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A simple set of coupled equations applicable for medium-energy scattering by composite
systems is derived. The scattering function is expanded in the basis functions such that the
average inelastic scattering channels simulate both adiabatic and impulse limits. Detailed
discussions are given on the construction of the basis functions by the sum-rule technique.
A procedure to solve the coupled set of equations by the Green’s functions is presented, and
the evaluation of the amplitude using the angle-averaging method is outlined.

I. INTRODUCTION

The coupled-channel method (CCM) has been
used''? widely in scattering problems of composite
systems, often yielding reliable amplitudes when-
ever a small number of channels dominate the
particular process. Sometimes, simple forms
of effective distortion potentials are also intro-
duced within the CCM scheme to simulate the
effect of those channels which are neglected. In
fact, some of the channels included in the CCM
need not correspond to any specific physical states,
and, among others, the pseudostate expansions®™
and effective-channel methods®*” have also been
considered. The CCM automatically takes into
account the nonlocal, energy-dependent, and ab-
sorptive characters of the process inherent in the
effective potentials®’® for the composite-system
scattering. Furthermore, iterative solutions of
the coupled equations describe the rescattering
effect in a very natural way.

Once a set of coupled equations is derived by
reducing the original multichannel, many-particle
scattering problem, the task of solving it is usually
a well-defined and straightforward problem. How-
ever, such a reduction is by no means unique and
depends very much upon the way basis functions
are chosen. It is the purpose of this paper to de-
scribe an approach for the construction of a set
of equations which is reasonably simple to solve
and yet contains enough important features which
are needed to treat bofk low- and high-energy col-
lisions. The essential part of the physics is put
in through careful choices of the basis functions,
while the relative importance of the various terms
will be decided optimally by the coupled equations
themselves.

For a scattering of incoming distinguishable
particles by a composite target, described by

H=T®R) +H(F) + V(F, R) , (1.1)

)

the scattering function is often expanded in terms
of the undistorted target functions {y,(f)} and the
resulting series truncated, as

VER =T 9,0

n=0
N
~ 3 ¥, (R (1.2)
where
HT(F)‘pn(F) =ETn ‘pn(ﬂ d (1-3)

When a large number of such states are involved
collectively, the truncated form (1.2) is not very
useful, and other approaches are needed. Thus,

at low energies, for example, the polarized-orbital
method!? takes the form

¥ = [90(F) + @ par (F, B)uo(R) (1.4)
or its extensions

¥~ [§o(F) + Cpoy (T, R) uo(R) (1.5)

¥ ~ Yo(Pug(R) + @pat (F, Rw(®) , (1.6)

where @p (T, R) is determined, e.g., from the
equation

[HT(F)‘ETo]‘Ppol=—QV¢o(F)- (1-7)
In (1.7), we have used the projections
Q=1-P, P=[y®)(ysE")|. (1.8)

Incidentally, (1.5) and (1.6) give bounds on the re-
sulting amplitudes, while (1.4) does not, because
both ¢ and w are to be varied optimally for a given
@pol- In general, (1.7), which is the sum-rule
technique resulting from the second-order pertur-
bation theory, is a difficult equation to solve, and
various simpler versions are often used. In the
form (1.6), the w channel simulates all the @-space
effect through a single function ¢, . -The pseudo-
state method®™® is a direct generalization of (1.6),
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in which a set of basis functions {¢,} are pre-
determined (although this is not necessary at low
energies), from Hy or Hp +V, and the scattering
function ¥ is then expanded in the form

N

\I'g‘poqu'E @Pnt Wp - (1.9)
n=1

Note that ¢,, in (1.9) need not necessarily cor-

respond to any physical channels. At low energies,

(1.9) has proven to be an extremely powerful way

of accurately solving many-particle scattering

problems.**!!

As the scattering energy increases, other terms
in H become as important as Hy, and the methods
described above are not very effective, as they
single out Hy or Hy +V as the dominant part of H
at low energies. In fact, at extremely high en-
ergies, the operator T or T+ V plays a more
prominent role. For example, the Glauber ap-
proximation'? on the scattering function

\Ifwe"zfs'izpo(x")tbc =¥, (1.10)

where

S z
¢G=exp(———;, f V(F,ﬁ')dz'>, R = +2%)02
0 -0
(1.11)

has proven to be very effective in atomic'® and
nuclear'* problems. However, (1.10) has its draw-
backs; its validity breaks down either (a) at large
angles'® (or momentum transfer), or (b) when the
effect of the target bindings becomes important.
As the scattering energy decreases, these dif-
ficulties become serious.

For medium-energy scatterings of interest
here, neither the forms such as (1.6) nor (1.10)
is satisfactory. Thus, for example, a slightly
different approach was discussed by Mittleman'®
recently, in which ¥ is written as

¥~ Zpo(i?)uo(ﬁ) +‘P(F)w(§) ’

where u,, ¢, and w are all unknown functions to be
determined by a set of three coupled equations.
However, the resulting equations satisfied by these
functions are extremely complicated and nonlinear,
so that it is probably a hopeless job to solve them
with any reasonable accuracy. In view of the dis-
cussions given above, we propose here an alter-
nate expansion of ¥, which incorporates botk fea-
tures of (1.6) and (1.10) but avoids the complica-
tion of (1.12).

(1.12)

[I. COUPLED EQUATIONS

For the medium-energy scattering of interest
here, the forms (1.6), (1.10), and (1.12) are not
suitable by themselves, but we can certainly com-
bine them with proper coefficient functions and

optimize them by solving the resulting coupled
equations. Thus, we write

¥ (F, R) = ho(Fuo(R) + 0, (F, R)w®) + )y (R, T),
(2.1)

where the basis functions §,(r),¢;, and y; are
assumed known, while #,, w, and x are to be ob-
tained from a set of three coupled equations. As
in (1.6) and (1.10), ¢, will describe the adiabatic
component of ¥ and y, is for the impulse part.
Presumably, at low energies, the w “channel”
will dominate while at high energies the y, “chan-
nel” will be more important. In fact, the form
(2.1) with ¢, =0 would be a significant improvement
over (1.10), especially at large angles, and de-
serves further study.

The basis functions may be obtained in a variety
of ways. Here, as with (1.7), we apply the per-
turbative sum-rule technique and write, for ex-
ample,

(Hp = E po)pe(F, R) = — QVyp,(F) (2.2)

for the low-energy part of the contribution in ¥,
and'®

(T-Ely,®, )= - (V ~(V)g)e'KoR 2.3)

for the high-energy part of ¥. In (2.3), we have
introduced

-

(V= [dR VERER, §=K,-K, (2.4)

where KO is the initial particle momentum and K,
the final state momentum. [See Appendix A for
an alternative to (2.3).] In the extreme-high-en-
ergy limit, (2.3) is what one would obtain in the
impulse approximation of the Glauber type.'> The
additional term in (2.3), which is proportional to
(V)% is included to minimize the double counting
of the effect of ¥V in the »,term. The property of
(2.2) and (2.3) will be discussed in more detail
in Sec. I, but we should stress the fact that they
are very convenient but not a unique choice. Ob-
viously, by construction, (2.1) will go over to the
forms appropriate at low- and at high-energy
limits, and thus it is reasonable to expect that the
medium-energy scattering may also be treated
effectively by (2.1), if and only if the coupled equa-
tions are solved to determine the coefficient func-
tions.

Substitution of (2.1) into the scattering equations
and operating with

[atu®, [aF o R, ana [aRyr® )
(2.5)

in the usual way, we obtain the following set of
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coupled equations for u,,w, and yx; noting the un-
usual variable change in the last integration, we
have firstly for %,,

(T +Voo = EDuoR) = = Voow = Vo X, (2.6)
where
Vo= fdi: III)OIZVG, ﬁ) E<V)F »

(2.7a)
EY=E -E o,
and, in the symbolic notation,
Vo¢=fd?¢5*(f)(H—E)<p,(F.§)
- f d¥ p¥F)WVe,F, R), (2.7b)
Vo X = [ dF ps@EH-EXFy(®R, ). (2.7¢)

In (2.7b), we used the fact that ¢, is in the @ space
orthogonal to §,, and V,, in (2.7c) is essentially
an integral operator on the unknown function x.
(The function X could be obtained under the con-
straint that it is also in the @ space, orthogonal
to §,, in a simpler case when y, is taken to be
independent of the T variable. But, we do not
consider this possibility here.)

The equation satisfied by w is similar to (2.6)
but more involved because of the R dependence
of v,(F,R). Although ¢ is uniquely given, e.g.,
by (2.2) so that its normalization is not arbitrary,
the fact that ¢, is multiplied by an unknown coef-
ficient function w in (2.1) allows one to have

[loipaz=1,

for all values of R. That is, the normalized @, is
the same as the earlier one, with a function of the
R variable multiplied. Then, we have

(T +V g +dgp = ED0R) = = Voot = Vg X,

2.8)
where
Vo= fd? WlVE R). (2.92)
J¢¢=fd?<p;*T(§)<P,. (2.9b)
EL®)=E - fd?cp?‘HT(p‘EE—Ew(ﬁ). (2.9¢)
and
V¢0=de¢TV¢0=Vg¢, (2.9d)

waffd?q)?(H—E)xy,. (2.9e)

First of all, in V,,, the R dependence comes
both from ¢, and V, just as in the adiabatic formu-
lation of slow-collision processes. The J

term also arises from the R dependence of ¢, and
may not be negligible in the medium- and high-
energy scattering, although it is generally negli-
gible at low energies. Ej, depends on the R var-
iable, and, in the limit R—, E, will approach

a constant average excitation energy of the target.
It is real for all R and approaches a value higher
than E r,, since ¢; is in the @ space. The V,, is
an integral operator acting on x while y,is a
known function of both T and R variables.

Finally, we consider the equation satisfied by

x. It is in the T variable, where ¥=(F,* * *+ T,) is
the internal-target variable for A particles.
Since y; is not normalizable in the usual sense,
we could introduce a convergent factor e~"® in
(2.5) for the dR integration and may let y—- 0 at
the end. Thus,

[H,(F) +U”(§) +dyy -E,] X(F)= = Uygtty = Uypw
(2.10)

where
Up= [dR [y, eV ™V (E R)/D, | (2.11a)

Jyy X= <X(F)fd§ e "ByYHpy,

L A(G* )* | dR v}V; y,e"R)[D
“m Zs X f Ve Vi yee 'R

(2.11b)
E,=E - f’lﬁe—”(ynyt)/Dy

=E -E,(T), (2.11c)

and

Uy ouoEli’o(i)fdﬁ y:(ﬁ, Tle”T®

X(T +V - E})uy(R)/DL/2 | (2.11d)

Uypw = fdﬁ ViR, F)e " TR(H - E)py(F, R)w/DV?,
(2.11e)
with

Dy(x’-)=fd§ eTTR |y, P (2.111)
Again U, and U, are integral operators acting
on u, and w, respectively. This came about, as
with V,, and V,,, because of the variable switch
between T and R in the last term of (2.1). The
J,, term is expected to be small at high energies,
as J,, in the low-energy limit, but may not be
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negligible as the scattering energy decreases.

The equations (2.6), (2.8), and (2.10) are the
desired set of coupled equations. The analogy be-
tween the low- and high-energy parts is obvious.
The equations are linear in the three unknown
functions u,, w, and x, so that their solution can
be obtained without the complexity and instability
arising from the nonlinearity. Instead of formally
solving this set of equations and uncoupling them
to obtain an effective interaction in the elastic
channel, for example, we briefly consider several
simpler cases of the present formalism.

(i) The expansion (2.1) is the most general form
involving three-term expansion. To simplify the
calculation, ¢; and y, may be replaced by ¢,(T)
and y,(ﬁ), respectively, so that the dependence
on the parametric variables is absent. This re-
duces (2.2) and (2.3) such that the inhomogeneous
terms have to be zero. The resulting expansion
of ¥ is

¥ = Y Pl + 30 0 Pl ) + 30 X,y
a=1 B=1

(2.12)

where we have added more than one term of each
kind, resulting in N, +Ng+1 coupled equations,
and where ¢,, may be determined from Hy +U(r),
e.g., and y,5 by T+V(R). U and V are some rea-
sonably chosen distortion potentials. The form
(2.12) is a direct generalization of the pseudostate
expansion, in which the last sum is added.

(ii) We can mix in the features of (2.12) with
(2.1) and write, e.g.,

Ng

¥ = Yotte + 0 F, Rw®) + S x. @)yes®),  (2.13a)
“ B8
=1

or

Nd
U atto+ D 0reFlw, ®) +xF)y®, 7). (2.13b)

oa=1

(iii) Even simpler approaches are to directly
extend the low- or high-energy techniques toward
the medium-energy region using

¥ = Potto + ¢4 (F, R)w (R) (2.14a)

or

¥ = ot Ty R, T) . (2.14b)

For medium energy, slow collisions, as in the
ion-atom scattering, (2.14a) should still be a rea-
sonable form, while (2.14b) should be better for
lighter-particle scattering such as in the electron-
atom collision.

We add two remarks concerning the coupled
equations formulated above. Firstly, we note
that the x equation is still an A-body problem of

the target system, so that it is not reasonable to
ask for its exact solution. For A =2, we are
forced again to introduce approximations. We
simply mention the possibility of solving the x
equation by a variational procedure. In that case,
we have a variational iteration procedure, in
which %, and w are treated as they are in (2.6)

and (2.8), but x is solved variationally in an itera-
tive way.

Secondly, we should also consider the case of in-
elastic, exchange and rearrangement collisions.
Unlike a formulation of the theory in which H is
modified in some approximate ways, we have
formulated the problem in terms of the wave-
function construction. Therefore, it is almost
trivial to modify (2.1) such that the above compli-
cations can be taken into account; i.e., we simply
include the proper symmetrization and additional
terms in ¥, without changing the basic structure
of (2.1). The problems of overcompleteness and
nonorthogonality present no difficulties,'” as they
have been fully discussed earlier.

III. BASIS FUNCTIONS

We return to (2.2) and (2.3), and consider in
more detail various approximations which may be
introduced to evaluate the basis functions ¢, and
y: which appear in (2.1). As stressed earlier,
the forms (2.2) and (2.3) are not necessarily the
optimum choice, but are simple because the right-
hand sides are taken to be the known functions
obtained from the lowest-order perturbation theory.
We can illustrate the approximations involved by
studying the original effective potential in the
elastic channel. Following Feshbach,® we have
the effective potential for the elastic scattering
given by

Vet = (¥ 0, V)7 + (%,VGOV%)? ’ (3.1)
where
GY=[QE+ie-H)Q]™. (3.2)

Obviously, for a simple form of G9 the elastic
amplitude can be calculated rather trivially. Thus,
the problem is to evaluate G° We will show that
(2.2) and (2.3) are in fact simple approximations

to G2 in the respective limits.

A. Adiabatic function ¢, (r:R)
Explicitly, (2.2) is
(Hr = Ezg)@i(F, R) = = (V= (V)1)e, (), (3.3)
where
(Viz= [ dF [4ol*VE R) =V, .

Equation (3.3) may be formally solved as
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ouF, )= [ aF GHEFIVE, @), (3.9
with

G =[QEro - Hr)Q] .

On the other hand, from (3.1), we see that the
adiabatic expansion'®

G=GR+GUT +V—-E})G++ +» (3.5)

provides (3.4) as the lowest-order term in which
the motion of the projectile is neglected. The sum-
rule technique then asserts that, to evaluate ¢,,
we do not use Gf in (3.4) but simply solve (3.3)
directly for ¢, .

Equation (3.3) is still an A-body problem in the
external field provided by the stationary particle
at ﬁ, and is a difficult equation to solve. In low-
energy applications, the partial-wave expansion
of ¢, is usually made, owing to the importance of
the long-range forces coming from the few low
partial waves, and then a few low-angular-mo-
mentum states are evaluated.!® Such a procedure
may not be effective at higher energies, and we
consider here two simple alternatives. The first
possibility is to use the closure approximation and
set

Q

Cim ——a
T ETo "ET

(3.6)

and thus

o1 _ (V=M
O Frg By W By @0

where the average energy E; may be calculable
by studying the target system alone. Equation
(3.7) may be a reasonable approximation if many
@ states contribute collectively.

Note that in the approximation (3.7), the factor
(Ezo - E;)™' may be dropped since such a factor,
and the normalization of ¢, at each fixed R, can
always be absorbed into an unknown function w.
Therefore, the form (3.7) has the additional fea-
ture that ¢, is obtained very trivially without un-
known parameters such as E,. In fact, the form’

@i w~QVP¥P

where P¥? satisfes P(H — E)P¥*=0, was used
earlier in the estimate of E, itself.

The second and more ambitious approach on ¢,
is to set up a variational calculation using a func-
tional

[J]'s 2(Q<Pu V¢o)+(Q‘Pt(HT "ETO)Q(pt): (3-8)

where [J] is negative definite. Note that (3.8) is
slightly different from a variational estimate on
Gr9 as

G} sG3, <o,

where

N

68 = 37 Qe @Wra
o b=t X(Epg=Hr)QUep') '] 0p(Qu gl -

Incidentally, it is also of interest to point out that
one can obtain a finite set of ¢,(¥, R) by diagonal-
izing the matrix formed with H + V and trial func-
tions, which generates a set of molecular pseudo-
states.'®

B. Impulse function y,

While the ¢, term takes care of the adiabatic
part of the collision, y, is specifically designed to
represent the high-energy component in ¥. Thus,
it is reasonable to solve (2.3) in the high-energy
impact-parameter representation. As in (2.2),
the term (V)z in the right-hand side of (2.3) is in-
cluded to minimize the double counting of the ef-
fect of Vinu, although this problem will be elim-
inated automatically when the coupled equations
for u,, w, and x are solved. In the high-energy
limit, the projectile assumes nearly straight-line
trajectory and we may rewrite (2.3) in the cylin-
drical coordinates, with _120 along the 2 direction.
Then, with E,~E,=h°K%/2M, we have

v, ®, F)= J'd'ﬁ'go(ﬁ, R V= (Vig]eRoR-rr’
(3.9)

where

- 2M :
'Yy = ' vi€ - e —m———— ‘KOI‘E'F"
g,R,R)=(E,+ie =T) 41!]R-R'|e ;
or
2M6(b —B/) eiKOl"‘ll zg;ik

&o™

where

goelk = —(i/KO)E‘EO '(E—i') G(E - gl)e(z -2z /) .

The convergence factor e~ 7% is included in (3.9)
(with y— 0 at the end of the integrations). As ex-
pected, the (V) term in (3.9) subtracts out from
&, that part of the state which is proportional to
e'®s*R as (2.4) shows that (V)z is in general mo-
mentum-transfer dependent. With the eikonal ap-
proximation (3.10), however, we may set q=0 in
(V)g. (For scatterings at large angles, with q#0,
the original exact g, may be kept without the
straight-line approximation.)

The connection between g, and G9 in (3.1) can be
seen from the series

GO =QgoR+8QH r+V—E 1)Qg,+* " 3.11)
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Thus, v, of (2.3) completely neglects the target
structure, but includes the interaction V to first
order, with the target particles fixed at T = (f,, T,,

R ?A). This is precisely the scattering picture
represented by the Glauber approximation,'? espe-
cially when g&* is inserted iny, for g,. Presum-
ably, (3.9) should give an improved amplitude at
large angles as g, contains the outgoing waves in
all directions. On the other hand, the role of
(Vg in (3.9) is yet to be clarified by more detailed
analyses. Somewhat different forms for the basis
function y, are studied in Appendix A. The pre-
vailing theme in the construction of the basis func-
tions is that, although they essentially determine
the goodness of the resulting amplitudes, their
form should be simple and compact. The form
(3.7) for ¢, is preferable in this respect and we
have for y,

V= (V=(Virle'foR =5, (3.12)
as given in (A6), where the unknown parameter
which results from the closure approximation is
absorbed in the function y.

We have seen above that the basis functions ¢,
and y, are designed to represent the two extreme
physical pictures of the composite-system scat-
tering, and they assume the complementary role
in the wave function (2.1); the relative importance
of the two terms is determined automatically
through their coefficient functions w and ¥, when
the coupled equations are solved. In this way, the
main difficulty of formulating the medium-energy
scattering problem can be treated without the prior
knowledge of the effectiveness of either term.

The above discussion does not preclude the pos-
sibility of employing the less ambitious forms
(2.14), which are simpler, but naturally less ef-
fective, than (2.1). Nevertheless, the resulting
amplitudes may be a significant improvement over
the form such as that given by (1.10). The form
(2.14a), for example, gives rise to a formulation
which is very closely related to the effective-chan-
nel theory of Refs. 6 and 7 for the high-energy
nuclear reactions. As mentioned earlier, the ap-
proach with (2.14a) has the advantage that the theo-
ry is well-defined once the function ¢, is chosen.
The exchange effect, which is known to be negli-
gible at high energies, °® may become important at
lower energies, and a simple symmetrization of
(2.14a) as

A
W =y, (r )uo(Fo) +<p,(1?, ;o) w(;o)]+ Z €, (i?o" Y‘i Nee+]
i=1
(3.13)
will be sufficient.
The effectiveness of (2.14b) has not yet been

tested explicitly, but we give in Appendix B the
leading correction to the Glauber amplitude com-
ing from the target-structure contribution.

1V. ELASTIC SCATTERING AMPLITUDE

The elastic scattering amplitude is constructed
using the solution of the coupled equations derived
in Sec. II. We consider here several ways of
treating this problem, and, for definiteness,
choose the set generated by (2.14a), i.e.,

4.1a)
(4.1b)

(T + Voo —Ep)u,®) = = V,, ®) 0 (®),

’

(T +Vyp +d gy ~Ep)a(R) = = Vo R)us(®R)

The formal solution is obtained in terms of the
Green’s functions defined by

PR R)=(EL+ie =T = V)™, (4.2)
g“,(ﬁ, R)=E,+ie =T -V)1, 4.3)
where

VaVep+dyo+E, =Ey,

E,=lim € -E,),

and the homogeneous solution

(T+V,o—Eg)uP(R)=0. (4.4)
We then have

Uo=Ul +885 Vo,w, (4.5)

w=g,V,olo, (4.6)
with the total wave function given by

= 4o, ®) +, (F; R)0(R), 4.7
where

@, = (V= Vo)t (F)/DL/2, (4.8)

D, =(V2>r. - (V)':l.
The exact elastic amplitude is

fﬂ = (@f’ V‘I")

= @;, Vo) + @, VGV,), 4.9)
where
&, =p@)et iRy, K, =K,
oy =poe ®R=yu®, K=K, @10
and
V=0, +GVe,. (4.11)

Note that the full Green’s function G can be writ-
ten!® as

G=(E +i€ —=H)'=Gpp+Gpg+Ggp+Gqq,

with

(4.12)
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Gpp=[PE +ie =H = VGOV)P]™!,
Gpo=GPPVQGyq, (4.13)
Gop=G°QVPGpp,

Goo=[QE +ie —-H - VG*V)Q]™*,

where

GP =[P +ie =H)P]™*.

For the total wave function of the form (4.7), we
have

Ta~ (2, Vhotto+9,w))
= (D, Vooul) + @, Voo g8 Vo )+l Vo)
~ @, Voous) + @, Voo 8o Voottd)
=rP+79. (4.14)

In (4.14), we have dropped all terms which involve
more than one g or g,. This may be viewed as
an approximation in (4.9) for G of the type

Gpp~ PgEP, Goo™ Q€,Q, Gpo® Ggp~0.
(4.15)

It is clear how the amplitude (4.14) could be im-
proved further if necessary.

We evaluate ¥ in 7§ by two different ways.
Firstly, the usual eikonal approximation with the
straight-line trajectory gives!?

-> - y z
ul~eikKi'k exp(—l—éf VOO(R')dz'> , (4.18)

and thus
‘rg;zznix,.f bdbd, (@) e T® 1),  (4.17)
0

where

P (b) = K71 f Vo ®')dz'

i-K,-K,. (4.18)

The amplitude T4 may also be evaluated using
the Green’s function g by first writing it in the
form

T8 = @, Vooul®) + @, Voogh Vooul®) . (4.19)

The simplest form for g¥ is given in the semiclas-
sical approximation®®

gE®R R)~ - @n)tet /s (4.20)
where

S=R-R, T=1®R+R) 4.21)
and

KP(t)=[2E =2 Vpo(t) /2 =real . (4.22)

The form (4.20) is simpler than the corresponding
eikonal (WKB-type) form and was shown to be
quite reliable.?® Further simplification may be
made by defining the new variables

1\ 271/2
simle-2'l, t=[o(55E) ] (4.23)
and set
gl —(2m)7'6(b —b")ei Tt/ (4.24)

where the Z axis is yet to be chosen. (Perhaps,
2 =K, below.)

The amplitude ??, is the leading correction to
7§ and may be evaluated using g, of the form

go~ —(2m) g dWs g=gw (4.25)
where

K9 =[2E", - 2V(t)]/2 = real (4.26)
or

go~ —(2m)715(b —b')e Ytk /s 4.27)

Thus, T§ becomes
Tin [ [ai et TR s

X Voot =3 8W ol +39), (4.28)
with
K,=3(; +K)). (4.29)

A slightly simpler procedure than that involved
in (4.28) is to go back to (4.1b) and consider a
modified form of the equation

(T+V =El)ws =V ,0ul. (4.30)
If we set
w(ﬁ)Ee"E"Ee";/Eb(ﬁ),

with K’ = (2E,)!/ 2 and
z
X= f V(R dz' | (4.32)

then 3(R) satisfies
[7-iK- V3 +i(V/R>K- V5 + T13(R)

(R, -R)R_+G/B)X
== Vet et VKX " (4.33)

where
T=e"X/K' To-iX/E (4.34)
Neglecting the terms 7, T, and V /K2, we obtain
~ i (F %R E TR/
a(R)=—E,f dz’ Vet K=K R gix(RD/K - (4,35)
and thus

- i - (" - "
ng_?fdbf dz U,*(R)f U(R"dz',  (4.36)
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where

- - -, =
- R ,
U‘(R')=e‘q' V:Weix /K,

. - - o (4.37)
U(R)=e' s Ry, e X /K |
and
4.=K,-K, q,=K,-K @ -3,=3). (4.38)

The differential elastic scattering cross section

is 1

ael(o)=mlfellz ’ (4-39)
where 7, is given, for example, by the sum of
(4.17) and (4.36). A partial justification for (4.17),
rather than (4.20), may be that many soft colli-
sions do not require the transitions to the @ space,
while the @-space effect requires double hard col-
lisions through V, and V.

Obviously, both (4.19), with (4.20), for T5 and
(4.28) for T9 each involve six-dimensional inte-
grations corresponding to ds and 4f. However,
the integrations will also be greatly simplified if
we adopt the angle-averaging procedure developed
recently.!® It involves essentially a replacement
of the angle-dependent term t- 5 in V (R) V,(R")
and in V,,(R)V ,(R') by

t.5~aq,ts, (4.40)

where
@,=1/V3 or a,=(1/V¥3)(1-4q/2K) .

This procedure works for all forms of the poten-
tials and has been shown recently'® to work quite
well for the range of ¢ values much larger than
that for the Glauber approximation. Except for a
Gaussian form of the potential, an approximation
such as (4.40) is unavoidable for the evaluation of
the amplitude integrals. We will follow this in
our applications.

Finally, we note that the separation of the elastic
scattering amplitude into three parts, as we have
done in (4.14) and (4.19), would be very convenient
in determining the role of V, and the ¢ channel
separately. Apparently, this is not possible with
the Glauber approximation as outlined in Appendix
B, for example.

V. DISCUSSION

The approach to medium-energy-scattering
by composite target has been discussed here as
a two-step procedure. Firstly, the basis functions
@; and y, are obtained along the line discussed in
Sec. III, or in some approximations of (2.2) and
(2.3). Then, the second step is to construct a set
of coupled equations and obtain its solution.

We have thus reduced the complicated many-

I 2021

particle, multichannel scattering problem to a
form manageable in practice. Important physical
effects known at both low- and high-energy scat-
terings are incorporated into the theory without
regard to their relative importance. The form
(2.1) should readily cover the entire range of
scattering energies, therefore.

The effect of exchanges and particle transfers
may be non-negligible at medium energies, and
(2.1) may be immediately generalized to such
cases.!” More detailed forms of ¢, and y,, and
additional simplifications of the coupled equations
satisfied by u,, w, and x are more profitably dis-
cussed in connection with specific physical appli-
cations. A detailed application of the present
formalism in the form (4.1), (4.19), and (4.28) to
the medium-energy scattering of ¢~ and e* by
atomic hydrogen has been carried out and the re-
sult will be reported on as a sequel to this paper.
Preliminary studies are under way to apply the
formalism to the @~He and p*H systems.

Notes addedin proof. It has been shown recently*!
that the present formulation, in particular Eq.
(4.1) with (3.7), is closely related to the optical
potential approach of Feshbach and Hiifner® and
also to the multiple diffraction theory of Glauber.!?
Simple procedures to systematically obtain cor-
rections to the amplitudes calculated by these
latter approaches have been developed.?!
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APPENDIX A

We have emphasized in Secs. II and II that the
Eqgs. (2.3) and (3.9) for y, are by no means unique.
For high-energy scatterings, other possibilities
are available, and we consider a simple case here.
If we write the total scattering function as

¥ =PV + Q¥
R Yol +XY, (A1)
then, using the expansion (3.11), we have
Q¥ = G9QVPY
~goQVPYF~ g,QVP,, (A2)
where
&, = gy(FletFo .

(A2) is certainly consistent with the first-order
perturbation theory and closely related to the
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low-energy analogy of (2.2) and (3.5). Writing
(A2) out explicitly as

Qu~ [ g® BNV - @ TaR, (a3)

and comparing with (Al), we may identify im-
mediately

(R, )X~ Q¥ . (A4)

Thus we expect that xy will be close to ,. The
main difference between (A4) and (3.9) is in the
subtraction terms, (V) and (V)z, respectively.
The resulting x and u, in the two cases will differ
markedly. From a physical point of view, (A4)
clearly separates out the incoherent part of the
scattering and thus gives a more direct connection
to the effective-potential treatments such as that
given in Refs. 6 and 7. On the other hand, (3.9)
follows more readily from the Glauber-type ap-
proximation in which the coherent and incoherent
components are mixed in.¥, but the impulse pic-
ture stands out.

We also note that (A3) is closely related to the
form of ¢,w of (3.7) obtained in the closure ap-
proximation. This suggests that the simple form
(2.14a), combined with (3.7), may be quite ef-
fective in describing the medium-energy scatter-
ing, inspite of the fact that ¢, is essentially a
low-energy component of the total wave function.
In a similar way, we can approximate (A3) further
by introducing the closure approximation as

Q¥ ~ H(R, D)x(@), (A5)
where
B/, T) = (V= (V)p)eiko' R, (A6)

In (A5), the average energy involved has already
been absorbed in x(r), which is yet to be deter-
mined from the coupled equations. Obviously, the
form (A6) is simpler and more closely related to
(3.7) than (A3). On the other hand, (A3) with g&t*
suggests another form for y, as

yreifor E[exp<—ki—]:°(V- Voo)dz’)—l] . (A7)

0

APPENDIX B

The coupled-equation approach to medium-en-
ergy scattering, as formulated in Secs. II and
111, is designed to improve on the simple Glauber

theory for the high-energy small-angle scatterings.

We consider here an alternate perturbative pro-
cedure, which also clarifies the contents of the
Glauber af)proximation. Thus, possible improve-
ments on the approximate wave function ¥, given
by (1.10) requires essentially two types of cor-

rections; firstly, it was assumed that
T®,~0, (B1)

which becomes the more important source of
error at large momentum transfer. Certainly,
this problem can be treated by an improved method
of solution of the coupled equations of Sec. II,
taking into account the double and higher multiple
hard collisions. A simple procedure using the
Green’s functions in the semiclassical approxima-
tion has been considered recently. The second
correction to ¥ ; has to do with the way (1.10) in-
corporates the virtual excitation effect, i.e., the
Q-space effect. It is clear that ¥, contains a
large portion of the @¥ through the use of the
unprojected potential V(», R), just as with (3.7)
and (A3), but the precise amount included has
never been estimated. In the following, we pre-
sent a simple discussion of ¥, and derive a leading
correction to the Glauber amplitude, still assuming
(B1).

From (1.1) and (2.7a), we have

(T+V —EY)¥,;=-B¥,, (B2)
where
Br=H,-E.=QH - E,)Q. (B3)

The subscript ¢ denotes the initial state of the
system. The homogeneous solution of (B2) with
the quasielastic boundary conditions and (B1) is
given precisely by ¥, as®

¥ gy = dp(FleiFo Ry (B4)
and

(T+V—E¥s=0. (B5)
Formally, we can then write the solution

V=¥ +GB ¥ gy, (B6)
where

G=(E+ie-H)™". (B7)

The elastic amplitude is given by the two-potential
formula as

Ta= (@, Vg) + (¥ gy, Bp¥)
=(®;, Vi) + (¥ gy Br¥gy)
+(W g BrGB ¥ gy), (B8)
where
<I>f=w0(?)e‘if'k..

The first term in (B8) is the usual Glauber ampli-
tude

T5=(,, V¥, (B9)
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while the leading correction term is given by the
second term

T81= (¥, B¥e,) . (B10)

In (B10), ¥, satisfies the same equation (B5) for
¥, and assumes the form similar to (B4). This
is the desired result. Note that the operator B,
in (B10) acts essentially like a potential, because
of the property (B3). Thus, (H,-E,)¥, decays
for large R like the potential V, so that the inte-
grals involved in (B10) are finite. In the case of
Coulomb interactions, as in the electron-atom
collisions, V is singular at f, = ﬁ, and H , acting
on ¢ ;. may introduce unphysical singularities in
(B10). However, we expect that the dominant
physical contribution to (B10) should come from

the region of large T, and small R. Thus, such
singularities are not important in so far as the
estimate of T87 is concerned; we may avoid such
singularities by, for example, introducing a cut-
off in V which appears in ¢, as

2 2
y=-2& £y =t
R ~ |r; - R|

Zce? e?
- —— T P .
R+a +lj\: [r;~R| +a (a=0)
(B11)
Other ways of dealing with this problem are also
possible.?® The modifications such as (B11) may

sometimes also be required for ¢ of (3.7) and ¥
of (A6).
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