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Coupled equations for medium-energy scattering. II.
Electron and positron scattering from atomic hydrogen
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The effective-channel approach to medium-energy scattering has been formulated previ-
ously by constructing a set of coupled equations for the elastic-scattering and average in-
elastic-scattering channels, with the evaluation of the average fluctuation potential and the
average excitation energy to be carried out by a variational procedure. The formalism is
applied here to the electron and positron scattering from atomic hydrogen in the energy
range 50-500 eV. The various quantities which parametrize the effective channel are ex-
plicitly calculated. An approximate solution of the coupled equations is then obtained using
a set of Green's functions in the semiclassical approximation. Contributions to the elastic-
scattering amplitude which arise from the static interaction and the coupling to the average
inelastic-scattering channel are isolated for the purpose of ready comparison with previous
calculations. The present calculation contains in effect no free adjustable parameters when

the information from the total-cross-section data is incorporated into the theory through the
use of the optical theorem.

I. INTRODUCTION

Scattering of electrons and positrons from com-
posite target atoms at low energies has been the
subject of intense investigations both experimental-
ly and theoretically for the past several years, and
we have now a variety of theoretical approaches
which can be used to treat the effect of distortions
of the target and also the exchange and rearrange-
ment processes at these low energies. %hen the
scattering energy is very high, e.g., above 500
eV, the first Born approximation or its slight
variations seems to work reasonably well in pre-
dicting the elastic scattering, inelastic exeitations,
and ionization cross sections.

The theoretical situation in the medium-energy
range, 50-500 eV, is less favorable, however,
mainly because the effect of distortions of the
target system during the collision is still substan-
tial and yet there are very many open channels
now which may be strongly coupled to the elastic
channel. These make the various theoretical
methods, which are applicable either at low ener-
gies or at high energies, less effective in the
medium-energy region.

In the first paper' of this series of reports, we
have discussed in detail an approach to medium-
energy scattering which incorporates some of the
salient ingredients of the theoretical methods
developed for the other energy regions. It involves
a construction of the average inelastic channel to
simulate the coupling of the elastic channel to all
the open and closed inelastic channels. The
various parameter functions which characterize
this effective channel have to be specified, and we

have given in I a detailed discussion of different
ways to evaluate these quantities.

Once the relevant coupled equations a,re speci-
fied, then the scattering amplitude is obtained by
solving these equations with appropriate boundary
conditions. As a fairly large number of partial
waves contribute at these energies, with severe
cancellations at large angles, it is desirable to
solve the equations without the expansion of the
scattering functions in spherical harmonics. Ne
have described in I a simple procedure which is
based on the Green's-function technique' in the
semiclassical approximation, and the angle-
averaging procedure to simplify the amplitude
integrals. '

The theory outline in I is here applied to the
scattering of electrons and positrons from atomic
hydrogen. Much work has been done in the past
on these systems using different techniques, such
as the close-coupling, ' Glauber approximation, '
and eikonal distorted waves. ' The approach we
follow here is similar to that formulated by
Feshbach et aI,.' and applied by Joachain and
Mittleman' to the electron-helium scattering, but
with the obvious improvement in that all parame-
ter functions in the theory are explicitly calculated.
Therefore, we obtain our result essentially free
of any adjustable parameters, just as in the first
Born approximation and in the Glauber approxima-
tion. '

II. THEORY

Construction of a set of coupled equations for
the elastic and effective inykhstic channels has
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been discussed in the paper I, and we briefly
summarize here those parts of the result which
are relevant to the present calculation. The in-
elastic components of the total scattering function
is represented collectivel. y by Q4', where

and & is the projection operator for the target
hydrogen in its ground state and thus for the elas-
tic channel. It is defined by

&= ia0(r)& &ko(F') I

Since we are going to neglect the exchange effect
in most of the discussion, the e'H and e H sys-
tems can be treated with very minor changes.
Therefore, the formalism will be written out
explicitly for the e'8 system for definiteness. The
necessary modifications associated with the e H

system will be indicated later. The effect of ex-
changes will be estimated also at a l.ater stage.
The amplitude calculation includes this effect
explicitly.

The Hamiltonian for the system e'8 is then
given by

such that some of the integrals involving V' and
V' are less singular. The 5"2' ' factor is included
in (2.4) to have y, properly normalized at each
fixed value of R. That is, from (2.5), we have

W,(B)=(y. , [V'j'y. )-, —(C., V'4.)',

-=&[V']'&- &V'&'.

The choice (2.4) for y& is of course not unique, and
we have introduced in fact one single parameter a
in V' to avoid possible difficulty with the various
integrations. Furthermore, we have discussed in
great detail in Ref. 1, other possible ansatz one
can make to simulate the inelastic channels at
medium energies. However, as the first attempt
in studying the effectiveness of the formalism, we
will concentrate on the choice (2.3).

A. Coupled equations

Substitution of (2.3) into the scattering equations
and integrating out the r variable, we obtain'

(~+ V~- E)0u (0R) = —V,„(B)~(B), (2.8a)

(TR+ «V4+«E+~ —E)~(R) = —V«u0(R), (2.8b)

(2.1)H = Tg(H) + fir(r) + V(r, R),

where 8 and r denote the positron and electron
coordinates, respectively. The target states are
generated by H&, as

where

V (H ) = (g, V4 )-, ,
(2.9)

Hr(r} q„(r}= E„P„(r}. (2.2)

The coupled equations are derived in I from the
ansatz on the total scattering function 0 in the form

4(r, B)= p,(r)a0(B) + q, (r, B)(o(B), (2.3)

where y, is chosen to be orthogonal to the ela, stic
channel so that it represents the distortion of the
target during the collision and thus the coupling to
all the inelastic channels. The functions u, and ~
are to be determined by solving the resulting
coupled equations when (2.3) is substituted into the
scattering equation and the r dependence is
averaged over.

The choice of q& is therefore critical in obtaining
a reliable estimate of the inelastic-channel con-
tributions, and we chose the form

y, (r, H) = W, 'i'(B)[V'(r, H) —&V'&] y,(r), (2.4)

V0~=(00 VV'~) = V*,.
V,.=(A, Vvi), ,

~0P=(A|T%%t)r i

E„(H) = (q„ar yr)-, .
If we further define the quantity

(2.10)

V~~= W, /W0,
(2.12}

W3(R) =(40 V'VV 40) -2(40 V'40) (40 VV'40)

(~., V'~.&-. (C. , V4.&;, (2.11)

then, some of the quantities in (2.10) may be re-
written in the form

VO~= V@0= 8'2 =- V„

with

y, r, 8) 'dr =1. (2.5)

E~ = Y(R}/W, —EJ, , as 8—
where

(2.13)

In (2.4), we have chosen a slightly modified form
of the potential V' defined as

e e e e2 2 2 2

V —+
i g[ f gi

= V (rp R)i

(2.6}

1'(R) = (g„V'HrV'p0}-, —E0($0, V'g0)~. (2.14}

V(B)=— ' -E =—I„+Y,E F (2.15)

For convenience, we define the average potential
in the Q channel by
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where E& is our average excitation energy. As
was shown previously, "8', and 8', are directly
related to the tmo- and three-particle correlation
functions. In the following, we will neglect the
term J „, l.e., for simplicity we set

With this approximation (2.16), the set (28) is
exactly the form we have derived in Ref. 10 using
a variational procedure on the operator QHQ.
Thus, the equation we will consider in the present
paper is

[rg + V„(R) E,']—u,(It) = V, {—%)~(%),

[T-, + P (It) -E,'] u)(II) =- V, (II }u,(II),

(2.17a)

(2.1Vb)

V= Vy= V~q. (2.15a)

The effect of the choice (2.15a) rather than (2.15)
mill also be studied numerically.

F =Eg+Eg.
Instead of (2.15), we could also define V to be that
derived from V, as

= qe) ++e (2.24)

For the evaluation of &~~ and 9 „, which involve

g, and g„, respectively, we have adopted the
semiclassical form'

g(0) ~ & K] ~ R

u'" = e'"~'~

where K& and Kz are the initial and final momenta
of the projectile, respectively, and we have
neglected all terms which involve more than one

g, or g~. This is purely an approximation at this
stage in order to simplify the evaluation of V'„by
not iterating. However, this is a very reasonable
one in view of the high-energy projectiles which
are involved here.

The separation of V',
~ into two parts, as has been

done in (2.23), makes it very convenient in assess-
ing the importance of the effect of the Q space
which contains all the inelastic channels (including
the exchange, pickup. and ionization channels).
Ne may further separate out the Born term from

as

&„=(u,'", V u,"))+(u,'", V g', V u[0')

8. Scattering amplitude

The elastic amplitude may be calculated once
the solutions u, and lt) are obtained from (2.17).
Formally,

(2.18)

(2.19)

(Tg+ VM —Ee)ue =0,

and

ge = (Ee + ie- Tlt- Vee)

g, =(Er +fe-T}I-I') '.

(2.21)

For convenience, the elastic scattering amplitude

f„ is written as
1f = ——q'

g, (R, H )=-e'" ~') f2ss=g,'„,

fl'(I} = [2E,' —2V„(t)]'~,
s =It —R' t=-(It+It')

and similarly,

g„(H, R') =-e' "'/2)ls"--g„„,

with

s'(g) = [2E,' —2V(I)] '~.
Thus, me have explicitly,

fg fu+f l +f.'l
where

fs = ——
JI R dR VM(R) sinqR,

(2.25)

(2.26}

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

and thus.(E, e}=if., l =I~., l f«'.
Then, &„ is given by uo and (d as

(2.22) f„,J d ddt Vft+ —',=e)V„(t--,' )

p
&q t-$K . s iK' (t)~ g (2.32)

q'~ = (u)e~, V~ ue) + (u&~'), V~ge V, &d) + (u&~e~, V, u) f.,
= .o e tt, itd-'det))', (t--*'s)

i q t -1K' s i&(t)s/
y

$' ~ (2.33)

+

In (2.23}we used

(2.23) In (2.31)-(2.33), we have used

q=Kl-Kf, K, = e(Kl+Kf). (2.34)
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The forms (2.32) and (2.33) involve integrations
over six variables. As discussed in I, they can be
considerably simplified, however, by introducing
the angLe-averaging aPProximalion. ' It involves
the following replacements in the factors V»(t+ o s}
V«(t--'. s) a d V, (t+-,' s) V, (t--'. s);

C. e 8 system and the exchange effect

We have given in (2.12)-(2.15) the potentials I',
P, , and V~ for the e'H system. Insofar as the
direct-channel contribution is concerned, we ob-
tain the corresponding quantities for the e H

system as

t s-its,
with

a = I/&3 = (cos'9),'„,'

where 8 is the angle between s and t, or

o = (1+Y)(I-q/2') .

(2.35)

(2.35a)

(2.36b)

Y = Y/W, —E~ = Y' = Y

(2.39)

(2.40)

Note that we are still retaining the 8 dependence
in the exponential factors in (2.32) and (2.33). The
approximation (2.35) reduces the integrals to that
involving only two variables, scalar t and s. The
validity of (2.35) has been tested' in the case of
potential scattering and the result seems to be
reliable for a variety of forms of the potential.
(We have also examined in Ref. 3 the angle approx-
imation of Chen and watson, "and obtained sub-
stantial improvement in the large-angle behavior
of the amplitude. ) The differential cross sections
in the various approximations are given by

(2.41)

In (2.38}-(2.41), the superscript + and —are for
the e'H and e H systems, respectively. Note that
V of (2.39) differs from V' by more than a sign
change, although (2.41) is, in fact V =V'-2l'„'.
By construction, the coupling potential V, is un-
changed as we change the charge of the projectile
particle. (Its effect appears as V', .)

In order to estimate the exchange effect in the
e H problem, we have to generalize the ansatz
(2.3) on the wave function to a form,

4, = [ (([)ro,)u„(r,) + e ()o(r,)u„(r, ) j

o 8+ C+

o= If.]l',
as they appear in the tables.

(2.37a)

(2.37b)

(2.37c)

+[y(r„r,)~, (r,)+~y(r„r,)~, (r,)], (2.42)

with ~= x1 for the singlet and triplet spin states,
and (p is still given by (2.4}, where R-r„r- r,
or vice versa. Substitution of (2.42) to the scatter-
ing equation and integrating out one of the vari-
ables, we obtain

[T;~ v (%) —z,'] „(%)=-a(,(%) J (,(f)(2z)'„—z} ,„(())) '(,(I)[H--z]rp(], "))dI, ('[)

—e (1)o(I)[ff- Z] y(%, I)(u, (I)dI (2.43)

[T, +(cp, (V, + V„)(]))-,+(y, (T;(]))).-, +(4), (T-, + V}y)-, —E](d, (%)

V,~(I)0 )d uO, )- e q, H-E uo, d gO )

H—E)iP y (d~ ) d (2.44)

&e]~ =—&o] +e("jo ) Voog koXo)+~("yo ) Vog koXo}

el +6 9 el +6+6 (2.45}

The subscripts ~ = + denote the singlet or triplet
spin states. The scattering amplitude can be
calculated from uo, and ~, . However, we evaluate
in this paper an approximate amplitude in the form

where

x,(5) = I(,(I)(RE, + )'„-Elu[', "(1)d f,

x.(~) = ~(I, ~)(H-e [;]5)dI.

As we find from the actual calculation that the
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effect of the y channel is rather small, especially
at large angles, we will neglect the effective-
channel exchange contribution, i.e., &,', =O. It is
rather simple to evaluate X„which is given ap-
proximately by

given by

2
lite

(2.46)

The form (2.46) provides an immediate evaluation
of the integral following exactly the same routine
that is used to evaluate the integrals for &+& for
the direct contribution.

D. Optical theorem and the total cross section

As we emphasized in (2.6), the present calcula-
tion depends on one single parameter a. However,
this parameter may be fixed conveniently by in-
corporating the information on the total cross sec-
tion. From the optical theorem

o, = (4w/E) fmfg (8 = 0).

Vfe can thus adjust the parameter a such that the
calculated forward elastic amplitude has an
imaginary part which is consistent with the experi-
mental total cross sections. It could even be that
a can be made to be energy dependent. In fact, the
choice of a is very critical in getting the correct
magnitude of fmf~ (8 =0).

The total cross section a& can also be estimated
from the wave function 4 we have constructed.
That is,

0'g = Oe) + V.

where the inelastic scattering cross section is

or
1

cmci —
4 2(+, V 4) -&g.
4n

(2.48)

This will then provide further constraint on the
parameter a which appears in the function q, and
also on the shapes of V and V, .

The problem of exchange effect and the use of
the optical theorem we have discussed above were
not treated in detail in I, and we have spelled
them out explicitly to clarify the approximations
involved in the calculation which is reported in
Sec. GI.

III. RESULT OF THE CALCULATION

A. Average potentials and average energies

The formalism summarized in Sec. II requires
an explicit evaluation of the potential parameters
P; V„and the average energy E&. As noted in
(2.6), the parameter a is introduced in the trial
function y& to avoid the singular behavior of the.

Since we have the function 4' once u, and w are ob-
tained as a solution to the equation (2.17), we can
readily estimate the term

(2 49)

a ~0.5 '

Am/0 ) p

FIG. 1. Static potential
Vo'0 for the elastic-scatter-
ing channel and the average
potential ~ for the effec-
tive inelastic-scattering
channel for the system e+H.
The variation of V+ as a
function of a is studied for
the values a = 0.5ao, 1.0ao,
and 2.0ao. The potentials
are given in Rydberg units.
V has a much longer range
than V00.

6
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FIG. 2. Average potential
V for the effective channel
for the e H system. The
variation of P as a func-
tion of the parameter a is
studied, with a =0.5a0,
1.0ao, and 2.0ao. The
static potential Voo—-—V00,
and the potent. al V„which
results from V&& alone,
without F, is also pre-
sented. Both Vz and V
have longer ranges than Vo().

F.J; =0.1+0.3 By, (3.1)

which we will use in all our calculations. The
error in (3.1) comes mainly from the slow con-
vergence to the limit in (2.13) as 8-~. This is
related to the form of y, we have used. On the
other hand, with a =1.0 a.nd 6 =0,

integrals for W, . The details of the algebra is
given in the Appendix.

First of all, the average energy E& came out to
be very small for the values a = 0.5, 1.0, and 2.0
in the atomic units (a, = 1), and within our numeri-
cal accuracy,

P+ 24& -1&-1.2'
(3+ff') (3.2)

in the By units. Note that T" is nearly inversely
proportional to a. The form of F' for three
different values of a

a=0.5ao, 1.0ao, and 2 OQp (3.3)

are given in Fig. 1. %e emphasize that the fitting

A'W, dA= 0.5*0.2 By.

The average potential for the e'H system is de-
fined by (2.15), which we have conveniently fitted
by a function of the form

0.4
FIG. 3. Coupling poten-

tail between the elastic and
effective inelastic channels
is given for different set of
parameter values. V, is
the same both for e H and
e'H systems, and is roughly
a factor of 10 smaller than
P. A slightly modified V,

'

is used to test the sensitiv-
ity of the amplitude on V, .
V, has longer tails than

Vo() or V.

2



2030 YUKAP HAHN

TABLE I. Variation of the differential cross section o' for the e H system as a function of
the parameter a is studied, at 80= 200 eV (Eao = 3,835) and in the angular range 0'&O&].20'.
The exchange effect is not included here. 0& denotes the Born cross section, ap includes the
multiple-scattering effect due to Voo only. The cross sections are given in the 7tao units.

O~ (deg)

0
30
60
90

120

0.000
1.985
3.835
5.423
6.642

0.318
0.0457
0.0054
0.0014
0.0007

0.325
0.0473
0.0056
0.0015
0.0007

1.816
0.0461
0.0063
0.0015
0.0007

0.566
0.0470
0.0055
0.0015
0.0007

0.375
0.0472
0.0056
0.0015
0.0007

V' =2e '"(1+1/A) = —V (3.4)

Note the extremely long range exhibited by V'
compared with V«. This is more or less as ex-
pected, because F' is the average interaction
between the incoming positron and the target in its
va, rious excited states, which produce a more ex-
tended configuration.

So far, the parameter a is left arbitrary, al-
though we expect that its value should be near 1aQ.
This parameter can, however, be determined by
the value of the total cross section obtained by the
optical theorem (2.47) and the experimental, value
at the particular energy, if it is available. As
noted in Sec. IIC, the average potential T' for the
e H system came out to be quite different in shape
from V', because the change in the over-all sign
in the potential V changes the sign of P v but not

Thus, we have a simple fit for 0 as

(3.5)

where

of the various potentials we have calculated is done
purely to facilitate the handling of these quantities
as they are given in numerical forms, and thus
does not introduce new parameters. The figure
also contains the static potential for the positron-
hydrogen system given by

The actual form for V, is plotted in Fig. 3 for
different values of a. It is apparent that V, has an
extremely long tail compared with F and VQQ but
otherwise is fairly small in magnitude and has very
simple structure. This immediately suggests that
V, mill not play an important role in the large-
angle region.

B.Determination of the parameter a

As we have seen in the figures, V and 4', vary
considerably as functions of a. Insofar as the
original formulation of the effective-channel theory,
as given in Bef. 1 and being app1ied here, no
parameters a.re to be adjusted during the amplitude
calculation. However, the singular nature of the
original ~ makes it necessary to introduce the
parameter a in yt. This parameter may be deter-
mined by matching the calculated total cross sec-
tion to the known experimental values.

Thus, we have calculated the differential cross
sections for the different values of a, at E,' = 200
eV. The result is presented in Table I. The large-
angle behavior of o is hardly affected by the change
in a, but the forward cross section is extremely
sensitive to the choice of a. The main reason for
this is that the Born amplitude dominates at large
angles.

The above feature is exact1y what is needed to
P'; =1.8a 'e 08"(1-1.7R) (3.6)

(3."I)

and P' is given by (3.2). P for different values
of a are shown in Fig. 2.

Again V shows a long tail compared with V,„
and in addition shows an interesting structure near
the origin. 7 i,s also dependent on a '.

Finally, the coupling potential V, in the coupled
equations (2.17) is evaluated and fitted simply as

TABLE H. Total. cross section for the e H scattering
vrith exchanges is estimated at Eo= 50, 100, 200, and 500
eV by the optical theorem. This is denoted ot 'p'. The
experimental values a't '"p' is obtained by combining the
elastic, n = 2 excitation, and estimated excitations to
n&2 states. Therefore, 0&

'"p' may not be very reliable,
but it is sufficient to indicate that the parameter a may
be determined from 0, '", if accurate values are avail-
able. The parameter a may be approximately 0.8ao, but
me fixa to be a =1.0ao throughout; the calculation. We
al.so note that a could be mildly Eo dependent.

V, = 32a-'e-""(100+it') -', (3 8)
- opt
t

~n~Sexc(-)
t

in the By @nits. Of course, from the definition
(2.12) for V„we have

(3.9)

50
100
200
500

1.6
0.90
0.54
0.25

1,5
1.1
0.75
0.35

0.90
0.72
0.50
0,22

.15

.08

.06

.03



TABLE III. Elastic-scattering amplitudes for the e H system at F. o
=- 200 eV. 08 is the Born amplitude, Oz the static

amplitude with V00 only, without exchange, and 0'~ the amplitude with the Q-space effects included but without the ex-
change term. {D is for direct. ) (r, and 0' are the cross sections in the units 7t'ao for the singlet and triplet, respective-
ly, (a =]..Qao).

0 (deg) Ref& Refp Ref& Ref, ImfI Im fo Imf

0
30
60
90

120

1.000
0.379
0.130
0.067
0.045

1.001
0.373
0.121
0.061
0.041

1.231
0.371
0.120
0.061
0.041

1.232
0.373
0.120
0.060
0.040

1.231
0.368
0.119
0.062
0.041

0.132
0.098
0.055
0.034
0.025

0.513
0.102
0.055
0.034
0.025

0.513
0.108
0.063
0.034
0.025

0.512
0.096
0.046
0.034
0.026

0.566
0.0470
0.0055
0.0015
0.0007

0.567
0.0480
0.0059
0.0015
0.0007

0.565
0 ~ 0461
0.0052
0.0016
0.0008

determine a from re& as obtained by the optical
theorem invoiving Imf at 8=0.

In Table II, we estimated the experimental total
cross sections at various scattering energies E0
from the total excitation cross section and the
total elastic cross section. The numbers for o&'"P'

in Table II may not be very reliable, but a = 0.8
perhaps would have been a better choice to re-
produce the data. But, as we are not interested
in the accuracy of the cross section so much, but
in the applicability of the formalism itself, we
have taken the value a = 1.0a, for all our subsequent
calculations, i.e.,

a =1.0a, . (3.10)

C. Exchange effect

As we have discussed in Sec. IIC, the exchange
effect is included only in the elastic component
only„ i.e., we have neglected the &ei term in
(2.45). In view of the fact that the Born amplitude
dominates the cross section away from the for-
ward direction, this is a reasonable approximation.
However, for small angles, &~~ may not be negli-
gible, just as &~& is appreciable there.

Table III shows the detail, s of the effect of the
exchange. The subscripts + and —denote the
singlet and triplet states. The result here is con-
sistent with the conclusion of Takeda and Watson"
that the exchange effect is negligible at high ener-
gies.

Table IV contains the elastic differential cross
sections calculated in the Born approximation
(&s), in the static approximation (c~) with multiple
scattering effect coming from the Woo part, and
the cross section (cn) which includes the effect of
distortions but not the exchange effect. " The spin-
averaged cross section o,„ includes the exchange
effect only in the elastic-channel part, as dis-
cussed in Sec. DC. %e have evaluated the cross
sections using the amplitude expression in the
form (2.45) with SOP=0, and the angle-averaging
procedure was adopted. Of course, (2.30) and
(2.45) indicate that all the multiple-scattering

TABLE IV. Differential elastic-scattering cross sec-
tions for the e H system at the scattering energies Eo
=- 50, 100, 200, and 500 eV. 8 is the Born and P is the
static multiple scattering without the exchange; D is the
direct scattering with the Q-space effect but without, the
exchange; 0',„ is the spin-averaged cross section. 0's
are given in the units Yt'a20 Q =1.0ao}. Finer adjustment
of the parameter a to the total-cross-section data was
not made.

Eo {eV) O (deg)

50

100

200

500

0
30
60
90

120

o

30
60
90

120

0
30
60
90

120

0
30
60
90

120

0.318
0.166
0.0500
0.0181
0.0090

0.318
0.0996
0.0181
0.0054
0.0025

0.318
0.0457
0.0054
0.0014
0.0007

0.318
0.0110
0.0009
0.0002
0.0001

0,343
0.183
0.0569
0.0212
0.0108

0.331
0.1054
0.0196
0.0059
0.0028

0.325
0.0473
0.0056
0.0015
0.0007

0.321
0.0113
0.0010
0.0003
0.0001

0,846
0.159
0.0603
0.0273
0.0136

0.702
0.102@
0.0202
0.0055
0.0028

0.566
0.0470
0.0055
0.0015
0.0007

0 444
0.0112
0.0010
0.0003
0.0001

0.886
0,179
0.0743
0.0292
0.0132

0.707
0.1055
0.0220
0.0055
0.0027

0.567
0.047 5

0.0057
0.00'1 5

0.0007

0 444
0.0112
0.0010
0.0003
0.0001

terms involving Voo and V are incorporated here,
but the effect of V, is included only to second
order,

Evidentl. y, throughout the energy range 50.~ E,'
& 500 eV under consideration, the first Born am-
plitude dominates the scattering at all angles
8& 30'. Furthermore, the iteration of the Voo

makes a significant contribution to the cross sec-
tion at all angles, specially for F.o & 200 eV.
Referring back to Table IV, we also see that the
imaginary part of the amplitude f& shows a suh-
stantia, l change from the Born result, Imf~ =0.

The form of the amplitude (2.30) is especially



YUKAP HAHN

convenient in estimating the contribution of the
inelastic channels on the elastic amplitude. The
change from 0& to va is drastic at small 8, the
scattering angle, although for Eo —100 eV, both
0& and aD approach the Born values at large e.
The change in 0~ from o+ is mainly brought about
by the huge increase in the imaginary part of the
amplitude, Imj&. This is seen in Table IIL This
sheds some light on the contents of the Glauber
approximation in which the amplitude is calculated
by writing the scattering function 4 in the form

with

8'=b+ Z '.
The V- dependent factor in 4' of (8.11) is under-
stood to simulate the multiple-scattering effect
which comes from the V~ as in f'g and also the
distortion effect of the inelastic channels. Thus,
it is not at all clear whether the resulting ampli-
tude in this approximation incorporates enough
contributions from the Q channel (inelastic). The
present calculation clearly shows that, except at
small angles and E,'& 50 eV, the potential V(r, 8)
in (8.11) can be replaced by a simpler expression
V «(8} without affecting the cross section very
much. This substitution reduces the original

three-body problem into a simple potential scatter-
ing.

Insofar as the present approach is concerned,
it is extremely fortunate that fD and oD, which
include the Q-space channel effect, are very
sensitive to the parameter a. In fact, ImfD(0), or
more precisely Imf with the exchange effect
included, can be used to precisely determine the
parameter. (As the total cross sections are not
available in any absolute scale, we made an esti-
mate of the magnitude from the elastic and excita-
tion cross sections which are dominated by the
n = I -n =2 transitions in the /=1 states (S.ee
Table II.) It seems that a is close to 1 Bohr
radius (a=0.8ao). We also note that a may be
mildly energy dependent. %e ignore this fine detail
and adjustment.

The change in the cross section due to the ex-
change effect is small but significant at small 8
and Fo= 50 eV, but its effect rapidly decreases as
we go to larger angles or to higher energies.
Originally, it was hoped that the exchange effect,

I.O

TABLE V. Elastic-scattering differential cross sec-
tions for the e' H system at E p

——50, 100, 200, and 500
eV. & represents Born; I' represents static; 0'+ inc1udes
the Q -space effect @ = 1.0mp) Cross sections are given
in the re2p units.

O. I

8(deg)

100

0
30
60
90

120

0
30
60
90

120

0
30
60
90

120

0.318
0.166
0.0500
0.0181
0.0091

0.318
0.100
0.0181
0.0054
0.0025

0.318
0.0460
0.0054
0.0015
0.0007

0.257
0.129
0.0353
0.0118
0.0055

0.292
0.0892
0.0161
0.0049
0.0023

0.287
0.0379
0.0040
0.0011
0.0006

0.522
0.0926
0.0325
0.0093
0.0032

0.410
0.0800
0.0156
0.0049
0.0023

0,355
0.0370
0.0040
0.0011
0.0006

O, O I

O.OOl—

30
I

SO
I I

izo

500 0
30
60
90

120

0.318
0.0110
0.0010
0.0003
0.0001

0.304
0.0105
0.0009
0.0003
0.0001

0.328
0.0105
0.0009
0.0003
0.0001

FIG. 4. 6+ and 6,„ for the positron and electron scat-
tering are compared at Ep =100 eV. The Born cross sec-
tions are the same, 6& = 6z, and is given by the dashed
curve. Solid curve represents 6,„dash-dot curve rep-
resents 6+. The cross sections are given in the units
&a(), and the scattering angles 8 in degrees.
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which was not included in the earlier Glauber-type
calculations, may be responsible for the apparent
discrepancy in the cross-section data at 200 eV
and at angles 6 ~ 60 . Obviously, o., does not
resolve this when the theoretical and experimental
cross sections are normalized at 6 =60'. Vfe have
tried to change the various potentials, P, V„and
also the exchange term, to bring about the neces-
sary change in oav(8) to make it agree with the
experimental points. %ithin the reasonable range
for the parameters which were varied, we were
unable to bring the theoretical cross sections up to
the experimental points.

simplify the amplitude integrations is valid at
large angles. %e have studied this question in a
previous report' and found that, for potentials
which have relatively smooth behavior, the ap-
proximation is rather good. As we made the same
approximation in g, and g~, we examined this
question by modifying the parameter o.'in (2.35}to
the form (2.36b) instead of (2.36a), which was used
throughout the calculation. The result is also
included in Table VI for comparison. This in-
dicates, although not absolutely conclusively, that
the approximation is reasonable, within the accu-
racy we are interested in.

D. Positron-hydrogen scat tering IV. CONCLUSION

As the formalism given in Sec. II is readily
applicable both to the e H and e'H systems with

very minor changes, we have also calculated the
positron scattering from hydrogen. The general
feature of o~, v~, and 0' is roughly the same as in
the e H case„but the difference between o;„and
a' is very large at small 6 for all values of Fo.
They tend to come together at large angles and

high energies, as more or less expected from the
dominance of the Born amplitude in this region,
o' and c&, are compared in Fig. 4.

E. Approximations in the effective channel

%e recall that the complicated Q space is treated
in this calculation as one effective channel and V

and V, are estimated by a single trial function cp&.

Furthermore, the effects of Z~~ term in (2.10) and

the exchange process corning from p& as contained
in W*,P of (2.45} were neglected. In the evaluation
of the amplitude, we have also neglected all the
higher-order contributions which involve V, more
than the second order.

In order to estimate these approximations, we

have calculated the cross sections for the e H

system at Fo = 200 eV with V = V, , i.e., the
effect of Y in (2.40) is neglected. The potential
V, is shown in Fig. 2, and the result is given in

Table VI.
Evidently, V seems to have a very small effect

on the cross section at all angles. This is more
or less expected for the e*H system, as the Born
term dominates, but is a disappointment in the
sense that we will learn very little from such an
elastic scattering experiment about the dynamic
structure of the target system, except the simple
static density effect. To learn about the structure
especially for more complex but interesting target
systems, we may have to study inelastic process-
es.

Finally, there is always the question of whether
the angle-averaging procedure adopted here to

TABLE VI. The effect of replacing V by 7„ is stud-
ied for the e II system at 200 eV. The resulting cross
section is denoted by a„'I4 . 0&' is obtained when the
angle-averaging parameter o. is set as e = 1~~3(1 —q/2K),
rather than e = 1'which is used throughout the calcula-
tion (a = 1.0a 0) .

0
30
60
90

120

0 {

0.0475
0.0057
0.0015
0,0007

0.55.'3
0.0471
0.0058
0.0015
0.0007

0.567
0.0475
0.005~
0.0015
0.0007

%e have applied the effective-channel approach
to the medium-energy scattering of composite
systems to the simple e'H and e H system. The
coupled equations for the elastic and effective
inelastic channels a,re solved approximately, and
various contributions to the elastic amplitude were
separately analyzed. The theory as applied here
contains effectively no adjustable parameter, as
the only constant a in y& is presumably fixed by
the total-cross-section data, as discussed in Sec.
III. Although the calculation has been carried out
with reasonable accuracy in the resulting cross
sections, our main purpose has been to examine
whether the approach outlined in Ref. 1 is indeed
applicable to systems more complicated than the
hydrogen. Some of the main findings from the
present study are the following:

(1) The calculation shows that, as many of the
earlier calculations have concluded, the Born
amplitude dominates the cross section at angles.
away from the forward direction, and at energies
higher than 100 eV.

(2) The multiple-scattering contribution coming
from the static interaction V~ is sufficient to pre-
dict the real part of the amplitude at all angles, but
the imaginary part is not reliable at 8 =0.

(3} The imaginary part of the amplitude in the
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near forward direction is completely dominaI'ed by
the contribution from the inelastic channel. As
Imf(8 =0) is directly related to the total cross sec-
tion, this result is what we expected. At least one
parameter in the description of the inelastic
channel can be fixed therefore from the total-
cross- section data.

(4) The parameter a in y, is expected from
physical grounds to be of the order of 1~, . How-

ever, the total-cross-section data indicates that
it could be somewhat smaller. We may interpret
this as an effect of the high-energy scattering,
because the projecti'e with high energy may more
readily penetrate inside the target, so that the
region which is "insensitive" to the scattering may
be much smaller than the density distribution in
the ground state. This information will be useful
in the future parametrization for more complex
systems. However, for the present purpose, it
was Qot thought to be meaningful to make a finer
adjustment of this parameter, Rnd we have taken
a =1.0a, thxoughout the calculati. on.

(6) The average energy E~ for the hydrogen is
approximately zero (or very small positive num-
ber} and we have set E~ 0.I &0.3 Ry.

(6) The average potential t" and the coupling
potential V, both have a, very «&g &@&pe compared
to the ~ potentiRL. AgRln, this 18 Rs expected,
because the effective channel simulates the target
in the excited (Q space) states which spread out
more in the configuration spa, ce. In fact, I' may
even have a tail which may decay at large A j.ike
8ome inverse powex' Lawy since the Q space in-
cludes both excited bound states as well as con-
tlnuuIQ stRtes.

Therefore, we have shown that the coupled-
equations approach to medium-energy scattering,
as formulated in Bef. I, can be rather simply
applied to composite- system scattering. The
method is equally applicable to medium-energy
Qucleax' scattering of protons a,nd pions off nu-
clei."" Provided the approximate amplitude in
the form (2.30) is valid, the method seems to be
much simpler to apply than the Glauber-type cal-
culations when more complicated targets are in-
volved. The separation of the amplitude into
different parts makes the present approach es-
pecially useful in studying the static (density}
effect and the dynamic properties of the target
systems (arising from the inelastic processes).

The theory as fox mulated can also be applied to
inelastic scattering, since we essentially have the
total-scattering function 4 in terms of the Gx'een's
functions g and g~. Thus, the projection of V4'

onto a given final state with:. tt„u,',o&' will give the
inela, stic amplitude for the 0-n transition. How-
ever, this may not be so effective if that final-

state channel is strongly coupled to the initial
channel. In such cases, the explicit inclusion of
both initial- and final-state channels may be neces-
sary, with propex' modifications of the effective-
channel parameters. Appropriate extensions of the
present approach to inelastic scattering are being
formulated, and will be reported on later with
applications. As we have noted, the dominance of
the Born amplitude in the ela, stic scattering makes
if difficult to obtain the structure information on
the target from the elastic-scattering data, except
for the static size of the target and the total in-
elastic contribution. A more sensible way to study
the target structure seems therefore to analyze
the inelastic-scattering data.

bootes added in proof: Very recently, Teubner
et at. [J.Phys. 8 6, LI34 (1973)j have redone the
e H elastic-scattering experiment at 50 eV in the
small angle region, and compared the cross sec-
tion with the various theoretical calculations.
Although the validity of our calculation at this low

energy is marginal, the cross section in Table IV
fits well for the angular region 9& 60', while it is
too low for smaller angles.
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APPENDIX

Explicit evaluation of the quantities which appear
in (2. l'1) is given here. We take the units with
m= e'= 0=1, which give a, =1; the energy is given
in By units. Thus, for the e'H system

2 2
r

f
r-Tt(

With the notation

(6~=- dr $,*6/„

+

2a 1(V') = (V)+ —2L, —
R ' A+a
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4 8 8 3a+A Sa
(A6)

(y' y)= —,+, (1+R)e '" + —,(R+a)I.„
S 8,„32K, 16 ~ (As)

8 R 2 -e '"(2+2R} R+2a
R 2(R+a)~ 2N+a) R+a

+Pl'(0, 1) — —2a +N(0, 2) ———-N(l, l)a +N(1, 2) — N(2, 1)
a a2 8 2a 1

&+a ++a A+a 8+a

+i/(2, 2) -+aN(l, 2) (A9)

The special functions used are

L„(R)= re "ln -d r,
o (r -R(+a

1 1
)((m, n)= r"e '"

(
)„—

( „)dr N(, s ~ )()=
(A10)

(Al 1}

The integrals for the e H system are obtained by the change of sign for all quantities which involve odd

powers of V or V'. Thus, the entire quantities of interest are parametrized in terms of y, with one param-
eter a. This constant wiQ be fixed by the total-cross-section data.
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