%=kBTH fa-‘:; [ln(l —e ™ Bn )]

. d’q
x(grad,wgy) * A B

LI - CPe
T16m J, ePhee -1 21)

which can also be written in the quasi-two-dimen-
sional form

N —2821%[ f In(1 — e~ B"8) gdq . (22)
0

The corresponding contribution to the surface
entropy (which is negative) is

1 “/( Bhw
S0 /b~ o ey
S(b /kB 87 A <( hw(b—l)

e

—In(l —e” 8“%)) qdq. (23)
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For low temperatures where w, may be set equal
to cq the integral can be evaluated to give

3¢(3) (kBT 2 (kBT 2

0/p = SEW(RBL Y

S4°/ka= =5 (1 ) 0.1435 (2
=~5.98x107%*T? ergcm™*deg™"'. (24)

To take into account the real boundary condition,
i.e., to include the effect of the surface tension
a,, we use the model described in Sec. III. The
phonon modes correspond to solutions of the type

¢ =Acos|y(z +H)]sin(kx — wt) with w=wy(q),
F =k +y.
The surface boundary condition yields
w? = (agk?/py = w?0)(—y tanyH +£%6 - aw’py/ @) ,
(25)

which is the same as the classical result. In this
case each phonon has its perpendicular wave vec-
tor y increased by n/4H plus an additional amount
cot™!(-tanyH)/H, so that the phonon contribution
to the temperature dependence of the surface ten-
sion is

where
[ -1 1
)= fo ydy cot [((ao(po)q’(l -y%)/wh - qb

—qo(1 - y?) - 2% _
a8(t - 57 - 2] )

and w¢(q) is the empirical phonon spectrum. The
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FIG. 4. Phonon contribution to the surface entropy Sg,
compared to the surface entropy calculated from the
Atkins formula S3yins, as a function of temperature. The
curves are dashed, calculated using w = cq (constant
velocity of sound); solid, calculated using the empirical
phonon spectrum wy(g). The values of a are in .&2, 6 was
assumed to be zero.

corresponding expression for the surface entropy
is

1 “°  xe*
Sg/kﬂ:s%'o/kB_Z‘nEJ; (e—,_T);I(q)qzdx,

(28)

where x(q) = Bhw 4(q).

Figure 4 shows the phonon contributions to the
surface entropy in various approximations for
a=0 and a=+1 A%, The integrals with respect
to k were evaluated numerically up to 2.9 A~*.

V. CONCLUSIONS AND SUMMARY

In Fig. 5 we show the theoretical surface entropy,
including both the ripplon and phonon contributions
in two approximations for ¢ =0, a=+1 A%, and
a=1.5 A%, We also show the effect of putting &
equal to —0.1 A.

The experimental values in Fig. 5 are new re-
sults® which will be described in another paper.’
The new data include measurements of A« and
—da/dT and extend up to 2 K, so that only a small
part of the experimental results is shown in Fig.
5. An account of the experimental method and
the estimation of the errors will be given in a
future paper.

Before discussing the theoretical curves in Fig.
5 in more detail we should examine the validity of
the approximations we have made and estimate

1.3
o 20
=
P
<T

[%p)

n

o LIO

n

1.0

FIG. 5. Total surface entropy S°® compared to the value
from the Atkins formula as a function of temperature.
The values of a are in A2, 6 is in A; the value of ¢ is
zero unless the curve is otherwise labeled. The dashed
curves were calculated using w = cg (constant velocity
of sound); the full curves were calculated using the em-
pirical phonon spectrum w4(g). The vertical bars are
experimental data.
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the temperatures at which these approximations
may be expected to break down.

We first examine the “long-wavelength approxi-
mation,” i.e., the assumption that the wavelength
of the excitation is large compared to the charac-
teristic atomic lengths in the liquid, which are of
the order of 1 A. An indication of the validity of
this approximation can be obtained by comparing
the results using the classical approximation
w=cq and using the (PD) theory with the empirical
phonon spectrum w =w4(q). As Fig. 5 shows, this
difference is quite small and amounts to about
2% at 1.3 K. At 1 K the difference is a fraction of
a percent. Therefore we can have reasonable con-
fidence in the PD results up to a temperature of
at least 1.3 K.

Another approximation we have made is that the
ripplons have well-defined energies and long life-
times, and that the interactions between ripplons
and between ripplons and phonons may be ne-
glected. Saam®® has calculated that the lifetime
for a ripplon decaying into two or more ripplons
with smaller wave vectors will become short for
ripplons with 22 1 A~!, However, his calculation
is based on the spectrum for the incompressible
liquid, Eq. (1). The fact that our spectrum has
smaller positive curvature at high & will probably
increase this lifetime. In any case, the contribu-
tion to the surface entropy from ripplons with %
>1 A™! is less than 2% at 1 K and ~4% at 1.2 K.

One may also think of the problem of the inter-
action of surface excitations as a deviation from
the small-amplitude approximation we have as-
sumed throughout our calculations. In the classi-
cal theory the mean-square angular deviation of
the surface from flatness is of the order of
|Aa/ay|. The small-amplitude approximation

will be valid as long as |Aa/q,| is small compared

to unity. At 1K |Aa/q,]| is approximately 2% and
at 1.3 K it is 4%.

The effect of interaction between the excitations
can also be estimated by using a temperature-
dependent ripplon spectrum in calculating the
surface entropy. This procedure gives good re-
sults®® up to ~1.8 K in calculating the bulk thermo-
dynamic properties from the phonon spectrum
measured by neutron scattering. Of course, we
have no measurements of the ripplon spectrum or
its temperature dependence, but we can estimate
the order of magnitude of such an effect by using
the empirical temperature-dependent surface ten-
sion o(7T) and the temperature-dependent phonon

spectrum wgy(q, T) in our formulas, instead of

a, and wg4(g). Once again the effect is fairly small,
amounting to an increase of ~1% of the surface
entropy at 1 K and ~3% at 1.3 K.

We have also neglected the vapor contribution to
the surface tension and surface entropy. Elemen-
tary estimates of the vapor contribution to o show
it to be of order Pg.h/(2umkT)¥?, i.e., of the order
of the thermal de Broglie wavelength times the
saturated vapor pressure Pg,. This is negligible
up to a temperature of at least 1.5 K. One must
also remember that a ripplon with % /k, greater
than 7.2 K has enough energy to produce an evap-
orated atom. Again, the effect of this instability
will presumably be confined to high temperatures.

From the above discussion we may have rea-
sonable confidence in our theoretical results at
a temperature of about 1 K. Referring to Figs.
3-5 at this temperature we notice that, although
the ripplon contribution with ¢ =0 and 6 =0 is quite
a lot larger than the Atkins value, after adding
the negative phonon contribution the total entropy
is not significantly different (only 2%) from that
predicted by Atkins’s theory. Even at 1.5 K the
difference is only 5%. This means that the net
effects of compressibility and phonon dispersion
are both small at 1 K and they cannot explain the
observed deviations between the experiment and
the Atkins theory at this temperature.

On the other hand, the effects of plausible non-
zero values of 5 and a are quite significant at
1 K, and they probably account for the observed
behavior of the surface entropy. If Saam’s esti-
mate that |5|<0.1 A is correct, the principal ef-
fect is probably due to the quantity ¢, but it would
be difficult to decide this experimentally. If |5|
<0.1 A, then we can conclude that ¢=1.5+0.3 A2
gives agreement between the theory and the ex-
periment. This is not an unreasonable value of
a, but it would be more satisfactory if we had
theoretical estimates of both 6 and a. Of course,
in principle both ¢ and § could be obtained from
static measurements on curved surfaces of liquid
helium.
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